Image transfer on a colored base

Information

  • Patent Grant
  • 9776389
  • Patent Number
    9,776,389
  • Date Filed
    Wednesday, April 13, 2016
    8 years ago
  • Date Issued
    Tuesday, October 3, 2017
    7 years ago
Abstract
An image transfer article can include an image-imparting member and a removable substrate disposed adjacent to the image-imparting member. The image-imparting member can have a softening point temperature less than about 220° C. The image-imparting member can include at least one surface configured to receive and carry indicia to be transferred and at least one portion comprising a pigment providing an opaque background for received indicia. In some examples, the image-imparting member can comprise a first polymer including the indicia and at least a second polymer including the pigment. In some examples, the image-imparting member can comprise a polymer including the indicia and the pigment. The indicia and the opaque background can be arranged to concurrently transfer to a woven- or fabric-based article or paper in contact with the image-imparting member, upon application of iron pressing temperatures.
Description
BACKGROUND

The present invention relates to a method for transferring an image onto a colored base and to an article comprising a dark base and an image with a light background on the base.


Image transfer to articles made from materials such as fabric, nylon, plastics and the like has increased in popularity over the past decade due to innovations in image development. On Feb. 5, 1974, LaPerre et al. had issued a United States patent describing a transfer sheet material markable with uniform indicia and applicable to book covers. The sheet material included adhered plies of an ink receptive printable layer and a solvent free, heat activatable adhesive layer. The adhesive layer was somewhat tacky prior to heat activation to facilitate positioning of a composite sheet material on a substrate which was to be bonded. The printable layer had a thickness of 10-500 microns and had an exposed porous surface of thermal plastic polymeric material at least 10 microns thick.


Indicia were applied to the printable layer with a conventional typewriter. A thin film of temperature-resistant low-surface-energy polymer, such as polytetrafluoroethylene, was laid over the printed surface and heated with an iron. Heating caused the polymer in the printable layer to fuse thereby sealing the indicia into the printable layer.


On Sep. 23, 1980, Hare had issued U.S. Pat. No. 4,224,358, which described a kit for applying a colored emblem to a T-shirt. The kit comprised a transfer sheet which included the outline of a mirror image of a message. To utilize the kit, a user applied a colored crayon to the transfer sheet and positioned the transfer sheet on a T-shirt. A heated instrument was applied to the reverse side of the transfer sheet in order to transfer the colored message.


The Greenman et al. patent, U.S. Pat. No. 4,235,657, issuing Nov. 25, 1980, described a transfer web for a hot melt transfer of graphic patterns onto natural, synthetic fabrics. The transfer web included a flexible substrate coating with a first polymer film layer and a second polymer film layer. The first polymer film layer was made with a vinyl resin and a polyethylene wax which were blended together in a solvent or liquid solution. The first film layer served as a releasable or separable layer during heat transfer. The second polymeric film layer was an ionomer in an aqueous dispersion. An ink composition was applied to a top surface of the second film layer. Application of heat released the first film layer from the substrate while activating the adhesive property of the second film layer thereby transferring the printed pattern and a major part of the first layer along with the second film layer onto the work piece. The second film layer bonded the printed pattern to the work piece while serving as a protective layer for the pattern.


DeSanders et al. patent, U.S. Pat. No. 4,399,209, issuing Aug. 16, 1983, describes an imaging system in which images were formed by exposing a photosensitive encapsulate to actinic radiation and rupturing the capsules in the presence of a developer so that there was a pattern reaction of a chromogenic material present in the encapsulate or co-deposited on a support with the encapsulate and the developer which yielded an image.


The Joffi patent, U.S. Pat. No. 4,880,678, issuing Nov. 14, 1989, describes a dry transfer sheet which comprises a colored film adhering to a backing sheet with an interposition of a layer of release varnish. The colored film included 30%-40% pigment, 1%-4% of cycloaliphatic epoxy resin, from 15%-35% of vinyl copolymer and from 1%-4% of polyethylene wax. This particular printing process was described as being suitable for transferring an image to a panel of wood.


The Kronzer et al. patent, U.S. Pat. No. 5,271,990, issuing Dec. 21, 1993, describes an image-receptive heat transfer paper that included a flexible paper web based sheet and an image-receptive melt transfer film that overlaid the top surface of the base sheet. The image-receptive melt transfer film was comprised of a thermal plastic polymer melting at a temperature within a range of 65°-180° C.


The Higashiyami et al. patent, U.S. Pat. No. 5,019,475, issuing May 28, 1991, describes a recording medium that included a base sheet, a thermoplastic resin layer formed on at least one side of the base sheet and a color developer formed on a thermoplastic resin layer and capable of color development by reaction with a dye precursor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a schematic view of one process of image transfer onto a colored product, of the present invention.



