The present invention relates to systems for determining an object's physical dimensions (i.e., dimensioning systems) and, more specifically, to a dimensioning system that uses image-stitching to acquire the data necessary for dimensioning.
Determining an item's dimensions is often necessary as part of a logistics process (e.g., shipping, storage, etc.). Physically measuring objects, however, is time consuming and may not result in accurate measurements. For example, in addition to human error, measurement errors may result when measuring irregularly shaped objects or when combining multiple objects into a single measurement. As a result, dimensioning systems have been developed to automate, or assist with, this measurement.
A dimensioning system typically senses an object's shape/size in three-dimensions (3D) and then uses this 3D information to compute an estimate of an object's dimensions (e.g., volume, area, length, width, height, etc.). In addition, for irregular objects (or multiple objects), the dimensioning system may compute the dimensions of a minimum bounding box (MVBB) that contains the object (or objects).
The dimensioning system may sense an object by projecting a light pattern (i.e., pattern) into a field-of-view. Objects within the field-of-view will distort the appearance of the light pattern. The dimensioning system can capture an image of the reflected light-pattern and analyze the pattern distortions in the captured image to compute the 3D data necessary for dimensioning.
Accurate dimensioning requires images with (i) high pattern visibility and (ii) high pattern density. In some cases, however, the pattern is hard to resolve. For example, the pattern may be obscured by the shape of the object, or by the object's color (i.e., reflectivity). In other cases, the lighting in the environment may obscure the pattern in the captured images (e.g., under exposure or over exposure). In still other cases, the object may be larger than the dimensioning system's field-of-view. While moving the dimensioning system away from the object may help fit the object within the field-of-view, this comes at the expense of pattern density because the projected pattern spreads as the range between the object and the dimensioning system is increased.
In digital photography image-stitching is the process of combining images to produce a larger, high-resolution image. Image-stitching may be applied to dimensioning in order to increase the dimensioning system's field-of-view without sacrificing pattern density. In addition, image-stitching can help to resolve a pattern that was obscured in a single image. Therefore, a need exists for image-stitching images acquired by a dimensioning system in order to better measure objects.
Accordingly, in one aspect, the present invention embraces a method for dimensioning an object. In the method, a dimensioning system is positioned so that at least a portion of an object is contained in the dimensioning system's field-of-view. The dimensioning system then captures a first range image of the field-of-view. After the first range image is captured, either the dimensioning system or the object is moved so that the dimensioning system's field-of-view contains a different portion of the object. Then, a second range image is captured. This process of moving the dimensioning system (or the object) and capturing a range images is repeated until a plurality of range images are captured. The plurality of range images are then combined to create a composite range-image. The dimensions of the object are then determined using the composite range-image.
In a possible embodiment of the method, capturing a range image includes (i) using a pattern projector to project a light pattern into the field-of-view, (ii) capturing an image of the reflected light-pattern using a range camera, and (iii) generating 3D data from the image of the reflected light-pattern.
In another possible embodiment of the method, capturing a range image includes (i) using a pattern projector to project a light pattern into the field-of-view, (ii) capturing an image of the reflected light-pattern using a range camera, and (iii) generating 3D data from the image of the reflected light-pattern so that the plurality of range images contain 3D sufficient for dimensioning the object. For example, 3D data sufficient for dimensioning may imply that 3D data is collected from all surfaces of the object. Alternatively, 3D data sufficient for dimensioning may imply that the 3D data from a surface of the object has no gaps (i.e., no missing areas) in the reflected light-pattern.
In another exemplary embodiment of the method, the dimensioning system is handheld.
In another exemplary embodiment of the method, audio and/or visual message are generated to guide the user in performing the movement of the dimensioning system or the object. For example, these audio and/or visual messages can include instructions for the user to (i) move the dimensioning system (or the object) in a particular direction, (ii) move the dimensioning system (or the object) at a particular speed, and/or (iii) cease moving the dimensioning system (or the object).
In another exemplary embodiment of the method, moving either the dimensioning system or the object includes an automatic movement of the dimensioning system (or the object).
In another exemplary embodiment of the method, combining the plurality of range images to create a composite range-images includes image-stitching the plurality of range images. In one possible embodiment, the image-stitching includes simultaneous localization and mapping (SLAM).
In another aspect, the present invention embraces a dimensioning system that includes (i) a pattern projector, (ii) a range camera, and (iii) a processor that is communicatively coupled to the pattern projector and the range camera. The pattern projector is configured to project a light pattern onto an object, while the range camera is configured to capture an image of the reflected light-pattern. The range camera uses the reflected light-pattern to generate 3D data and uses the 3D data to create a range image.
The dimensioning system's processor is configured by software to trigger the range camera to capture a plurality of range images and combine the plurality of captured range images to form a composite range-image. Then, using the composite range-image, the processor calculates the dimensions of the object.
In an exemplary embodiment of the dimensioning system, the plurality of range images are captured as the spatial relationship between the dimensioning system and the object is changed. For example, in one embodiment, the dimensioning system is handheld and a user can move the dimensioning system so that each range image in the plurality of range images includes 3D data from a portion of the object, and the composite range-image includes 3D data from the entire object. In some embodiments, the processor is further configured by software to gather tracking/mapping information as the spatial relationship between the range camera and the object is changed. The tracking/mapping information can be used, in some embodiments, to generate messages to help a user change the spatial relationship between the range camera and the object. These messages may be instructions to (i) move the dimensioning system or the object in a particular direction, (ii) move the dimensioning system or the object at a particular speed, and/or (iii) cease moving the dimensioning system or the object. After the plurality of range images are captured, the processor can be configured by software to create a composite range-image by image-stitching the range images using the tracking/mapping information. In a possible embodiment, the plurality of range images for image-stitching have partially overlapping fields of view.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces the use of image-stitching to create a composite range-image for dimensioning. Some advantages of using composite images for dimensioning are (i) better pattern coverage of an irregular object or group of objects, (ii) greater accuracy (i.e., higher pattern density), and (iii) immunity to lighting effects, such as shadows or bright reflections.
An exemplary dimensioning system is shown in
The dimensioning system 10 also includes a range camera 3 configured to capture an image of the projected light pattern that is reflected from the range camera's field-of-view 4. The field-of-view of the range camera 4 and the field-of-view of the pattern projector 2 should overlap but may not necessarily have identical shapes/sizes. The range camera 3 includes one or more lenses to form a real image of the field-of-view 4 onto an image sensor. Light filtering (e.g., infrared filter) may be also be used to help detect the reflected pattern by removing stray light and/or ambient light. An image sensor (e.g., CMOS sensor, CCD sensor, etc.) is used to create a digital image of the light pattern. The range camera may also include the necessary processing (e.g. DSP, FPGA, ASIC, etc.) to obtain 3D data from the light pattern image.
As shown in
The 3D data includes range values for each point of light in the point-cloud image. Further, range values between the points of light in the point-cloud image may be interpolated to create what is known as a range image. A range image is a gray scale image in which each pixel value in the image corresponds to an estimated range between the dimensioning system and a point in the field-of-view. The range camera may output 3D data in the form of point-cloud images or range images.
