1. Field of the Invention
The present invention relates to an image transfer fixation apparatus that adopts at least a certain image transfer system/scheme among a variety of image transfer systems/schemes, and an image formation apparatus that is provided with such an image transfer fixation apparatus. A few examples of such an image transfer fixation apparatus and an image formation apparatus include but not limited to a copier, a printer, a facsimile, and a multi-function apparatus that has a combined function of any or all of those enumerated above.
2. Description of the Related Art
In the technical field to which the present invention pertains, an image formation apparatus is widely known. An example of an image formation apparatus known in the art performs image transfer and image fixation as follows. An image is formed on a photosensitive member, which functions as an image carrier. The image that is formed on the photosensitive member is transferred to an intermediary image transfer member by means of a primary image transfer unit. The image that is transferred onto the intermediary image transfer member is further transferred to a certain image transfer target matter/object with the use of a secondary image transfer unit. Thereafter, the image is fixed thereon by means of a certain image fixation unit. A conventional image formation apparatus typically performs image transfer and image fixation as two individual steps, which are executed separately from each other. Recently, however, an image formation apparatus that is provided with a so-called image transfer fixation apparatus and performs image transfer and image fixation at the same time and/or as a single step has been proposed. There are some types of image transfer fixation that have been proposed by the related art so far. An image formation apparatus that is provided with an image transfer fixation apparatus of related art performs secondary image transfer fixation by transferring an image from an intermediary image transfer member onto an image transfer target matter and fixing the image thereon. Another image formation apparatus that is provided with another image transfer fixation apparatus of related art performs secondary image transfer by transferring an image from an intermediary image transfer member onto an image transfer fixation member and thereafter performs tertiary image transfer as well as image fixation by transferring the image from the image transfer fixation member onto an image transfer target matter and fixing the image thereon. In both types of the related-art image transfer fixation described above, fine particles that have electrification characteristics and are mainly made of a resin called as toner are typically used.
In the operation flow of an electro-photographic image formation apparatus, it is the step of transferring an image onto an image transfer target matter that has considerable influence upon the quality of an image formed thereon. Paper is usually used as an image transfer target matter. There are various thickness types thereof including standard paper and thick paper, without any limitation thereto. In addition, there are various surface types thereof. Some of them are smooth, while others are rough. Especially when a sheet of printing paper that has a rough surface is used, the surface of an intermediary image transfer member cannot perfectly fit with the minute convexes and concaves of such rough paper. Accordingly, fine gaps are formed at such irregular minute spots. Because of these fine gaps, abnormal electrical discharge occurs thereat, which makes it practically impossible or at best difficult for an image to be transferred in a fine and faithful manner. For this reason, the quality of an image formed thereon is likely to be poor and lacking in fine fidelity when viewed as a whole.
In contrast, the second-mentioned type of an image formation apparatus of related art, which performs secondary image transfer by transferring an image from an intermediary image transfer member onto an image transfer fixation member and thereafter performs tertiary image transfer as well as image fixation by transferring the image from the image transfer fixation member onto an image transfer target matter and fixing the image thereon, makes it possible to effectively prevent the deterioration of image quality explained above even in a case where a sheet of printing paper that has a rough surface is used because image transfer and image fixation are performed at the same time and/or as a single step. Specifically, the reason why it is possible to effectively prevent the deterioration of image quality even for such rough paper is that toner becomes softened and/or melted through heating that is performed concurrently with image transfer so as to turn into agglomerate blocks having viscoelasticity, which makes it possible to achieve the successful transfer of such viscoelastic toner agglomerates for portions of an image corresponding to the minute convexes and concaves (i.e., fine gaps) of the image transfer target paper. For this reason, an image formation apparatus that is provided with an image transfer fixation apparatus has an advantage over an image formation apparatus that is not provided therewith in terms of image quality.
In addition, in the steps of the image transfer fixation method, there does not occur a state in which fine particles are placed on an image transfer target matter. For this reason, the image transfer fixation method has another advantage in that it is possible to provide a paper transport guide having a narrow width up to immediately before image transfer fixation. Thus, it is possible to ensure stable and reliable paper transport irrespective of paper types inclusive of thin paper and thick paper. That is, if the image transfer fixation method is used, it is possible to use a variety of paper for printing. Moreover, with the image transfer fixation method, it is possible to effectively reduce the rate of occurrence of paper jam errors and/or malfunctions.