FIG. 2 is a schematic view of one prior art process of image transfer onto a colored product.



FIG. 3a is a cross-sectional view of one embodiment of the image transfer device of the present invention.



FIG. 3b is a cross-sectional view of another embodiment of the image transfer device of the present invention.



FIG. 4 is a cross-sectional view of another embodiment of the image transfer device of the present invention.



FIG. 5 is a cross-sectional view of one other embodiment of the image transfer device of the present invention.



FIG. 6 is a cross-sectional view of another embodiment of the image transfer device of the present invention.



FIG. 7 is a cross-sectional view of another embodiment of the image transfer device of the present invention.



FIG. 8 is a cross-sectional schematic view of one process of image transfer onto a colored product, of the present invention.





SUMMARY

One embodiment of the present invention includes a method for transferring an image to a colored substrate. The method comprises providing an image transfer sheet comprising a release layer and an image-imparting layer that comprises a polymer. The image-imparting layer comprises titanium oxide or another white pigment or luminescent pigment. The image transfer sheet is contacted to the colored substrate. Heat is applied to the image transfer sheet so that an image is transferred from the image transfer sheet to the colored substrate. The image transferred comprises a substantially white or luminescent background and indicia.


Another embodiment of the present invention includes an image transfer sheet. The image transfer sheet comprises a polymer. The polymer comprises titanium oxide or other white pigment or luminescent pigment.


One other embodiment of the present invention includes a method for making an image transfer sheet. The method comprises providing an ink receptive polymer and impregnating the polymer with titanium oxide or other white pigment or luminescent pigment. An image is imparted to the polymer.


DETAILED DESCRIPTION

One method embodiment of the present invention, for transferring an image onto a colored base material, illustrated generally at 100 in FIG. 1, comprises providing the colored base material 102, such as a colored textile, and providing an image 104 that comprises a substantially white background 106 with indicia 108 disposed on the substantially white background, applying the image 104 to the colored base 102 with heat to make an article, such as is shown generally at 110 in FIG. 1 with the substantially white background 106, the image 108 disposed on the white background, so that the image and background are adhered to the colored base in a single step.


As used herein, the term “base” or substrate refers to an article that receives an image of the image transfer device of the present invention. The base includes woven or fabric-based materials. The base includes articles of clothing such as T-shirts, as well as towels, curtains, and other fabric-based or woven articles.


As used herein, the term “indicia” refers to an image disposed on the image transfer device of the present invention in conjunction with a substantially white background. Indicia include letters, figures, photo-derived images and video-derived images.


As used herein, the term “white layer” refers to a layer on a transfer sheet positioned between a release layer and a receiving layer. The white layer imparts a white background on a dark substrate.


The method of the present invention is a significant improvement over conventional two-step image transfer processes. One prior art embodiment is shown generally at 200 in FIG. 2. Typically in prior art embodiments, a colored base, in particular, a dark base such as a black T-shirt 202, is imparted with an image in a multiple step process. One prior art method 200 includes applying a white or light background 204 to the colored base 202 with heat. The light or white background 204 is typically a polymeric material such as a cycloaliphatic epoxy resin, a vinyl copolymer and/or a polyethylene wax. A sheet 206 with an image 208 printed or otherwise imparted is applied to the substantially white polymeric material 204 by aligning the image to the white background and applying heat.


This two-step prior art process requires the use of two separate sheets 204 and 206, separately applied to the colored base. The two-step prior art process 200 also requires careful alignment of the image 208 to the white background 202. Consequently, the two-step process is exceedingly time-consuming and, because of improper alignment, produces significant wastage of base and image transfer materials.


With the method of the present invention, a sheet such as is shown at 104a, is prepared having a substrate layer 302 that comprises a polymeric material such as polypropylene, paper, a polyester film, or other film or films having a matte or glossy finish, such as is shown in FIG. 3a. The substrate layer 302 may be coated with clay on one side or both sides. The substrate layer may be resin coated or may be free of coating if the substrate is smooth enough. The resin coating acts as a release coating 304. The coating weight typically ranges from 40 g/square meter to 250 g/square meter. In one embodiment, the range is 60 to 130 g/square meter. In one embodiment, overlaying the substrate 302 or base paper is a silicone coating 304. Other release coatings such as fluorocarbon, urethane, or acrylic base polymer are usable in the image transfer device of the present invention. One other release coating is a silicone coating. The silicone coating has a release value of about 10 to 2500 g/inch, using a Tesa Tape 7375 tmi, 90 degree angle, 1 inch tape, 12 inches per minute. These other release coatings are, for some embodiments, impregnated with titanium oxide or other white pigments in a concentration of about 20% by weight.