A range image may be analyzed using software algorithms running on the dimensioning system's processor 9 to detect objects and determine the object's dimensions. In some cases these algorithms may include steps to create a minimum bounding box (MVBB), which is a computer model of a box that surrounds an object (e.g., an irregularly shaped object) or a collection of objects (e.g., multiple boxes on a pallet). In this case, the dimensioning system may return the dimensions of the MVBB.
Accurate dimensioning requires high-quality images of the reflected pattern (i.e., point-cloud images). A high quality point-cloud image is one in which the points of light in the pattern are visible on a plurality of the object's surfaces. Low quality point-cloud images may result from a variety of circumstances. For example, the imaged pattern may not be visible one or more surfaces (e.g., surfaces that are blocked from the pattern projector) or fall outside the field-of-view of either the pattern projector and/or the range camera. In another example, the light pattern may be partially visible on a surface and/or lack sufficient pattern density (i.e., the number of visible points of light on the surface). In yet another example, the lighting (e.g., glare, shadows) in the object's environment and/or the object's reflectivity (e.g., dark objects) may adversely affect the visibility of the light pattern.
The present invention mitigates or solves these problems by capturing a plurality of point-cloud images (or range images) from different perspectives and then combining the plurality of point-cloud images (or range images) into a composite point-cloud image (or range image).
Range images may be captured during the movement and then combined to form a composite range-image. The composite range-image has 3D data from more points on the object. For example, all sides of an object may be sampled during the moving process to obtain 3D data from the entire object. Further, gaps in the pattern (i.e., missing areas in the pattern) may be filled in using this technique.
In one possible embodiment, the movement of the dimensioning system and/or the object is automatic and does not require user participation. In this embodiment, the dimensioning system may be coupled to movement devices (e.g., actuators, motors, etc.) that adjust the spatial relationship between the dimensioning system and the object. In one example, the object 6 may be placed in a measurement area and the dimensioning system 10 may be moved around the object 12 to collect range images from various perspectives as shown in
In another possible embodiment, the movement of the dimensioning system and/or the object is performed by a user. Here messages (e.g., audio, visual, etc.) may be generated by the dimensioning system's processor and conveyed to a user interface (e.g., screen, indicator lights, speaker, etc.). The user may follow the instructions provided by the messages to move the dimensioning-system/object. The instructions may include messages to help a user know (i) how far to move the dimensioning-system/object, (ii) how fast to move the dimensioning-system/object, (iii) to move the dimensioning system/object to a particular location, and (iv) how long to continue moving the dimensioning-system/object (e.g., when to stop moving). For example, the dimensioning system may be handheld and the user may move the dimensioning system to change perspective. In this case, the dimensioning system may be configured to gather tracking information (e.g., sense its position and orientation within the environment) to help combine the range images.
In general, the dimensioning system may be moved in a variety of ways as the range images are captured. In some cases, however, this movement may have certain requirements to facilitate combining. For example, movements may be limited to movements having a constant range between the dimensioning system and the object, as changes in range can affect the image size of the light-pattern/object. In another example, the movement may be limited to a certain path having a particular starting point and ending point. This path may be determined using an expected object size/shape.
The requirements for movement may be reduced through the use of simultaneous localization and mapping (SLAM). SLAM is a computer algorithm that uses images (e.g., range images) of an environment to update the position of the imager (e.g., dimensioning system). When moving a dimensioning-system, for example, SLAM algorithms may detect features (i.e., landmarks) in a captured range image and then compare these landmarks to landmarks found in previously captured range images in order to update the position of the dimensioning system. This position information may be used to help combine the range images.
Combining range images is typically achieved using image-stitching. Image-stitching refers to computer algorithms that transform, register, and blend a plurality of constituent images to form a single composite image. The image-stitching algorithms may first determine an appropriate mathematical model to relate the pixel coordinates for constituent images to the pixel coordinates of a target composite-image surface (e.g., plane, cylinder, sphere, etc.). This involves transforming (e.g., warping) the images to the target composite-image surface. The transformed images may then registered to one another (e.g., using feature detection and mapping) and merged (e.g., blended) to remove edge effects.
The process and results of image-stitching are illustrated in
While range images have pixels to representing range instead of reflected light, they are like conventional digital images in most other regards. As such, the principles of image-stitching described thus far may be applied equally to range images (or point-cloud images).
In one exemplary embodiment, the dimensioning system may create messages 50 to guide the movement of the dimensioning system and/or the object as described previously.
In another exemplary embodiment, the dimensioning system may create or update the composite range-image in real time. In this case, the dimensioning system may be able to examine the latest composite range-image to determine if there is 3D data sufficient for dimensioning (i.e., if a sufficient number of range images have been acquired) 80. If not, the dimensioning system may create messages to help the user move and capture range images so as to gather the missing or incomplete 3D data.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
This application claims the benefit of U.S. patent application Ser. No. 14/870,488 for Image-Stitching for Dimensioning filed Sep. 30, 2015 (and published Apr. 14, 2016), now U.S. Pat. No. 10,096,099, which claims the benefit of U.S. Patent Application Ser. No. 62/062,175 for System and Methods for Dimensioning, (filed Oct. 10, 2014). Each of the foregoing patent applications, patent publication, and patent is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3971065 | Bayer | Jul 1976 | A |
4026031 | Siddall et al. | May 1977 | A |
4279328 | Ahlbom | Jul 1981 | A |
4398811 | Nishioka et al. | Aug 1983 | A |
4495559 | Gelatt, Jr. | Jan 1985 | A |
4634278 | Ross et al. | Jan 1987 | A |
4730190 | Win et al. | Mar 1988 | A |
4803639 | Steele et al. | Feb 1989 | A |
4914460 | Caimi et al. | Apr 1990 | A |
4974919 | Muraki et al. | Dec 1990 | A |