In the image transfer fixation process explained above, the improvement of thermal efficiency is an important factor for excellent image transfer. In order to improve thermal efficiency, it is effective to raise interface temperature, that is, temperature between the surface of a sheet of recording paper and toner that adhere to each other. Conventionally, toner has been pre-heated well for the softening thereof. Then, the softened toner is fixed thereon through the application of pressure thereto. However, such a conventional method in which toner only is heated has a disadvantage in that it is practically impossible or at best difficult to achieve satisfactory thermal efficiency in a case where, for example, an image transfer fixation member has a large thickness such as 300 μm or so or in a case where a quad tandem full color image formation system that has a large perimeter is adopted. Especially, since a cooling step is required after an image transfer step, there is a lot of waste in terms of energy efficiency; that is, it is necessary to heat a target object and then cool the same target object.
In an effort to overcome such a disadvantage, there has been proposed a technique of heating the surface of a sheet of printing paper immediately before it becomes in contact with toner. Since not only the front side of a sheet of recording paper but also the reverse side thereof are heated in the above-mentioned proposed technique of the related art, the proposed technique cannot achieve high energy efficiency. Moreover, many outstanding problems remain unsolved, including but not limited to, the possible ignition of paper in a heating process, temperature unevenness, and scumming due to overheating.
In order to address the above-identified problems without any limitation thereto, the invention provides, as an aspect thereof, a transfer fixation apparatus for transferring a toner image onto a recording target medium and fixing the toner image on the recording target medium, including: a fixing member that carries the toner image; a pressurizing member that becomes in contact with the fixing member with pressure so as to form a nip through which the recording target medium is transported; and a heating section that is made up of a plurality of heating members that are provided at relatively upstream positions when viewed from the relatively downstream nip and apply heat to the surface of the recording target medium that is transported toward the nip, wherein the number of heating members that apply heat to the surface of the recording target medium is changed depending on whether the transfer of the toner image is performed only on the front side of the recording target medium or the transfer of the toner image is performed also on the reverse side of the recording target medium after the transfer of the toner image on the front side of the recording target medium.
With reference to the accompanying drawings, exemplary embodiments of the present invention are explained in detail below. It should be noted that, in the accompanying drawings as well as in the following description of exemplary embodiments of the invention, the same reference numerals are consistently used for the same or corresponding components so as to omit, if appropriate, any redundant explanation or simplify explanation thereof.
An image transfer fixation belt 2, which has an intermediary image transfer function, is provided as a component/member of the image formation unit 1A. The image transfer fixation belt 2 has an image transfer surface that extends in a horizontal direction. A set of image formation components/members that is used for forming images of complementary colors with respect to color-separation colors is provided on the upper surface of the image transfer fixation belt 2. More specifically, photosensitive members 3Y, 3M, 3C, and 3B, which function as image carriers that are capable of carrying toner images of complementary colors, that is, yellow (Y), magenta (M), and cyan (C) as well as black (B, or K), respectively, are provided in a line along the image transfer surface of the image transfer fixation belt 2.
The image transfer fixation belt 2 has a multilayer structure. A preferred example of such a multilayer structure includes polyimide resin as a base material, and in addition, rubber and fluorocarbon resin. In such a preferred multilayer structure, the film thickness of the base polyimide resin is 40 μm. The film thickness of the rubber is preferably 60 μm whereas the film thickness of the fluorocarbon resin is preferably 60 μm. The rubber layer is necessary for ensuring good fit and thus excellent image transfer even when the surface of a recording target medium such as a sheet of printing paper, which is the target of image formation, is not smooth. The fluorocarbon resin surface layer contributes to good toner release and paper-dust release.
Each of the photosensitive members 3Y, 3M, 3C, and 3B has a drum structure. These photosensitive drums 3Y, 3M, 3C, and 3B can rotate in the same direction as one another. Electrostatic charging units 4Y, 4M, 4C, and 4B, writing units 5Y, 5M, 5C, and 5B, developing units 6Y, 6M, 6C, and 6B, primary image transfer units 7Y, 7M, 7C, and 7B, and photosensitive member cleaning units 8Y, 8M, 8C, and 8B are provided around the photosensitive members 3Y, 3M, 3C, and 3B, respectively. The electrostatic charging units 4Y, 4M, 4C, and 4B, which are static electrification units, perform image formation processing in a roller rotation process. The writing units 5Y, 5M, 5C, and 5B function as an optical writer. Each of the developers 6Y, 6M, 6C, and 6B has a toner container for the corresponding color. It should be noted that each of the alphabets Y, M, C, and B that follow each reference numeral used herein denotes the corresponding one of toner colors, as in the denotation of the photosensitive members 3Y, 3M, 3C, and 3B mentioned above.
