The present invention relates to an image signal transmission apparatus and a signal output circuit applying bandwidth broadening mechanism thereof.
High definition multimedia interface (HDMI) is a video and audio transmission interface that performs transmission in fully digital form, and is capable of transmitting uncompressed audio signal and video signal. Since both the audio signal and the video signal can be transmitted by using the same wire, HDMI transmission technology simplifies the installation of the system wires.
In a system that uses such a transmission technology, a source terminal transmitting the video and audio signals and a sink terminal receiving the video and audio signals are included. A signal output circuit is required to be disposed in the source terminal to modify the video and audio signals such that the sink terminal receives the video and audio signals with high quality. However, in conventional design, the signal output circuit can not balance the signal quality and the power consumption.
In consideration of the problem of the prior art, an object of the present invention is to supply an image signal transmission apparatus and a signal output circuit applying bandwidth broadening mechanism thereof.
The present invention discloses a signal output circuit having DC gain maintaining mechanism for an image signal transmission apparatus (TX) that includes a first driving circuit and a second driving circuit. The first driving circuit includes a continuous time linear equalizer (CTLE) and configured to receive a digital input signal to perform a high frequency enhancement thereon to increase a bandwidth of the digital input signal to generate a first output signal, in which a zero point and two poles of a frequency response of the first driving circuit are determined by a plurality of circuit parameters thereof. The second driving circuit is configured to receive and amplify the first output signal to generate a second output signal for an image receiving apparatus (RX).
The present invention also discloses an image signal transmission apparatus for an image signal transmission system that includes a digital signal processing circuit and a signal output circuit. The digital signal processing is configured to generate a digital input signal. The signal output circuit includes a first driving circuit and a second driving circuit. The first driving circuit includes a CTLE and configured to receive a digital input signal to perform a high frequency enhancement thereon to increase a bandwidth of the digital input signal to generate a first output signal, in which a zero point and two poles of a frequency response of the first driving circuit are determined by a plurality of circuit parameters thereof. The second driving circuit is configured to receive and amplify the first output signal to generate a second output signal for an image receiving apparatus.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiments that are illustrated in the various figures and drawings.
An aspect of the present invention is to provide an image signal transmission apparatus and a signal output circuit applying bandwidth broadening mechanism thereof to make signal output circuit have both large bandwidth and low power dissipation by disposing the first driving circuit.
Reference is now made to
In an embodiment, the image signal transmission system 100 is a system that transmits signals of image and sound (video/audio signal) according to high definition multimedia interface (HDMI) technology. The image signal transmission apparatus 110 servers as a source terminal, e.g., a set-up box, a DVD player or a computer. The image signal receiving apparatus 120 serves as a sink terminal, e.g., a television, a projector or other display devices. The image signal transmission apparatus 110 is configured to perform processing on the video/audio signal and transmit the video/audio signal to the image signal receiving apparatus 120 to be playback.
The image signal transmission apparatus 110 includes a digital signal processing circuit 130 (abbreviated as DSP in
The digital signal processing circuit 130 is configured to generate a digital input signal, which is a differential signal and actually includes digital input signals Vip and Vin. The signal output circuit 140 has a bandwidth broadening mechanism to enhance and output the digital input signals Vip and Vin. The signal output circuit 140 includes a first driving circuit 150 and a second driving circuit 160.
In an embodiment, the first driving circuit 150 is a front-stage driving circuit. The first driving circuit 150 is configured to receive the digital input signals Vip and Vin to perform high frequency enhancement to increase the bandwidth of the digital input signals Vip and Vin and further generate a first output signal which is also a differential signal and actually includes first output signals Vop1 and Von1.
Reference is now made to
Each of the input transistors MN1 and MN2 includes a gate, a drain and a source. The gate of the input transistor MN1 is configured to receive the digital input signal Vip. The gate of the input transistor MN2 is configured to receive the digital input signal Vin. The drain of the input transistors MN1 is electrically coupled to an output terminal O1. The drain of the input transistors MN2 is electrically coupled to an output terminal O2. The drain of the input transistors MN1 is configured to generate the first output signal Vop1 to the output terminal O1. The drain of the input transistors MN2 is configured to generate the first output signal Von1 to the output terminal O2.
The load resistors R1 is electrically coupled between the drain of the input transistors MN1 and an operation voltage source VDD. The load resistors R2 is electrically coupled between the drain of the input transistors MN2 and the operation voltage source VDD. The load capacitors C1 is electrically coupled between the drain of the input transistors MN1 and the ground terminal GND. The load capacitors C2 is electrically coupled between the drain of the input transistors MN2 and the ground terminal GND. The adjusting resistor R3 and the adjusting capacitor C3 are electrically coupled in parallel between the sources of the input transistors MN1 and MN2. The current source I1 is electrically coupled between the source of the input transistors MN1 and a ground terminal GND. The current source I2 is electrically coupled between the source of the input transistors MN2 and the ground terminal GND.
In an embodiment, a zero and two poles of a frequency response of the first driving circuit 150 are determined by a plurality of circuit parameters of the first driving circuit 150.
Reference is now made to
In an embodiment, the circuit parameters of the first driving circuit 150 include a transconductance of the two input transistors, a resistance of each of the two load resistors, a capacitance of each of the two load capacitors, a resistance of the adjusting resistor, and a capacitance of the adjusting capacitor. For example, the transconductance of the two input transistors is gm, the resistance of each of the two load resistors is Rd, the capacitance of each of the two load capacitors is Cd, the resistance of the adjusting resistor is Rs and the capacitance of the adjusting capacitor is Cs.