5111325 | DeJager | May 1992 | A |
5175601 | Fitts | Dec 1992 | A |
5184733 | Amarson et al. | Feb 1993 | A |
5198648 | Hibbard | Mar 1993 | A |
5220536 | Stringer et al. | Jun 1993 | A |
5243619 | Albers et al. | Sep 1993 | A |
5331118 | Jensen | Jul 1994 | A |
5359185 | Hanson | Oct 1994 | A |
5384901 | Glassner et al. | Jan 1995 | A |
5477622 | Skalnik | Dec 1995 | A |
5548707 | LoNegro et al. | Aug 1996 | A |
5555090 | Schmutz | Sep 1996 | A |
5561526 | Huber et al. | Oct 1996 | A |
5590060 | Granville et al. | Dec 1996 | A |
5592333 | Lewis | Jan 1997 | A |
5606534 | Stringer et al. | Feb 1997 | A |
5619245 | Kessler et al. | Apr 1997 | A |
5655095 | LoNegro et al. | Aug 1997 | A |
5661561 | Wurz et al. | Aug 1997 | A |
5699161 | Woodworth | Dec 1997 | A |
5729750 | Ishida | Mar 1998 | A |
5730252 | Herbinet | Mar 1998 | A |
5732147 | Tao | Mar 1998 | A |
5734476 | Dlugos | Mar 1998 | A |
5737074 | Haga et al. | Apr 1998 | A |
5748199 | Palm | May 1998 | A |
5767962 | Suzuki et al. | Jun 1998 | A |
5802092 | Endriz | Sep 1998 | A |
5808657 | Kurtz et al. | Sep 1998 | A |
5831737 | Stringer et al. | Nov 1998 | A |
5850370 | Stringer et al. | Dec 1998 | A |
5850490 | Johnson | Dec 1998 | A |
5869827 | Rando | Feb 1999 | A |
5870220 | Migdal et al. | Feb 1999 | A |
5900611 | Hecht | May 1999 | A |
5923428 | Woodworth | Jul 1999 | A |
5929856 | LoNegro et al. | Jul 1999 | A |
5938710 | Lanza et al. | Aug 1999 | A |
5959568 | Woolley | Sep 1999 | A |
5960098 | Tao | Sep 1999 | A |
5969823 | Wurz et al. | Oct 1999 | A |
5978512 | Kim et al. | Nov 1999 | A |
5979760 | Freyman et al. | Nov 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
5991041 | Woodworth | Nov 1999 | A |
6009189 | Schaack | Dec 1999 | A |
6025847 | Marks | Feb 2000 | A |
6035067 | Ponticos | Mar 2000 | A |
6049386 | Stringer et al. | Apr 2000 | A |
6053409 | Brobst et al. | Apr 2000 | A |
6064759 | Buckley et al. | May 2000 | A |
6067110 | Nonaka et al. | May 2000 | A |
6069696 | McQueen et al. | May 2000 | A |
6115114 | Berg et al. | Sep 2000 | A |
6137577 | Woodworth | Oct 2000 | A |
6177999 | Wurz et al. | Jan 2001 | B1 |
6189223 | Haug | Feb 2001 | B1 |
6232597 | Kley | May 2001 | B1 |
6236403 | Chaki | May 2001 | B1 |
6246468 | Dimsdale | Jun 2001 | B1 |
6333749 | Reinhardt et al. | Dec 2001 | B1 |
6336587 | He et al. | Jan 2002 | B1 |
6369401 | Lee | Apr 2002 | B1 |
6373579 | Ober et al. | Apr 2002 | B1 |
6429803 | Kumar | Aug 2002 | B1 |
6457642 | Good et al. | Oct 2002 | B1 |
6507406 | Yagi et al. | Jan 2003 | B1 |
6517004 | Good et al. | Feb 2003 | B2 |
6519550 | D'Hooge et al. | Feb 2003 | B1 |
6535776 | Tobin et al. | Mar 2003 | B1 |
6661521 | Stern | Sep 2003 | B1 |
6674904 | McQueen | Jan 2004 | B1 |
6705526 | Zhu et al. | Mar 2004 | B1 |
6773142 | Rekow | Aug 2004 | B2 |
6781621 | Gobush et al. | Aug 2004 | B1 |
6804269 | Lizotte et al. | Oct 2004 | B2 |
6824058 | Patel et al. | Nov 2004 | B2 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
6858857 | Pease et al. | Feb 2005 | B2 |
6912293 | Korobkin | Jun 2005 | B1 |
6922632 | Foxlin | Jul 2005 | B2 |
6971580 | Zhu et al. | Dec 2005 | B2 |
6995762 | Pavlidis et al. | Feb 2006 | B1 |
7057632 | Yamawaki et al. | Jun 2006 | B2 |
7085409 | Sawhney et al. | Aug 2006 | B2 |
7086162 | Tyroler | Aug 2006 | B2 |
7104453 | Zhu et al. | Sep 2006 | B1 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7137556 | Bonner et al. | Nov 2006 | B1 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7161688 | Bonner et al. | Jan 2007 | B1 |
7205529 | Andersen et al. | Apr 2007 | B2 |
7214954 | Schopp | May 2007 | B2 |
7233682 | Levine | Jun 2007 | B2 |
7277187 | Smith et al. | Oct 2007 | B2 |
7307653 | Dutta | Dec 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7313264 | Crampton | Dec 2007 | B2 |
7353137 | Vock et al. | Apr 2008 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7509529 | Colucci et al. | Mar 2009 | B2 |
7527205 | Zhu | May 2009 | B2 |
7586049 | Wurz | Sep 2009 | B2 |
7602404 | Reinhardt et al. | Oct 2009 | B1 |
7614563 | Nunnink et al. | Nov 2009 | B1 |
7639722 | Paxton et al. | Dec 2009 | B1 |
7726206 | Terrafranca, Jr. et al. | Jun 2010 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7780084 | Zhang et al. | Aug 2010 | B2 |
7788883 | Buckley et al. | Sep 2010 | B2 |
7912320 | Minor | Mar 2011 | B1 |
7974025 | Topliss | Jul 2011 | B2 |
8009358 | Zalevsky et al. | Aug 2011 | B2 |
8027096 | Feng et al. | Sep 2011 | B2 |
8028501 | Buckley et al. | Oct 2011 | B2 |
8050461 | Shpunt et al. | Nov 2011 | B2 |
8055061 | Katano | Nov 2011 | B2 |
8061610 | Nunnink | Nov 2011 | B2 |
8072581 | Breiholz | Dec 2011 | B1 |
8102395 | Kondo et al. | Jan 2012 | B2 |
8132728 | Dwinell et al. | Mar 2012 | B2 |
8134717 | Pangrazio et al. | Mar 2012 | B2 |
8149224 | Kuo et al. | Apr 2012 | B1 |
8194097 | Xiao et al. | Jun 2012 | B2 |
8201737 | Palacios Durazo et al. | Jun 2012 | B1 |
8212158 | Wiest | Jul 2012 | B2 |
8212889 | Chanas et al. | Jul 2012 | B2 |
8224133 | Popovich et al. | Jul 2012 | B2 |
8228510 | Pangrazio et al. | Jul 2012 | B2 |
8230367 | Bell et al. | Jul 2012 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8301027 | Shaw et al. | Oct 2012 | B2 |
8305458 | Hara | Nov 2012 | B2 |
8310656 | Zalewski | Nov 2012 | B2 |
8313380 | Zalewski et al. | Nov 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8320621 | McEldowney | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8339462 | Stec et al. | Dec 2012 | B2 |
8350959 | Topliss et al. | Jan 2013 | B2 |
8351670 | Ijiri et al. | Jan 2013 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8368762 | Chen et al. | Feb 2013 | B1 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8374498 | Pastore | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381976 | Mohideen et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8437539 | Komatsu et al. | May 2013 | B2 |
8441749 | Brown et al. | May 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8463079 | Ackley et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8570343 | Halstead | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8576390 | Nunnink | Nov 2013 | B1 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8594425 | Gurman et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8792688 | Unsworth | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8810779 | Hilde | Aug 2014 | B1 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822806 | Cockerell et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8897596 | Passmore et al. | Nov 2014 | B1 |
8903172 | Smith | Dec 2014 | B2 |
8908277 | Pesach et al. | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8928896 | Kennington et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8993974 | Goodwin | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9014441 | Truyen et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9066087 | Shpunt | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9082195 | Holeva et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9142035 | Rotman | Sep 2015 | B1 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Huck | Oct 2015 | B2 |
9171278 | Kong et al. | Oct 2015 | B1 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Wang | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9233470 | Bradski et al. | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9235899 | Kirmani et al. | Jan 2016 | B1 |