The image transfer fixation belt 2 is wound around a driving roller 11, which is a master roller, and driven rollers 9 and 10, each of which is a slave roller that follows the rotation of the master roller 11. Having a rotary belt configuration, the image transfer fixation belt 2 can move in the same direction as the rotation direction thereof at a position in contact with the photosensitive members 3Y, 3M, 3C, and 3B. A belt cleaner unit 13, which cleans the surface of the image transfer fixation belt 2, is provided opposite to the driving roller 11.
Next, a series of image formation steps that is performed with the use of the image formation apparatus 1 having the configuration described above is explained. In the following description, yellow toner image formation process that is executed by means of the yellow photosensitive member 3Y is taken as an example. As a first step of the yellow toner image formation process, the yellow electrostatic charging unit 4Y electrifies the surface of the yellow photosensitive member 3Y in a uniform manner. As a result thereof, an electrostatic latent image is formed on the surface of the yellow photosensitive member 3Y on the basis of image information that is supplied from the aforementioned image reader unit. Next, the yellow developing unit 6Y, which contains yellow toner, visualizes the electrostatic latent image that is formed on the surface of the yellow photosensitive member 3Y so as to form a yellow toner image thereon. Then, the yellow primary image transfer unit 7Y to which a predetermined bias is applied transfers the yellow toner image onto the image transfer fixation belt 2. This image transfer constitutes a primary image transfer step. The same image formation and transfer as above is performed for other three photosensitive members 3M, 3C, and 3B.
After the completion of primary image transfer, each of the photosensitive member cleaning units 8Y, 8M, 8C, and 8B removes any unused toner that remains on the surface of the corresponding one of the photosensitive members 3Y, 3M, 3C, and 3B. Thereafter, a diselectrification lamp, for example, an erase lamp, initializes the potential of each of the photosensitive members 3Y, 3M, 3C, and 3B as preparation for the next formation of an image thereon. Note that the diselectrification lamp is not illustrated in the drawing.
A pressurizing member 24 is provided opposite to the driven roller 9. Hereafter, the pressurizing member 24 is referred to as a pressure roller 24. The pressure roller 24 and the image transfer fixation belt 2 form a nip N therebetween. In the following description of this specification, the nip N may be referred to as “image transfer nip”. The pressure roller 24 has, for example, a releasing surface layer that is coated on the surface of a metal pipe such as an aluminum pipe.
Heating means 101 such as a plurality of heaters is provided at an upstream pressure-roller-side position that is immediately before, that is, immediately in front of, an image transfer fixation position at which an image is transferred on a recording target medium P such as a sheet of printing paper. The term “upstream” is used herein as viewed in the direction of paper transportation, or, in comparison with the image transfer fixation position, which is a downstream position. The phrase “immediately before” is also used herein as viewed in the direction of paper transportation. The heating means 101 has a function of applying heat to the surface of the recording target medium P.
A low friction material layer that is made of fluorocarbon resin or the like may be provided on the contact surface of the heating means 101, which becomes in contact with a recording target medium P, in order to ensure smooth sliding operation thereof. It is preferable that the low friction material layer should have a thickness of a few micrometers (μm) or so. The heating temperature of the heating means 101 is controlled within a range of approximately 140-200° C. Being controlled in such a temperature range, the heating means 101 applies heat to the surface of a recording target medium, that is, a sheet of printing paper. A thermoelectric couple having a diameter of 20 μm is fixedly mounted on the reverse side of a sheet of printing paper in order to experimentally verify a temperature change thereat in a heating process. As the results of the experiment, it was confirmed that a temperature change that occurs on the back of printing paper, which is measured in a measurement time period of 0-20 ms after the contacting of the heating means 101 with the printing paper, does not exceed 5° C. In this experiment, widely used copy paper (copy paper 6200 of Ricoh Co., Ltd.) was used. In addition, it is desirable to make the length of contact time during which the image transfer fixation belt 2 is in contact with the pressure roller 24 as short as possible because, if so configured, less heat is taken away from the image transfer fixation belt 2 as a result of the absorption thereof by the pressure roller 24, which results in more efficient image transfer and image fixation, that is, toner fixation. That is, the shorter the contact time, the more efficient the image transfer fixation.