Impregnated within the substrate 302, shown in FIG. 3a and/or silicone coating 304, shown in FIG. 3b, is a plurality of titanium oxide particles or other white pigment or luminescent pigment in a concentration that may be as high as about 35% by volume or as low as 5% by volume. Specific embodiments include titanium oxide concentrations or talc, or barium or aluminum hydrate with or without calcium carbonate or aluminum silicate in a range from 0 to 50%, by weight. Other materials such as hollow pigment, kaolin, silica, zinc oxide, alumina, zinc sulfate, calcium carbonate, barium or aluminum oxide; aluminum trihydrate, aluminum fillers, aluminum silicate, alumina trihydrate, barium sulfate, barium titanate, fumed silica, talc, and titanium oxide extenders are also usable in conjunction with titanium oxide or instead of titanium oxide. It is believed that any white organic or inorganic pigment that has a concentration at a level of 0 to 7% by weight total ash content is acceptable for use. In one embodiment illustrated at 600 in FIG. 6, a white layer 606 includes a concentration of blended pigments or other pigments at a concentration of 10 to 40% by weight.


Other pigments such as Lumilux®, manufactured by Reidel de Haen Aktiengellschaft of Germany, or other luminescent pigments, such as pigments manufactured by Matsui International, Inc., may be used in the method and article of the present invention. The titanium oxide or other white pigment or luminescent particles impart to the substrate layer, a substantially white background with a glowing that occurs at night or in the dark area. The pigments are used in conjunction with ink jet printing, laser printing, painting, other inks, for “Glow in the Dark” images, for light resolution displays, for pop displays, monochrome displays or image transfer articles. Suitable pigments are excitable by daylight or artificial radiation, fluorescent light, fluorescent radiation, infrared light, infrared radiation, IR light, ultra-violet light or UV radiation. Other materials may be added to the substrate such as antistatic agents, slip agents, lubricants or other conventional additives. The white layer or layers are formed by extrusion or co-extrusion emulsion coating or solvent coating. The white layer coating thickness ranges from 0.5 to 7 mils. In one embodiment, the range is 1.5 to 3.5 mils or 14 g/meter squared to up to 200 g/meter squared.


In other embodiments of the image transfer sheet, a changeable color was added to one or more of the layers of the image transfer sheet. The color-changeable material transferred utilized a material such as a temperature sensitive pigmented chemical or light changeable material, a neon light which glows in the dark for over 50 hours and was a phosphorescent pigment, a zinc-oxide pigment or a light-sensitive colorant. A concentrated batch of one or more of the materials of polyethylene, polyester, EVA, EAA, polystyrene, polyamide or MEAA which was a Nucrel-like material was prepared.


The color-changeable material was added to the layer material up to a concentration of 100% by weight with 50% by weight being typical. The color-changeable material technologies changed the image transfer sheet from colorless to one or more of yellow, orange, red, rose, red, violet, magenta, black, brown, mustard, taupe, green or blue. The color-changeable material changed the image transfer sheet color from yellow to green or from pink to purple. In particular, sunlight or UV light induced the color change.


The color-changeable material was blendable in a batch process with materials such as EAA, EVA, polyamide and other types of resin. The polymer was extruded to 0.5 mils or 14 g/m2 to 7 mils or 196 g/m2 against a release side or a smooth side for a hot peel with up to 50% by weight of the color-changeable concentrate.


The first ink-receiving layer 306 was an acrylic or SBR EVA, PVOH, polyurethane, MEAA, polyamide, PVP, or an emulsion of EAA, EVA or a blend of EAA or acrylic or polyurethane or polyamide, modified acrylic resins with non-acrylic monomers such as acrylonitrile, butadiene and/or styrene with or without pigments such as polyamide particle, silica, COCl3, titanium oxide, clay and so forth.


The thermoplastic copolymer was an ethylene acrylic acid or ethylene vinyl acetate grade, water- or solvent-based, which was produced by high pressure copolymerization of ethylene and acrylic acid or vinyl acetate.


Use of EAA or EVA as a binder was performed by additionally adding in a concentration of up to 90% with the concentration being up to 73% for some embodiments. The titanium oxide pigment concentration was, for some embodiments, about 50%. The photopia concentration was about 80% maximum. The additive was about 70% maximum.


The second receiving layer 306 included the photopia or color changeable material in a concentration of up to 70% by weight with a range of 2 to 50% by weight for some embodiments. PHOTOPHOPIA is an ink produced by Matsui Shikiso chemical, Co. of Kyoto, Japan. The pigment ranged from 0 to 90% and the binder from 0 to 80%. This type of coloring scheme was used in shirts with invisible patterns and slogans. The PHOTOPIA products were obtained from Matsui International Company, Inc. While they have been described as being incorporated in the ink-receiving layer, the PHOTOPIA products were also applicable as a separate monolayer. PHOTOPIA-containing layers were coated onto the release layer by conventional coating methods such as by rod, slot, reverse or reverse gravure, air knife, knife-over and so forth.