9239950 | Fletcher | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9443123 | Hejl | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9273846 | Rossi et al. | Mar 2016 | B1 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9299013 | Curlander et al. | Mar 2016 | B1 |
9301427 | Feng et al. | Mar 2016 | B2 |
9304376 | Anderson | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey | May 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9366861 | Johnson | Jun 2016 | B1 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9360304 | Chang et al. | Jul 2016 | B2 |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
9399557 | Mishra et al. | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
9411386 | Sauerwein | Aug 2016 | B2 |
9412242 | Van Horn et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van Volkinburg et al. | Aug 2016 | B2 |
9423318 | Lui et al. | Aug 2016 | B2 |
9424749 | Reed et al. | Aug 2016 | B1 |
D766244 | Zhou et al. | Sep 2016 | S |
9443222 | Singel et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9470511 | Maynard et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9486921 | Straszheim et al. | Nov 2016 | B1 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9595038 | Cavalcanti et al. | Mar 2017 | B1 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
9709387 | Fujita et al. | Jul 2017 | B2 |
9736459 | Mor et al. | Aug 2017 | B2 |
9741136 | Holz | Aug 2017 | B2 |
9828223 | Svensson et al. | Nov 2017 | B2 |
20010027995 | Patel | Oct 2001 | A1 |
20010032879 | He et al. | Oct 2001 | A1 |
20020036765 | McCaffrey | Mar 2002 | A1 |
20020054289 | Thibault et al. | May 2002 | A1 |
20020067855 | Chiu et al. | Jun 2002 | A1 |
20020105639 | Roelke | Aug 2002 | A1 |
20020109835 | Goetz | Aug 2002 | A1 |
20020113946 | Kitaguchi et al. | Aug 2002 | A1 |
20020118874 | Chung et al. | Aug 2002 | A1 |
20020158873 | Williamson | Oct 2002 | A1 |
20020167677 | Okada et al. | Nov 2002 | A1 |
20020179708 | Zhu et al. | Dec 2002 | A1 |
20020186897 | Kim et al. | Dec 2002 | A1 |
20020196534 | Lizotte et al. | Dec 2002 | A1 |
20030038179 | Tsikos et al. | Feb 2003 | A1 |
20030053513 | Vatan et al. | Mar 2003 | A1 |
20030063086 | Baumberg | Apr 2003 | A1 |
20030078755 | Leutz et al. | Apr 2003 | A1 |
20030091227 | Chang et al. | May 2003 | A1 |
20030156756 | Gokturk et al. | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030197138 | Pease et al. | Oct 2003 | A1 |
20030225712 | Cooper et al. | Dec 2003 | A1 |
20030235331 | Kawaike et al. | Dec 2003 | A1 |
20040008259 | Gokturk et al. | Jan 2004 | A1 |
20040019274 | Galloway et al. | Jan 2004 | A1 |
20040024754 | Mane et al. | Feb 2004 | A1 |
20040066329 | Zeitfuss et al. | Apr 2004 | A1 |
20040073359 | Ichijo et al. | Apr 2004 | A1 |
20040083025 | Yamanouchi et al. | Apr 2004 | A1 |
20040089482 | Ramsden et al. | May 2004 | A1 |
20040098146 | Katae et al. | May 2004 | A1 |
20040105580 | Hager et al. | Jun 2004 | A1 |
20040118928 | Patel et al. | Jun 2004 | A1 |
20040122779 | Stickler et al. | Jun 2004 | A1 |
20040132297 | Baba et al. | Jul 2004 | A1 |
20040155975 | Hart et al. | Aug 2004 | A1 |
20040165090 | Ning | Aug 2004 | A1 |
20040184041 | Schopp | Sep 2004 | A1 |
20040211836 | Patel et al. | Oct 2004 | A1 |
20040214623 | Takahashi et al. | Oct 2004 | A1 |
20040233461 | Armstrong et al. | Nov 2004 | A1 |
20040258353 | Gluckstad et al. | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050117215 | Lange | Jun 2005 | A1 |
20050128193 | Popescu et al. | Jun 2005 | A1 |
20050128196 | Popescu et al. | Jun 2005 | A1 |
20050168488 | Montague | Aug 2005 | A1 |
20050211782 | Martin | Sep 2005 | A1 |
20050240317 | Kienzle-Lietl | Oct 2005 | A1 |
20050257748 | Kriesel et al. | Nov 2005 | A1 |
20050264867 | Cho et al. | Dec 2005 | A1 |
20060047704 | Gopalakrishnan | Mar 2006 | A1 |
20060078226 | Zhou | Apr 2006 | A1 |
20060108266 | Bowers et al. | May 2006 | A1 |
20060109105 | Varner et al. | May 2006 | A1 |
20060112023 | Horhann | May 2006 | A1 |
20060151604 | Zhu et al. | Jul 2006 | A1 |
20060159307 | Anderson et al. | Jul 2006 | A1 |
20060159344 | Shao et al. | Jul 2006 | A1 |
20060213999 | Wang et al. | Sep 2006 | A1 |
20060230640 | Chen | Oct 2006 | A1 |
20060232681 | Okada | Oct 2006 | A1 |
20060255150 | Longacre | Nov 2006 | A1 |
20060269165 | Viswanathan | Nov 2006 | A1 |
20060276709 | Khamene et al. | Dec 2006 | A1 |
20060291719 | Ikeda et al. | Dec 2006 | A1 |
20070003154 | Sun et al. | Jan 2007 | A1 |
20070025612 | Iwasaki et al. | Feb 2007 | A1 |
20070031064 | Zhao et al. | Feb 2007 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20070116357 | Dewaele | May 2007 | A1 |
20070127022 | Cohen et al. | Jun 2007 | A1 |
20070143082 | Degnan | Jun 2007 | A1 |
20070153293 | Gruhlke et al. | Jul 2007 | A1 |
20070165013 | Goulanian et al. | Jul 2007 | A1 |
20070171220 | Kriveshko | Jul 2007 | A1 |
20070177011 | Lewin et al. | Aug 2007 | A1 |
20070181685 | Zhu et al. | Aug 2007 | A1 |
20070237356 | Dwinell et al. | Oct 2007 | A1 |
20070291031 | Konev et al. | Dec 2007 | A1 |
20070299338 | Stevick et al. | Dec 2007 | A1 |
20080013793 | Hillis et al. | Jan 2008 | A1 |
20080035390 | Wurz | Feb 2008 | A1 |
20080047760 | Georgitsis | Feb 2008 | A1 |
20080050042 | Zhang et al. | Feb 2008 | A1 |
20080054062 | Gunning et al. | Mar 2008 | A1 |
20080056536 | Hildreth et al. | Mar 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080065509 | Williams | Mar 2008 | A1 |
20080077265 | Boyden | Mar 2008 | A1 |
20080079955 | Storm | Apr 2008 | A1 |
20080164074 | Wurz | Jun 2008 | A1 |
20080156619 | Patel et al. | Jul 2008 | A1 |
20080204476 | Montague | Aug 2008 | A1 |
20080212168 | Olmstead et al. | Sep 2008 | A1 |
20080247635 | Davis et al. | Oct 2008 | A1 |
20080273191 | Kim et al. | Nov 2008 | A1 |
20080273210 | Hilde | Nov 2008 | A1 |
20080278790 | Boesser et al. | Nov 2008 | A1 |
20090038182 | Lans et al. | Feb 2009 | A1 |
20090046296 | Kilpartrick et al. | Feb 2009 | A1 |
20090059004 | Bochicchio | Mar 2009 | A1 |
20090081008 | Somin et al. | Mar 2009 | A1 |
20090095047 | Patel | Apr 2009 | A1 |
20090114818 | Casares et al. | May 2009 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090161090 | Campbell et al. | Jun 2009 | A1 |
20090189858 | Lev et al. | Jul 2009 | A1 |
20090195790 | Zhu et al. | Aug 2009 | A1 |
20090225333 | Bendall et al. | Sep 2009 | A1 |
20090237411 | Gossweiler et al. | Sep 2009 | A1 |
20090268023 | Hsieh | Oct 2009 | A1 |
20090272724 | Gubler | Nov 2009 | A1 |
20090273770 | Bauhahn et al. | Nov 2009 | A1 |
20090313948 | Buckley et al. | Dec 2009 | A1 |
20090318815 | Barnes et al. | Dec 2009 | A1 |
20090323084 | Dunn et al. | Dec 2009 | A1 |
20090323121 | Valkenburg | Dec 2009 | A1 |
20100035637 | Varanasi et al. | Feb 2010 | A1 |
20100060604 | Zwart et al. | Mar 2010 | A1 |
20100091104 | Sprigle | Apr 2010 | A1 |
20100113153 | Yen et al. | May 2010 | A1 |
20100118200 | Gelman et al. | May 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100161170 | Siris | Jun 2010 | A1 |
20100171740 | Andersen et al. | Jul 2010 | A1 |
20100172567 | Prokoski | Jul 2010 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100194709 | Tamaki et al. | Aug 2010 | A1 |
20100202702 | Benos et al. | Aug 2010 | A1 |
20100208039 | Stettner | Aug 2010 | A1 |
20100211355 | Horst et al. | Aug 2010 | A1 |
20100217678 | Goncalves | Aug 2010 | A1 |
20100220849 | Colbert et al. | Sep 2010 | A1 |
20100220894 | Ackley et al. | Sep 2010 | A1 |