The paper feeder unit 1B has a printing paper tray 14, a paper pickup roller 16, a pair of paper transport rollers 17, and a pair of “resist” rollers 18. A plurality of recording target media such as sheets of printing paper P is stacked/set on the paper tray 14. The paper pickup roller 16 picks up the uppermost sheet of the stacked printing paper P in sequential pickup operation, that is, one after another, while separating the uppermost pickup target sheet from the second and subsequent sheets counted from the top at each pickup operation. The pair of paper transport rollers 17 transports the sheet of printing paper P that has been fed thereto. At the pair of resist rollers 18, the transportation of the sheet of printing paper P is temporarily stopped for the purpose of correcting paper skew, if any. Thereafter, the pair of resist rollers 18 transports the sheet of printing paper P toward the nip N at such a timing that makes the front edge of an image that is formed on the image transfer fixation belt 2 is aligned with a predetermined position when viewed in the direction of paper transportation.
A toner image T, which may be hereafter simply referred to as “toner”, is primarily transferred from each of the aforementioned photosensitive members 3Y, 3M, 3C, and 3B to the image transfer fixation belt 2 due to electrostatic force through the application of a bias to the driven roller 11 by a certain bias applying means. The bias includes AC superposition, pulse superposition, and the like.
The image formation apparatus 1 shown in
The toner image T that has been transferred to the image transfer fixation belt 2 receives heat from the heat capacity of a recording target medium P until the toner image T is fixed on the recording target medium P at the nip N. In order to obtain/ensure a satisfactory gloss/brilliance, conventional color image formation apparatuses require heat quantity that is 1.5 times larger than that of conventional monochrome image formation apparatuses in consideration of a temperature decrease that is attributable to a recording target medium. For this reason, overheating tends to make the adhesion of toner to a recording target medium excessively high.
In the configuration of the image formation apparatus 1 according to the present embodiment of the invention, a plurality of heating members (i.e., heaters) 101, which make up the aforementioned heating means 101, is provided on the transportation channel/route/path of the recording target medium P. The heating means 101 may include a plurality of heating members that are separated from each other or one another as viewed in the width direction of a recording target medium, which is a non-limiting exemplary configuration thereof. It is preferable that the plurality of heating members should be configured in such a manner that they can operate independently of each other or one another. With such a configuration, it is possible to easily control heating temperature depending on the thickness of a recording target medium. In addition, it is further possible to easily control heating temperature depending on whether single side printing or double side printing is performed. That is, it is possible to appropriately set the surface temperature of a recording target medium P; and in addition, it is possible to achieve efficient image fixation without increasing the temperature of the image transfer fixation belt 2.
Moreover, since the apparatus performs image formation in relatively low apparatus-temperature conditions, it is possible to shorten the length of a so-called warm-up period, which offers excellent energy conservation characteristics. In addition, such low temperature image formation makes it possible to prevent heat from transferring to an image-forming portion/unit, thereby making it further possible to avoid the thermal deterioration of parts. Thus, the apparatus has improved durability.
Next, with reference to
The IOI image formation apparatus illustrated in
Next, an explanation is given of examples of image formation that is performed by an image formation apparatus according the first embodiment of the invention, which has an exemplary configuration shown in
A set of common electrodes may be provided for a plurality of thermistors, which make up the heating means 101, as illustrated in
On the other hand, when printing is performed on both faces of a sheet of recording paper, after the completion of single side printing as explained above, the sheet of printing paper is transported in the direction D that is shown in
It is known in the art that temperature at the time of the fixation of toner, which is referred to as fixation temperature, is closely related to the degree of brilliancy, that is, the glossiness, of an image that is formed on a recording target medium.