Temperature sensitive color changeable materials could also be added to the image transfer sheet. Chromacolor materials changed color in response to a temperature change. The Chromacolor solid material had a first color at a first temperature and changed color as the temperature changed. For instance, solid colors on a T-shirt became colorless as a hot item or the outside temperature increased.


Chromacolor was prepared as a polypropylene concentrate, polyethylene, polystyrene, acrylo-styrene (AS) resins, PVC/plasticizer, nylon or 12 nylon resin, polyester resin, and EVA resin. The base material for this image transfer sheet embodiment was selected from materials such as paper, PVC, polyester, and polyester film.


This type of image transfer sheet was fabricated, in some embodiments, without ink-jet receiving layers. It was usable by itself for color copy, laser printers, and so forth and then was transferable directly onto T-shirts or fabrics.


In one or both receiving layers 306, permanent color was addable with a color-changeable dispersion when the temperature changed, that is, when color disappeared. The color returned to permanent color as was shown in previous examples. With this formulation, the changeable color was added to one or more layers in a concentration of up to about 80% by weight with a range of 2-50% by weight being typical. The base paper for this embodiment was about 90 g/m2. About 0.5 mils EAA were applied with 10% PHOTOPIA or temperature-sensitive color-changeable materials. The top coat layer was an ink-receiving layer that contained polyamides, silica, COCl3 for 15% color-changeable items.


For some embodiments, a white layer 506, 606, such as is shown in FIGS. 5-6, includes ethylene/methacrylic acid (E/MAA), with an acid content of 0-30%, and a melt index from 10 to 3500 with a melt index range of 20 to 2300 for some embodiments. A low density polyethylene with a melt index higher than 200 is also suitable for use. Other embodiments of the white layer include ethylene vinyl acetate copolymer resin, EVA, with vinyl acetate percentages up to 50%/EVA are modifiable with an additive such as DuPont Elvax, manufactured by DuPont de Neimours of Wilmington, Del. These resins have a Vicat softening point of about 40 degrees to 220 degrees C., with a range of 40 degrees to 149 degrees C. usable for some embodiments. Other resins usable in this fashion include nylon multipolymer resins with or without plasticizers with the same pigment percent or ash content nylon resin such as Elvamide, manufactured by DuPont de Neimours or CM 8000 Toray. Nylon polymers are also blendable with resin such as ENGAGE with or without plasticizers. These resins are applicable as a solution water base or a solvent base solution system. These resins are also applicable by extrusion or co-extrusion or hot melt application. Other suitable resins include Allied Signal Ethylene acrylic acid, A-0540, 540A, or AC 580, AC 5120, and/or AC 5180 or ethylene vinyl acetate, AC-400, 400A, AC-405(s), or AC-430.


The silicone-coated layer 304 acts as a release-enhancing layer. When heat is applied to the image transfer sheet 104, thereby encapsulating image imparting media such as ink or toner or titanium oxide with low density polyethylene, ethylene acrylic acid (EAA), or MEAA, ethylene vinyl acetate (EVA), polyester exhibiting a melt point from 20 C up to 225 C, polyamide, nylon, or methane acrylic ethylene acrylate (MAEA), or mixtures of these materials in the substrate layer 302, local changes in temperature and fluidity of the low density polyethylene or other polymeric material occurs. These local changes are transmitted into the silicone coated release layer 304 and result in local preferential release of the low density polyethylene encapsulates, EVA, EAA, polyester, and polyamide.


The silicone coated release layer is an optional layer that may be eliminated if the colored base 102 or peel layer is sufficiently smooth to receive the image. In instances where the silicone coated release layer 304 is employed, the silicone coated release layer may, for some embodiments wherein the release layer performs image transfer, such as is shown in FIG. 3b, also include titanium oxide particles or other white pigment or luminescent pigment in a concentration of about 20% by volume.


One other image transfer sheet embodiment of the present invention, illustrated at 400 in FIG. 4, includes a substrate layer 402, a release layer 404 and an image imparting layer 406 that comprises a polymeric layer such as a low density polyethylene layer, an EAA layer, an EVA layer or a nylon-based layer or an MAEA layer or polyester melt point of 20 C up to 225 degrees C. The image imparting layer is an ink jet receptive layer. In one embodiment, the nylon is 100% nylon type 6 or type 12 or a blend of type 6 and 12.


The polyamides, such as nylon, are insoluble in water and resistant to dry cleaning fluids. The polyamides may be extruded or dissolved in alcohol or other solvent depending upon the kind of solvent, density of polymer and mixing condition. Other solvents include methanol, methanol trichloro-ethylene, propylene glycol, methanol/water or methanol/chloroform.