20100223276 | Al-Shameri et al. | Sep 2010 | A1 |
20100245850 | Lee et al. | Sep 2010 | A1 |
20100254611 | Arnz | Oct 2010 | A1 |
20100274728 | Kugelman | Oct 2010 | A1 |
20100303336 | Abraham | Dec 2010 | A1 |
20100315413 | Izadi et al. | Dec 2010 | A1 |
20100321482 | Cleveland | Dec 2010 | A1 |
20110019155 | Daniel et al. | Jan 2011 | A1 |
20110040192 | Brenner et al. | Feb 2011 | A1 |
20110040407 | Lim | Feb 2011 | A1 |
20110043609 | Choi et al. | Feb 2011 | A1 |
20110075936 | Deaver | Mar 2011 | A1 |
20110081044 | Peeper | Apr 2011 | A1 |
20110099474 | Grossman et al. | Apr 2011 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110180695 | Li et al. | Jul 2011 | A1 |
20110188054 | Petronius et al. | Aug 2011 | A1 |
20110188741 | Sones et al. | Aug 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20110234389 | Mellin | Sep 2011 | A1 |
20110235854 | Berger et al. | Sep 2011 | A1 |
20110243432 | Hirsch et al. | Oct 2011 | A1 |
20110249864 | Venkatesan et al. | Oct 2011 | A1 |
20110254840 | Halstead | Oct 2011 | A1 |
20110260965 | Kim et al. | Oct 2011 | A1 |
20110279916 | Brown et al. | Nov 2011 | A1 |
20110286007 | Pangrazio et al. | Nov 2011 | A1 |
20110286628 | Goncalves et al. | Nov 2011 | A1 |
20110288818 | Thierman | Nov 2011 | A1 |
20110297590 | Ackley et al. | Dec 2011 | A1 |
20110301994 | Tieman | Dec 2011 | A1 |
20110303748 | Lemma et al. | Dec 2011 | A1 |
20110310227 | Konertz et al. | Dec 2011 | A1 |
20110310256 | Shishido | Dec 2011 | A1 |
20120014572 | Wong et al. | Jan 2012 | A1 |
20120024952 | Chen | Feb 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057345 | Kuchibhotla | Mar 2012 | A1 |
20120067955 | Rowe | Mar 2012 | A1 |
20120074227 | Ferren et al. | Mar 2012 | A1 |
20120081714 | Pangrazio et al. | Apr 2012 | A1 |
20120082383 | Kruglick | Apr 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120113223 | Hilliges et al. | May 2012 | A1 |
20120126000 | Kunzig et al. | May 2012 | A1 |
20120140300 | Freeman | Jun 2012 | A1 |
20120168509 | Nunnink et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120179665 | Baarman et al. | Jul 2012 | A1 |
20120185094 | Rosenstein et al. | Jul 2012 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120197464 | Wang et al. | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120218436 | Rodriguez et al. | Sep 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120224026 | Bayer et al. | Sep 2012 | A1 |
20120224060 | Gurevich et al. | Sep 2012 | A1 |
20120236212 | Itoh et al. | Sep 2012 | A1 |
20120236288 | Stanley | Sep 2012 | A1 |
20120242852 | Hayward et al. | Sep 2012 | A1 |
20120113250 | Farlotti et al. | Oct 2012 | A1 |
20120256901 | Bendall | Oct 2012 | A1 |
20120261474 | Kawashime et al. | Oct 2012 | A1 |
20120262558 | Boger et al. | Oct 2012 | A1 |
20120280908 | Rhoads et al. | Nov 2012 | A1 |
20120282905 | Owen | Nov 2012 | A1 |
20120282911 | Davis et al. | Nov 2012 | A1 |
20120284012 | Rodriguez et al. | Nov 2012 | A1 |
20120284122 | Brandis | Nov 2012 | A1 |
20120284339 | Rodriguez | Nov 2012 | A1 |
20120284593 | Rodriguez | Nov 2012 | A1 |
20120293610 | Doepke et al. | Nov 2012 | A1 |
20120294478 | Publicover et al. | Nov 2012 | A1 |
20120294549 | Doepke | Nov 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120300991 | Mikio | Nov 2012 | A1 |
20120313848 | Galor et al. | Dec 2012 | A1 |
20120314030 | Datta | Dec 2012 | A1 |
20120314058 | Bendall et al. | Dec 2012 | A1 |
20120314258 | Moriya | Dec 2012 | A1 |
20120316820 | Nakazato et al. | Dec 2012 | A1 |
20130019278 | Sun et al. | Jan 2013 | A1 |
20130038881 | Pesach et al. | Feb 2013 | A1 |
20130038941 | Pesach et al. | Feb 2013 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130050426 | Sarmast et al. | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130076857 | Kurashige et al. | Mar 2013 | A1 |
20130093895 | Palmer et al. | Apr 2013 | A1 |
20130094069 | Lee et al. | Apr 2013 | A1 |
20130101158 | Lloyd et al. | Apr 2013 | A1 |
20130156267 | Muraoka et al. | Jun 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200150 | Reynolds et al. | Aug 2013 | A1 |
20130201288 | Billerbaeck et al. | Aug 2013 | A1 |
20130208164 | Cazier et al. | Aug 2013 | A1 |
20130211790 | Loveland et al. | Aug 2013 | A1 |
20130222592 | Gieseke | Aug 2013 | A1 |
20130223673 | Davis et al. | Aug 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130291998 | Konnerth | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308013 | Li et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130317642 | Asada | Nov 2013 | A1 |
20130326425 | Forstall et al. | Dec 2013 | A1 |
20130329012 | Bartos | Dec 2013 | A1 |
20130329013 | Metois et al. | Dec 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20130342343 | Harring et al. | Dec 2013 | A1 |
20140001258 | Chan et al. | Jan 2014 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140009586 | McNamer et al. | Jan 2014 | A1 |
20140019005 | Lee et al. | Jan 2014 | A1 |
20140021259 | Moed | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140031665 | Pinto et al. | Jan 2014 | A1 |
20140034731 | Gao et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140039674 | Motoyama et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140058612 | Wong et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140062709 | Hyer et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140064624 | Kim et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067104 | Osterhout | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071430 | Hansen et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140079297 | Tadayon et al. | Mar 2014 | A1 |
20140091147 | Evans et al. | Apr 2014 | A1 |
20140097238 | Ghazizadeh | Apr 2014 | A1 |
20140097252 | He et al. | Apr 2014 | A1 |
20140098091 | Hori | Apr 2014 | A1 |
20140098243 | Ghazizadeh | Apr 2014 | A1 |
20140098244 | Ghazizadeh | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104664 | Lee | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140125577 | Hoang et al. | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140135984 | Hirata | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140139654 | Taskahashi | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140142398 | Patil et al. | May 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140152975 | Ko | Jun 2014 | A1 |
20140158468 | Adami | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140168380 | Heidemann et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140192187 | Atwell et al. | Jul 2014 | A1 |
20140192551 | Masaki | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140201126 | Zadeh et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140205150 | Ogawa | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140225918 | Mittal et al. | Aug 2014 | A1 |
20140225985 | Klusza | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140240454 | Lee | Aug 2014 | A1 |
20140247279 | Nicholas et al. | Sep 2014 | A1 |
20140247280 | Nicholas et al. | Sep 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140267609 | Laffargue | Sep 2014 | A1 |
20140268093 | Tohme et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140270361 | Amma et al. | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140306833 | Ricci | Oct 2014 | A1 |
20140307855 | Withagen et al. | Oct 2014 | A1 |
20140313527 | Askan | Oct 2014 | A1 |
20140319219 | Liu et al. | Oct 2014 | A1 |
20140320408 | Zagorsek et al. | Oct 2014 | A1 |