In this example, an IOI color copy machine that is shown in
In this example, image formation was performed with the use of the image formation apparatus 1 that is shown in
In this example, an IOI color copy machine that is shown in
The conditions of controlling a pair of heating members that are provided at two places along the transportation channel/route/path of a recording target medium are experimentally studied. The conditions are explained below while referring to
In a case where the speed of the transportation of a sheet of recording paper is low, and thus there is a certain time lag between the front-side image transfer fixation process and the reverse-side image transfer fixation process, the heating temperature of the heating means in each image transfer fixation process may be changed. Such a change can be applied to both of a tandem color copy scheme/method shown in
In each of the foregoing exemplary embodiments of the invention, it is explained that the image transfer fixation unit/portion has a roller structure. However, the scope of these aspects of the invention is not limited to such an exemplary configuration. For example, the same advantageous effects as those explained above can be produced when the image transfer fixation unit/portion has a belt structure. In addition, the direction of paper transportation is not limited to a specific example that is explained in the foregoing exemplary embodiments of the invention. For example, a sheet of printing paper may be transported in a diagonally upward direction from the lower left part of the sheet of
Next, an example of toner that can be suitably applied to image formation that is performed with the use of an image formation apparatus that is provided with an image transfer fixation apparatus according to an aspect of the invention is explained below. It is known in the art that the performance of the transferring of toner (i.e., a toner image) from the intermediary image transfer belt 2 to an image transfer fixation member including but not limited to image transfer efficiency and image transfer fidelity (i.e., faithfulness) has an influence on image quality. In addition, it is further known in the art that the performance of image transfer depends on the form of toner particles. It was experimentally confirmed that, in order to optimize the form of toner particles, toner should preferably have Wardell's spheroidicity of 0.8 or larger. The Wardell's spheroidicity, that is, the degree of sphericity, is denoted as φ herein. The Wardell's degree of sphericity φ can be calculated using the following formula: φ=Diameter of a circle having an area equal to a particle-projected area/Diameter of a circle that is circumscribed with a particle-projected image. The calculation of the Wardell's degree of sphericity can be performed as follows. A suitable amount of toner is placed as a sample on a glass slide (i.e., slide glass). Then, one hundred random sample toner particles are measured by means of a microscope with a magnification of ×500. Preferable toner described above makes it possible to increase secondary image transfer efficiency, thereby improving image quality.
Number | Date | Country | Kind |
---|---|---|---|
2007-287264 | Nov 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5689786 | Tokunaga et al. | Nov 1997 | A |
6377773 | Berkes et al. | Apr 2002 | B1 |
6393245 | Jia et al. | May 2002 | B1 |
7031648 | Takashi et al. | Apr 2006 | B2 |
7127202 | Fujita et al. | Oct 2006 | B2 |
7233762 | Kunii et al. | Jun 2007 | B2 |
7254362 | Kikuchi et al. | Aug 2007 | B2 |
7269384 | Someya et al. | Sep 2007 | B2 |
7299003 | Kurotaka et al. | Nov 2007 | B2 |
7333760 | Baba et al. | Feb 2008 | B2 |
7359666 | Takashi et al. | Apr 2008 | B2 |
7369803 | Echigo et al. | May 2008 | B2 |
20040037595 | Takashi et al. | Feb 2004 | A1 |
20050025534 | Fujita et al. | Feb 2005 | A1 |
20050152721 | Kikuchi et al. | Jul 2005 | A1 |
20050201783 | Kurotaka et al. | Sep 2005 | A1 |
20050207801 | Kunii et al. | Sep 2005 | A1 |
20050238373 | Takayanagi | Oct 2005 | A1 |
20050286920 | Baba et al. | Dec 2005 | A1 |
20060008302 | Someya et al. | Jan 2006 | A1 |
20060013624 | Kurotaka et al. | Jan 2006 | A1 |
20060019082 | Kikuchi et al. | Jan 2006 | A1 |
20060088349 | Someya et al. | Apr 2006 | A1 |
20060120776 | Takashi et al. | Jun 2006 | A1 |
20060140689 | Echigo et al. | Jun 2006 | A1 |
20070065188 | Takagaki et al. | Mar 2007 | A1 |
20070071511 | Suzuki et al. | Mar 2007 | A1 |
20070104520 | Nakafuji et al. | May 2007 | A1 |
20070212126 | Seto et al. | Sep 2007 | A1 |
20070212129 | Takemoto et al. | Sep 2007 | A1 |
20070218386 | Suzuki et al. | Sep 2007 | A1 |
20080008505 | Seto et al. | Jan 2008 | A1 |
20080069606 | Yamashita et al. | Mar 2008 | A1 |
20080069610 | Nakafuji et al. | Mar 2008 | A1 |
20080219717 | Kayahara et al. | Sep 2008 | A1 |
20080219718 | Fujita et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
10-063121 | Mar 1998 | JP |
2004-145260 | May 2004 | JP |
2005-037879 | Feb 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20090116880 A1 | May 2009 | US |