One additional embodiment of the present invention comprises an image transfer sheet that comprises an image imparting layer but is free from an image receptive layer such as an ink receptive layer. The image imparting layer includes titanium oxide or other white pigment or luminescent pigment in order to make a white or luminescent background for indicia or other images. Image indicia are imparted, with this embodiment, by techniques such as color copy, laser techniques, toner, dye applications or by thermo transfer from ribbon wax or from resin.


The LDPE polymer of the image imparting layer melts at a point within a range of 43°-300° C. The LDPE and EAA have a melt index (MI) of 20-1200 SI-g/10 minutes. The EAA has an acrylic acid concentration ranging from 5 to 25% by weight and has an MI of 20 to 1300 g/10 minutes. A preferred EAA embodiment has an acrylic acid concentration of 7 to 20% by weight and an MI range of 20 to 1300. The EVA has an MI within a range of 20 to 3300. The EVA has a vinyl acetate concentration ranging from 10 to 40% by weight.


One other polymer usable in the image imparting layer comprises a nylon-based polymer such as Elvamide®, manufactured by DuPont de Nemours or ELF ATO CHEM, with or without plasticizers in a concentration of 10 to 37% by weight. Each of these polymers, LDPE, EAA, EVA and nylon-based polymer is usable along or with a resin such as Engage® resin, manufactured by DuPont de Nemours. Suitable plasticizers include N-butyl benzene sulfonamide in a concentration up to about 35%. In one embodiment, the concentration of plasticizer ranged from 8 to 27% by weight with or without a blend of resin, such as Engage® resin, manufactured by DuPont de Nemours.


Suitable Elvamide® nylon multipolymer resins include Elvamide 8023R® low viscosity nylon multipolymer resin; Elvamide 8063® multipolymer resin manufactured by Dupont de Nemours. The melting point of the Elvamide® resins ranges from about 154° to 158° C. The specific gravity ranges from about 1.07 to 1.08. The tensile strength ranges from 51.0 to about 51.7 Mpa. Other polyamides suitable for use are manufactured by ELF ATO CHEM, or Toray. Other embodiments include polymers such as polyester No. MH 4101, manufactured by Bostik, and other polymers such as epoxy or polyurethane.


The density of polymer has a considerable effect on the viscosity of a solution for extrusion. In one embodiment, 100% of a nylon resin such as DuPont Elvamide 80625® having a melting point of 124° C. or Elvamide 8061M®, or Elvamide 8062 P® or Elvamide 8064®, all supplied by DuPont de Nemours. Other suitable polyamide formulations include Amilan CM 4000® or CM 8000 supplied by Toray, or polyamide from ELF ATO CHEM M548 or other polyamide type.


In an extrusion process, these polyamide formulations may be used straight, as 100% polyamide or may be blended with polyolefin elastomers to form a saturated ethylene-octane co-polymer that has excellent flow properties and may be cross-linked with a resin such as Engage®, manufactured by DuPont de Nemours, by peroxide, silane or irradiation. The Engage® resin is, in some embodiments, blended in a ratio ranging from 95/5 nylon/Engage® to 63/35 nylon/Engage®. The polyamide is, in some embodiments, blended with resins such as EVA or EAA, with or without plasticizers. Plasticizers are added to improve flexibility at concentrations as low as 0% or as high as 37%. One embodiment range is 5% to 20%.


Other resins usable with the polyamide include Dupont's Bynel®, which is a modified ethylene acrylate acid terpolymer. The Bynel® resin, such as Bynel 20E538®, has a melting point of 53° C. and a melt index of 25 dg/min as described in D-ASTM 1238. The Bynel® has a Vicat Softening Point of 44 C as described in D-ASTM 1525-91. This resin may be blended with other resin solutions and used as a top coat primer or as a receptive coating for printing applications or thermo transfer imaging. For some embodiments, an emulsion solution is formed by dissolving polymer with surfactant and KOH or NaOH and water to make the emulsion. The emulsion is applied by conventional coating methods such as a roll coater, air knife or slot die and so forth.


The polymeric solution is pigmented with up to about 50%, with a material such as titanium oxide or other pigment, or without plasticizers and is applied by conventional coating methods such as air knife, rod gater, reverse or slot die or by standard coating methods in one pass pan or in multiple passes.


Fillers may be added in order to reduce heat of fusion or improve receptivity or to obtain particular optical properties, opacity or to improve color copy or adhesion.


The present invention further includes a kit for image transfer. The kit comprises an image transfer sheet for a color base that is comprised of a substrate layer impregnated with titanium oxide, a release layer and an image imparting layer made of a polymer such as LDPE, EAA, EVA, or MAEA, MEAA, nylon-based polymer or mixtures of these polymers or blends of these polymers with a resin such as Engage® or other polyester adhesion that melt at a temperature within a range of 100°-700° C. The LDPE has a melt index of 60-1200 (SI)-g/minute. The kit also includes a colored base for receiving the image on the image transfer sheet and a package for containing the image transfer sheet and the colored base.