20140320605 | Johnson | Oct 2014 | A1 |
20140333775 | Naikal et al. | Nov 2014 | A1 |
20140347533 | Ovsiannikov et al. | Nov 2014 | A1 |
20140350710 | Gopalkrishnan et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20140379613 | Nishitani et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009100 | Haneda et al. | Jan 2015 | A1 |
20150009301 | Ribnick et al. | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150016712 | Rhoads et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150036876 | Marrion et al. | Feb 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150042791 | Metois et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062160 | Sakamoto et al. | Mar 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150062369 | Gehring et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150070158 | Hayasaka | Mar 2015 | A1 |
20150070489 | Hudman et al. | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150116498 | Vartiainen et al. | Apr 2015 | A1 |
20150117749 | Chen et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150130928 | Maynard et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150163474 | You | Jun 2015 | A1 |
20150178900 | Kim et al. | Jun 2015 | A1 |
20150182844 | Jang | Jul 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204662 | Kobayashi et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150213590 | Brown et al. | Jul 2015 | A1 |
20150213647 | Laffargue et al. | Jul 2015 | A1 |
20150219748 | Hyatt | Aug 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150229838 | Hakim et al. | Aug 2015 | A1 |
20150243030 | Pfeiffer | Aug 2015 | A1 |
20150248578 | Utsumi | Sep 2015 | A1 |
20150253469 | Le Gros et al. | Sep 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150260830 | Ghosh et al. | Sep 2015 | A1 |
20150269403 | Lei et al. | Sep 2015 | A1 |
20150201181 | Herschbach | Oct 2015 | A1 |
20150276379 | Ni et al. | Oct 2015 | A1 |
20150301181 | Herschbach | Oct 2015 | A1 |
20150308816 | Laffargue et al. | Oct 2015 | A1 |
20150310243 | Ackley | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150316368 | Moench et al. | Nov 2015 | A1 |
20150325036 | Lee | Nov 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20150332463 | Galera et al. | Nov 2015 | A1 |
20150355470 | Herschbach | Dec 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160048725 | Holz et al. | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160070982 | Li et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160063429 | Varley et al. | Mar 2016 | A1 |
20160065912 | Peterson | Mar 2016 | A1 |
20160088287 | Sadi et al. | Mar 2016 | A1 |
20160090283 | Svensson et al. | Mar 2016 | A1 |
20160090284 | Svensson et al. | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160094016 | Beach et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160117631 | McCloskey et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160138247 | Conway et al. | May 2016 | A1 |
20160138248 | Conway et al. | May 2016 | A1 |
20160138249 | Svensson et al. | May 2016 | A1 |
20160147408 | Bevis et al. | May 2016 | A1 |
20160164261 | Warren | Jun 2016 | A1 |
20160169665 | Deschenes et al. | Jun 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160178915 | Mor et al. | Jun 2016 | A1 |
20160179132 | Harr et al. | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160187186 | Coleman et al. | Jun 2016 | A1 |
20160187187 | Coleman et al. | Jun 2016 | A1 |
20160187210 | Coleman et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Linwood | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | DiPiazza et al. | Jun 2016 | A1 |
20160191801 | Sivan | Jun 2016 | A1 |
20160192051 | DiPiazza et al. | Jun 2016 | A1 |
20160125873 | Braho et al. | Jul 2016 | A1 |
20160202478 | Masson et al. | Jul 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203641 | Bostick et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggert et al. | Jul 2016 | A1 |
20160204636 | Allen et al. | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160210780 | Paulovich et al. | Jul 2016 | A1 |
20160316190 | McCloskey et al. | Jul 2016 | A1 |
20160223474 | Tang et al. | Aug 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Sewell et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160328854 | Kimura | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Geramine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van Horn et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170103545 | Holz | Apr 2017 | A1 |
20170108838 | Todeschinie et al. | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170115490 | Hsieh et al. | Apr 2017 | A1 |
20170115497 | Chen et al. | Apr 2017 | A1 |
20170116462 | Ogasawara | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170121158 | Wong | May 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | d'Armancourt et al. | May 2017 | A1 |
20170132806 | Balachandreswaran | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170139213 | Schmidtlin | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170148250 | Angermayer | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170018294 | Hardy et al. | Jun 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170190192 | Delario et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Jonas et al. | Jul 2017 | A1 |
20170193727 | Van Horn et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | McCloskey et al. | Jul 2017 | A1 |
20170200296 | Jones et al. | Jul 2017 | A1 |
20170309108 | Sadovsky et al. | Oct 2017 | A1 |
20170336870 | Everett et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2004212587 | Apr 2005 | AU |
201139117 | Oct 2008 | CN |
3335760 | Apr 1985 | DE |
10210813 | Oct 2003 | DE |
102007037282 | Mar 2008 | DE |
1111435 | Jun 2001 | EP |
1443312 | Aug 2004 | EP |
1112483 | May 2006 | EP |
1232480 | May 2006 | EP |
2013117 | Jan 2009 | EP |
2216634 | Aug 2010 | EP |
2286932 | Feb 2011 | EP |
2381421 | Oct 2011 | EP |
2533009 | Dec 2012 | EP |
2562715 | Feb 2013 | EP |
2722656 | Apr 2014 | EP |
2779027 | Sep 2014 | EP |
2833323 | Feb 2015 | EP |
2843590 | Mar 2015 | EP |
2845170 | Mar 2015 | EP |
2966595 | Jan 2016 | EP |
3006893 | Mar 2016 | EP |
3012601 | Mar 2016 | EP |
3007096 | Apr 2016 | EP |
3270342 | Jan 2018 | EP |
2503978 | Jan 2014 | GB |
2525053 | Oct 2015 | GB |
2531928 | May 2016 | GB |
H04129902 | Apr 1992 | JP |
200696457 | Apr 2006 | JP |
2007084162 | Apr 2007 | JP |
2008210276 | Sep 2008 | JP |
2014210646 | Nov 2014 | JP |
2015174705 | Oct 2015 | JP |
20100020115 | Feb 2010 | KR |
20110013200 | Feb 2011 | KR |
20110117020 | Oct 2011 | KR |
20120028109 | Mar 2012 | KR |
9640452 | Dec 1996 | WO |
0077726 | Dec 2000 | WO |
0114836 | Mar 2001 | WO |
2006095110 | Sep 2006 | WO |
2007015059 | Feb 2007 | WO |
200712554 | Nov 2007 | WO |
2011017241 | Feb 2011 | WO |
2012175731 | Dec 2012 | WO |
2013021157 | Feb 2013 | WO |
2013033442 | Mar 2013 | WO |
2013163789 | Nov 2013 | WO |
2013166368 | Nov 2013 | WO |
20130184340 | Dec 2013 | WO |
2014023697 | Feb 2014 | WO |
2014102341 | Jul 2014 | WO |
2014149702 | Sep 2014 | WO |
2014151746 | Sep 2014 | WO |
2015006865 | Jan 2015 | WO |
2016020038 | Feb 2016 | WO |
2016061699 | Apr 2016 | WO |
2016061699 | Apr 2016 | WO |
2016085682 | Jun 2016 | WO |
Entry |
---|
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011. [Previously cited and copy provided in parent application]. |
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages [Previously cited and copy provided in parent application]. |