As a result, a transfer function H(s) of the first driving circuit 150, i.e., the transfer function between the digital input signal and the first output signal, is expressed as:
Further, the DC gain of the first driving circuit 150 is expressed as:
The zero ωZ at the frequency response is expressed as:
One of the two poles ωP1 is expressed as:
The other one of the two poles ωP2 is expressed as:
As a result, by adjusting the circuit parameters, the zero and the two poles of the frequency response of the first driving circuit 150 can be adjusted accordingly such that the DC gain and the high frequency part of the signal can be increased with different degrees.
Reference is now made to
In
As a result, under a proper selection of the values of the resistance Rs and the capacitance Cs, the first driving circuit 150 can increase the high frequency response of the digital input signals Vip and Vin and further increase the bandwidth of the digital input signals Vip and Vin.
In an embodiment, the second driving circuit 160 is a back-stage driving circuit. The second driving circuit 160 is configured to receive and amplify the first output signals Vip and Vin to generate a second output signal for the image receiving apparatus 120. In an embodiment, the second driving circuit 160 includes a current mode logic (CML) circuit. Further, the second output signal is a differential signal that actually includes second output signals Vop2 and Von2.
In some approaches, the signal output circuit includes two stages of CML circuits to perform power amplification. However, such a method is not able to accomplish the object of power-saving since the CML circuits consumes more power.
On the contrary, the signal output circuit of the present invention can accomplish both large bandwidth and low power dissipation by disposing the first driving circuit implemented by CTLE that consumes less current and increases the bandwidth of the output signal.
It is appreciated that the embodiments described above are merely an example. In other embodiments, it should be appreciated that many modifications and changes may be made by those of ordinary skill in the art without departing, from the spirit of the disclosure.
In summary, the image signal transmission apparatus and the signal output circuit applying bandwidth broadening mechanism thereof of the present invention makes signal output circuit have both large bandwidth and low power dissipation by disposing the first driving circuit.
The aforementioned descriptions represent merely the preferred embodiments of the present invention, without any intention to limit the scope of the present invention thereto. Various equivalent changes, alterations, or modifications based on the claims of present invention are all consequently viewed as being embraced by the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
110106730 | Feb 2021 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4920233 | Kincaid | Apr 1990 | A |
5125100 | Katznelson | Jun 1992 | A |
5481389 | Pidgeon | Jan 1996 | A |
5604528 | Edwards | Feb 1997 | A |
5834697 | Baker | Nov 1998 | A |
5930678 | Alley | Jul 1999 | A |
6466913 | Yasuda | Oct 2002 | B1 |
6721371 | Barham | Apr 2004 | B1 |
7530091 | Vaughan | May 2009 | B2 |
7883363 | Montena | Feb 2011 | B2 |
8045066 | Vorenkamp | Oct 2011 | B2 |
8429695 | Halik | Apr 2013 | B2 |
8589997 | Wells | Nov 2013 | B2 |
8611528 | Hazani | Dec 2013 | B2 |
9549221 | Into | Jan 2017 | B2 |
10979256 | Sun | Apr 2021 | B2 |
20010046268 | Sharma | Nov 2001 | A1 |
20020056135 | Sharma | May 2002 | A1 |
20040244053 | Golombek | Dec 2004 | A1 |
20050056454 | Clark | Mar 2005 | A1 |
20060124342 | Clark | Jun 2006 | A1 |
20060141976 | Rohde | Jun 2006 | A1 |
20070101370 | Calderwood | May 2007 | A1 |
20080227333 | Hazani | Sep 2008 | A1 |
20080231111 | Hazani | Sep 2008 | A1 |
20100017842 | Wells | Jan 2010 | A1 |
20100100918 | Egan, Jr. | Apr 2010 | A1 |
20100125877 | Wells | May 2010 | A1 |
20100146564 | Halik | Jun 2010 | A1 |
20100311277 | Montena | Dec 2010 | A1 |
20110154429 | Stantchev | Jun 2011 | A1 |
20120151548 | Rakib | Jun 2012 | A1 |
20130125193 | Wells | May 2013 | A1 |
20130227632 | Wells | Aug 2013 | A1 |
20140033264 | Li | Jan 2014 | A1 |
20140036982 | Ali | Feb 2014 | A1 |
20140119675 | Kim | May 2014 | A1 |
20150189364 | Into | Jul 2015 | A1 |
20150295736 | Bulzacchelli | Oct 2015 | A1 |
20160261435 | Musah | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
109450471 | Mar 2019 | CN |
Entry |
---|
OA letter of the counterpart TW application (appl. No. 110106730) dated Oct. 29, 2021. Summary of the OA letter: 1. Claims 1˜5 and 9˜10 are rejected as being unpatentable over the disclosure of the cited reference 1 (CN 109450471 A, also published as U.S. Pat. No. 10,979,256B2). 2. Claims 6˜8 are allowable. Correspondence bewteen claims of TW counterpart application and claims of US application: 1. Claims 1˜10 in TW counterpart application correspond to claims 1˜9 and 11 in US application, respectively. |
Number | Date | Country | |
---|---|---|---|
20220272401 A1 | Aug 2022 | US |