Another embodiment of the present invention includes an emulsion-based image transfer system. The system comprises a colored base, such as a colored fabric, an image transfer sheet with a release coating and a polyamide. The polyamide is impregnated with titanium oxide or other white pigment or luminescent pigment in order to impart a white or luminescent background on the colored base.


One other embodiment of the present invention, illustrated at 500 in FIG. 5, is also utilized in a method for transferring an image from one substrate to another. The method comprises a step of providing an image transfer sheet 500 that is comprised of a substrate layer 502, a release layer 504, comprising a silicone coating 505 and a white layer 506 with a thickness of about 0.5 to 7 mils and having a melt index, MI, within a range of 40°-280° C. The substrate layer 502 is, for some embodiments, a base paper coated on one side or both sides. The base paper is, optionally, of a saturated grade. In one embodiment, the white layer 506 of the image transfer sheet 500 is impregnated with titanium oxide or other white or luminescent pigment. In one embodiment, the white layer 506 and a receiving layer 508, contacting the white layer 506 are impregnated with titanium oxide or other white or luminescent pigment.


In one embodiment, the nylon resin is applied by a hot melt extrusion process in a thickener to a thickness of 0.35 mils or 8 gms per square meter to about 3.0 mils or 65 gms per square meter to a maximum of about 80 gms per square meter. In one particular embodiment, the thickness is about 0.8 mils or 15 gms per square meter to about 50 gms per square meter or about 0.75 mils to about 2.00 mils. The nylon resin is, in another embodiment, emulsified in alcohol or other solvent or is dispersed in water and applied with conventional coating methods known in the industry.


Next, an image is imparted to the polymer component of the peel layer 520 utilizing a top coat image-imparting material such as ink or toner. In one embodiment, the polymer coating is impregnated with titanium oxide or other white or luminescent pigment prior to imparting the image. The ink or toner may be applied utilizing any conventional method such as an ink jet printer or an ink pen or color copy or a laser printer. The ink may be comprised of any conventional ink formulation. An ink jet coating is preferred for some embodiments. A reactive ink is preferred for other applications.


The image transfer sheet 500 is applied to the colored base material so that the polymeric component of the peel layer 520 contacts the colored base. The second substrate is comprised of materials such as cloth, paper and other flexible or inflexible materials.


Once the image transfer sheet peel layer 520 contacts the colored base, a source of heat, such as an iron or other heat source, is applied to the image transfer sheet 500 and heat is transferred through the peel layer 520. The peel layer 520 transfers the image, which is indicia over a white or luminescent field, to the colored base. The application of heat to the transfer sheet 500 results in ink or other image-imparting media within the polymeric component of the peel layer being changed in form to particles encapsulated by the polymeric substrate such as the LDPE, EAA, EVA, nylon or M/EAA or polyamides, or polyester, urethane, epoxies or resin-containing mixtures of these polymers immediately proximal to the ink or toner. The encapsulated ink particles or encapsulated toner particles and encapsulated titanium oxide particles are then transferred to the colored base in a mirror image to the ink image or toner image on the polymeric component of the peel layer 520.


Because the polymeric component of the peel layer 520 generally has a high melting point, the application of heat, such as from an iron, does not result in melting of this layer or in a significant change in viscosity of the overall peel layer 520. The change in viscosity is confined to the polymeric component that actually contacts the ink or toner or is immediately adjacent to the ink or toner. As a consequence, a mixture of the polymeric component, titanium oxide or other white or luminescent pigment, and ink or toner is transferred to the colored base as an encapsulate whereby the polymeric component encapsulates the ink or toner or titanium oxide or other white pigment. It is believed that the image transfer sheet, with the white titanium oxide or other white or luminescent pigment background is uniquely capable of both cold peel and hot peel with a very good performance for both types of peels.


Example 1

EAA is extruded or co-extruded at 300 melt index (Dow Primacor 59801) with 30% titanium oxide ash content extruded on silicone coated base paper 95 g/meter squared for thicknesses as follows: 0.75 mils, 1.0 mil, 1.2 mils, 2.2 mils, 2.75 mils, 3.5 mils, 7.0 mils. The EAA layer is coated with ink jet receptive layers and then printed on an ink jet printer. The print is then removed from the release layer to expose the print. The exposed print is applied against fabric and covered by release paper, wherein the release side contacts the printed side. The printed image is transferred by heat application with pressure, such as by an iron, at 250 F to 350 F for about 15 seconds.