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages. [Previously cited and copy provided in parent application]. |
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Apr. 23, 2014)): Total pp. 7 [Previously cited and copy provided in parent application]. |
International Search Report for PCT/US2013/039438 (WO2013166368), dated Oct. 1, 2013, 7 pages [Previously cited and copy provided in parent application]. |
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winter Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, {retrieved on Jun. 16, 2014}, Authors are employees of common Applicant [Previously cited and copy provided in parent application]. |
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages [Previously cited and copy provided in parent application]. |
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages. [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/801,023, Tyler Doomenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages [Previously cited and copy provided in parent application]. |
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages [Previously cited and copy provided in parent application]. |
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages. [Previously cited and copy provided in parent application]. |
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages [Previously cited and copy provided in parent application]. |
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages. [Previously cited and copy provided in parent application]. |
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional_weight, download date Aug. 1, 2008, 2 pages. [Previously cited and copy provided in parent application]. |
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page [Previously cited and copy provided in parent application]. |
European Patent Office Action for Application No. 14157971A-1906, dated Jul. 16, 2014, 5 pages. [Previously cited and copy provided in parent application]. |
European Patent Search Report for Application No. 14157971.4-1906, dated Jun. 30, 2014, 6 pages. [Previously cited and copy provided in parent application]. |
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages [Previously cited and copy provided in parent application]. |
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; ROSE 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages [Previously cited and copy provided in parent application]. |
Mouaddib E et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages [Previously cited and copy provided in parent application]. |
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages [Previously cited and copy provided in parent application]. |
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Received Mar. 6, 2003; Accepted Oct. 2, 2003; 23 pages [Previously cited and copy provided in parent application]. |
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, dated Mar. 26, 2015, 7 pages. [Previously cited and copy provided in parent application]. |
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2OO1 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3. [Previously cited and copy provided in parent application]. |
Second Chinese Office Action in related CN Application No. 201520810685.6, dated Mar. 22, 2016, 5 pages, no references. [Previously cited and copy provided in parent application]. |
European Search Report in related EP Application No. 15190315.0, dated Apr. 1, 2016, 7 pages [Previously cited and copy provided in parent application]. |
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages. English Translation provided [No references] [Previously cited and copy provided in parent application]. |
European Search Report for related Application EP 15190249.1, dated Mar. 22, 2016, 7 pages. [Previously cited and copy provided in parent application]. |
Second Chinese Office Action in related CN Application No. 201520810313.3, dated Mar. 22, 2016, 5 pages. English Translation provided [No references]. |
U.S. Appl. No. 14/800,757 , Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/747,197, Serge Thuries et al., filed Jun. 23, 2015, not published yet, Optical Pattern Projector; 33 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/747,490, Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages [Previously cited and copy provided in parent application]. |
Search Report and Opinion in related GB Application No. 15171123.7, dated Feb. 19, 2016, 6 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages [Previously cited and copy provided in parent application]. |
U.S. Appl. No. 14/740,373, H. Sprague Ackley et al., filed Jun. 16, 2015, not published yet, Calibrating a Volume Dimensioner; 63 pages [Previously cited and copy provided in parent application]. |
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8 [Previously cited and copy provided in parent application]. |
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2 [Previously cited and copy provided in parent application]. |
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages [Previously cited and copy provided in parent application]. |
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages [Previously cited and copy provided in parent application]. |
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages [Previously cited and copy provided in parent application]. |
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis_reports/736, Accessed May 31, 2015, 157 pages [Previously cited and copy provided in parent application]. |
Reisner-Kollmann,Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG ″10, 8 pages [Previously cited and copy provided in parent application]. |
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages. [Previously cited and copy provided in parent application]. |
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages [Previously cited and copy provided in parent application]. |
Santolaria et al. “A one-step intrinsic and extrinsic calibration method for laster line scanner operation in coordinate measuring machines”, dated Apr. 1, 2009, Measurement Science and Technology, IOP, Bristol, GB, vol. 20, No. 4; 12 pages [Previously cited and copy provided in parent application]. |
Search Report and Opinion in Related EP Application 15176943.7, dated Jan. 8, 2016, 8 pages [Previously cited and copy provided in parent application]. |
European Search Report for related EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages. [Previously cited and copy provided in parent application]. |
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages [Previously cited and copy provided in parent application]. |
Great Britain Search Report for related Application On. GB1517843.7, dated Feb. 23, 2016; 8 pages [Previously cited and copy provided in parent application]. |
Combined Search and Examination Report in related UK Application No. GB1817189.2 dated Nov. 14, 2018, pp. 1-4 [Reference previously cited]. |
Examination Report in related UK Application No. GB1517842.9 dated Dec. 21, 2018, pp. 1-7 [All references previously cited.]. |
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application]. |
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011, 6 pages, [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application]. |
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages, [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application]. |