This procedure is usable with a blend of 80/20, 70/30, 50/50, 60/40 or vice versa, Dow Primacor 59801 and 59901. This procedure is also usable with DuPont Elvax 3180, or 3185 DuPont Nucrel 599, DuPont Nucrel 699, Allied Signal AC-5120 or an EAA emulsion of Primacor or Allied Signal 580 or 5120 resin or EVA or make a wax emulsion or EVA or EAA emulsion, or is blended with ELF 548 or Elvamide or polyester resin from Bostik MLT 4101.


The emulsion is blended with titanium or white pigment in one or multiple layers and applied with conventional coating methods such as roll coating, myer rod, air knife, knife over or slot die. The blended emulsion is applied with a coat weight of 5 g/meter squared to 150 g/meter squared. The percent ash is about 7 to 80 percent with 10 to 70 percent for some embodiments.


Example 2

An ink receptive mono or multiple layer such as is shown in FIG. 6 at 604, 606, 608 and 610 includes a first layer 606 that includes 0 to 80% titanium pigment with acrylic or EVA or polyvinyl alcohol, or SBR with a Tg glass transition of −60 up to 56 with a range of −50 to 25, for some embodiments. In another embodiment, a wax emulsion is used with a coat weight of 5 g/meter squared to 38 g/meter squared with a range of 8 g/meter squared to 22 g/meter squared for some embodiments.


In another embodiment, a pigment is blended to make layer 606. EAA or EVA solution solvent or a water base solution and a different coat and different thickness are employed. On top of extruded layers, top coats 608 and 610 comprise ink receptive layers. This construction imparts an excellent whiteness to the background of a print with an excellent washability.


Example 3

For one image transfer sheet, such as is shown at 600 in FIG. 6, a blend is prepared. The blend includes the same ratio of ash to emulsion of EAA or EVA or a blend of both of these polymers. The blend has a MEIT index of 10 MI to 2500 MI with a range of 25 MI to 2000 MI for some embodiments. The blend is formed into a substrate layer 602, which can be coated on one side or both.


The optionally coated substrate layer 602 is further coated with a release layer 604 that is coated with ink jet receptive layers 606 and 608. The ink jet receptive layer or layers 606 and 608 include 50 percent titanium or barium talc, or a combination of different high brightness, high opacity pigments. These layers are coated within a range of 5 g/meter squared to 50 g/meter squared. In one embodiment, the range is 8 g/meter squared to 30 g/meter squared.


Example 4

As shown at 700 in FIG. 7, a polyester resin obtained from Bostek MH 4101 was extruded to thicknesses of 0.5 mils, 1.0 mils, 2.0 mils and 4 mils with titanium oxide concentrations of 5%, 10%, 30%, and 40%, respectively, against silicone coated 705 paper 702, having a density of 80 g/m-sq. The silicone coated 705 paper 702 was top coated with an EAA solution 706 that included titanium oxide in a concentration of about 40%. This titanium oxide coated paper was then coated with an ink jet receiving layer 708. The ink jet receiving layer 708 was coated with a “Glow in the Dark” containing layer or a temperature changeable pigment containing layer or a light changeable layer 712. These layers were ink jet printed, as required.


As shown at 800 in FIG. 8, the peeled printed layers 820, including at least one or more layers collectively comprising a white or luminescent pigment and received indicia, were then placed against a fabric 854 and covered with release paper 852. Heat 850 was applied to the peeled printed layers 820 and the release paper 852. The heat 850 was applied at 200 F, 225 F, 250 F, 300 F, 350 F, and 400 F. A good image transfer was observed for all of these temperatures.


Example 5

An image transfer sheet was prepared in the manner described in Example 4 except that a polyamide polymer layer was coextruded using polyamide from ELF ATO CHEM M 548.


Example 6

An image transfer sheet was prepared in the manner described in Example 4 except that a blend of polyamides and DuPont 3185 in ratios of 90/10, 80/20, 50/50, 75/25 and 10/90, respectively was prepared and coextruded to make image transfer sheets. Each of the sheets displayed a good image transfer.


Example 7

An image transfer sheet was prepared in the manner described in Example 4 except that a blend of EAA and polyamide was prepared and coextruded to make image transfer sheets. Each of the sheets displayed a good image transfer.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. The above Detailed Description includes references to the accompanying drawings, which form a part of the Detailed Description. The drawings show, by way of illustration, specific embodiments of present subject matter. These embodiments are also referred to herein as “examples.” The above Detailed Description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more elements thereof) can be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. Also, various features or elements can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.


In the event of inconsistent usages between this document and any document so incorporated by reference, the usage in this document controls.


In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” The terms “including” and “comprising” are open-ended, that is, an article, system, kit, or method that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The Abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.