Boavida et al., “Dam monitoring using combined terrestrial imaging systems”, 2009 Civil Engineering Survey Dec./Jan. 2009, pp. 33-38 {Cited in Notice of Allowance dated Sep. 15, 2017 in related matter}. |
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, Examiner Cited art in related matter Non Final Office Action dated May 19, 2017; 6 pages. |
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3. {Cited by Examiner in Feb. 9, 2017 Final Office Action in related matter}. |
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n.6. (1975) {Cited by Examiner in Feb. 9, 2017 Final Office Action in related matter: downloaded Mar. 2, 2017 from http://iopscience.iop.org}. |
Thorlabs, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6430, 4 pages. |
Eksma Optics, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages. |
Sill Optics, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-theta-lenses/, 4 pages. |
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages. |
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages [US 2013/0038881 cited on separate IDS filed concurrently herewith]. |
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages. |
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages [US Publication 2014/0034731 cited on separate IDS filed concurrently herewith]. |
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages [References cited on separate IDS filed concurrently herewith; WO2014/151746, WO2012/175731, US 2014/0313527, GB2503978]. |
European Exam Report in related , EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages, [cited on separate IDS filed concurrently herewith; WO2011/017241 and US 201410104413]. |
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages [Only new art cited herein; some art has been cited on separate IDS filed concurrently herewith}. |
EP Extended Search Report in related EP Applicaton No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art cited herein; some art has been cited on separate IDS filed concurrently herewith}. |
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages (only new art cited herein; some art cited on separate IDS filed concurrently herewith). |
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages [Art cited on separate IDS filed concurrently herewith]. |
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages [Art has been cited on separate IDS filed concurrently herewith]. |
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages [References cited on separate IDS filed concurrently herewith]. |
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages [References cited on separate IDS filed concurrently herewith]. |
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages. |
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages [Cited in EP Extended search report dated Apr. 10, 2017; NPL 14]. |
European Exam Report in related EP Application No. 16152477.2, dated Jun. 20, 2017, 4 pages [References cited on separate IDS filed concurrently herewith]. |
European Exam Report in related EP Applciation 16172995.9, dated Jul. 6, 2017, 9 pages [References cited on separate IDS filed concurrently herewith]. |
United Kingdom Search Report in related Application No. GB1700338.5, dated Jun. 30, 2017, 5 pages. |
European Search Report in related EP Application No. 17175357.7, dated Aug. 17, 2017, pp. 1-7 [References cited on separate IDS filed concurrently herewith]. |
European extended Search Report in related Application No. 17207882.6 dated Apr. 26, 2018, 10 pages. |
European Extended Search Report in related EP Application No. 17201794.9, dated Mar. 16, 2018, 10 pages [Only new art cited herein]. |
European Extended Search Report in related EP Application 17205030.4, dated Mar. 22, 2018, 8 pages. |
European Exam Report in related EP Application 16172995.9, dated Mar. 15, 2018, 7 pages (Only new art cited herein). |
United Kingdom Combined Search and Examination Report dated Mar. 21, 2018, 5 pages (Art has been previously cited). |
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7. |
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published. |
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/928,032, filed Oct. 30, 2015, 48 pages, not yet published. |
Great Britain Combined Search and Examination Report in related Application GB1517842.9, dated Apr. 8, 2016, 8 pages. |
Search Report in counterpart European Application No. 15182675.7, dated Dec. 4, 2015, 10 pages. |
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages. |
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134. |
European Extended Search Report in Related EP Application No. 16172995.9, dated Aug. 22, 2016, 11 pages. |
European Extended search report in related EP Application No. 15190306.9, dated Sep. 9, 2016, 15 pages. |
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119. |
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages. |
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages. |
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry_E1 -Hakim/publication/44075058_A_Knowledge_Based_EdgeObject_Measurement_Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages. |
H. Sprague Ackley, “Automatic Mode Switching in a Volume Dimensioner”, U.S. Appl. No. 15/182,636, filed Jun. 15, 2016, 53 pages, Not yet published. |
Bosch Tool Corporation, “Operating/Safety Instruction for DLR 130”, Dated Feb. 2, 2009, 36 pages. |
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages. |
Mike Stensvold, “get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016]. |
Houle et al., “Vehical Positioning and Object Avoidance”, U.S. Appl. No. 15/007,522 [not yet published], filed Jan. 27, 2016, 59 pages. |
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, dated Oct. 19, 2016, 7 pages. |
European Search Report from related EP Application No. 16168216.6, dated Oct. 20, 2016, 8 pages. |
United Kingdom Further Exam Report in related application GB1607394.2 dated Oct. 5, 2018; 5 pages {Only new art cited here in]. |
European Extended Search Report in related EP application 18184864.9, dated Oct. 30, 2018, 7 pages. |
Combined Search and Examination Report in related UK Application No. GB1900752.5 dated Feb. 1, 2019, pp. 1-5. |
Examination Report in related UK Application No. GB1517842.9 dated Mar. 8, 2019, pp. 1-4. |
Examination Report in related EP Application No. 13193181.8 dated Mar. 20, 2019, pp. 1-4. |
First Office Action in related CN Application No. 201510860188.1 dated Jan. 18, 2019, pp. 1-14 [All references previously cited.]. |
Examination Report in related EP Application No. 13785171.3 dated Apr. 2, 2019, pp. 1-5. |
Lowe David G., “Filling Parameterized Three-Dimensional Models to Images”, IEEE Transaction on Pattern Analysis and Machine Intelligence, IEEE Computer Society, USA, vol. 13, No. 5, May 1, 1991, pp. 441-450. |
Examination Repon in European Application No. 161524772 dated Jun. 18, 2019, pp. 1-6. |
Examination Report in European Application No. 171753577 dated Jun. 26, 2019, pp. 1-5. |
Examination Repon in European Application No. 191719764 dated Jun. 19, 2019, pp. 1-8. |
Examination Repon in GB Application No. 15073942 dated Jul. 5, 2019, pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20190026878 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62062175 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14870488 | Sep 2015 | US |
Child | 16140953 | US |