Claims
  • 1. An image transfer article comprising: a release layer comprising at least one of a fluorocarbon, urethane, or acrylic base polymer;an ink-receiving layer for receiving an ink or toner based image; anda white layer positioned between the release layer and the ink-receiving layer and comprising a pigment to provide a pigmented background above which the ink or toner based image is received.
  • 2. The image transfer article of claim 1, further comprising a removable substrate on an opposite side of the release layer from the white layer and releasable from the release layer.
  • 3. The image transfer article of claim 2, wherein the white layer is configured to impart a white background for the ink or toner based image when transferred to a dark-colored substrate.
  • 4. The image transfer article of claim 3, wherein the pigment is titanium oxide.
  • 5. The image transfer article of claim 3, wherein, as the pigment, the white layer comprises a concentration of blended pigments of about 10% to 40% by weight of the white layer.
  • 6. The image transfer article of claim 2, wherein the ink-receiving layer comprises a polyamide.
  • 7. The image transfer article of claim 6, wherein the white layer has a melt index between 10 and 3500.
  • 8. The image transfer article of claim 6, wherein the white layer has a Vicat softening point of between about 40° C. to about 220° C.
  • 9. The image transfer article of claim 6, wherein the polyamide is insoluble in water.
  • 10. The image transfer article of claim 2, wherein the ink-receiving layer comprises a polyurethane.
  • 11. The image transfer article of claim 2, wherein the white layer has a thickness of between about 0.5 to 7 mils.
  • 12. The image transfer article of claim 11, wherein the white layer melts within the range of 40° C. to about 280° C.
  • 13. The image transfer article of claim 12, wherein the release layer, ink receiving layer, and white layer are concurrently transferable to an image-receiving article when they are, as a unit, placed in contact with the image-receiving article and heat is applied thereto.
  • 14. The image transfer article of claim 13, wherein the release layer comprises at least one of ethylene acrylic acid and ethylene vinyl acetate.
  • 15. A method of making an image transfer article, the method comprising: coating a release layer over at least a substrate layer, the release layer comprising at least one of a fluorocarbon, urethane, or acrylic base polymer;coating a white layer over at least the release layer and substrate layer, the white layer comprising a white or luminescent pigment; andcoating an ink-receiving layer over at least the white layer, release layer, and substrate layer, the ink-receiving layer comprising a polyamide and configured for receiving an ink or toner based image;wherein the white or luminescent pigment is provided in a sufficient concentration to provide a pigmented background for the ink or toner based image.
  • 16. The method of claim 15, wherein the white layer is formed by extrusion or co-extrusion emulsion coating or solvent coating.
  • 17. The method of claim 15, wherein the ink receiving layer is formed by roll coating, air knife coating, slot die coating, or a hot melt extrusion process.
  • 18. The method of claim 15, wherein the polyamide of the ink-receiving layer is emulsified in a solvent before coating.
  • 19. The method of claim 15, wherein the white layer is coated to a thickness of between about 0.5 to 7 mils.
  • 20. The method of claim 19, wherein the substrate is releasable from the release layer.
RELATED APPLICATIONS

This patent document is a continuation of U.S. application Ser. No. 14/160,246, filed Jan. 21, 2014, which is a continuation of U.S. application Ser. No. 13/745,995, filed Jan. 21, 2013, now U.S. Pat. No. 8,703,256, which is a continuation of U.S. application Ser. No. 12/875,445, filed Sep. 3, 2010, now U.S. Pat. No. 8,361,574, which is a continuation of U.S. application Ser. No. 10/911,249, filed Aug. 4, 2004, now U.S. Pat. No. 7,824,748, which is a divisional of U.S. application Ser. No. 09/541,845, filed Apr. 3, 2000, now U.S. Pat. No. 6,884,311, which is a continuation-in-part of U.S. application Ser. No. 09/391,910, filed Sep. 9, 1999 and which has been reissued as U.S. application Ser. No. 12/218,260, filed Jul. 11, 2008, now U.S. Pat. No. RE41,623, the entirety of each of the disclosures of which are explicitly incorporated by reference herein. This patent document is also related to U.S. application Ser. No. 12/034,932, filed Feb. 21, 2008, now U.S. Pat. No. 7,771,554, U.S. application Ser. No. 12/193,578, filed Aug. 18, 2008, now U.S. Pat. No. 7,749,581, U.S. application Ser. No. 12/193,573, filed Aug. 18, 2008, now U.S. Pat. No. 7,754,042, and U.S. application Ser. No. 12/193,562, filed Aug. 18, 2008, now U.S. Pat. No. 7,766,475, the entirety of each of the disclosures of which are explicitly incorporated by reference herein.

US Referenced Citations (189)
Number Name Date Kind
3359127 Meyer et al. Dec 1967 A
3503782 Ayers Mar 1970 A
3790439 La Perre et al. Feb 1974 A
3922435 Asnes Nov 1975 A
3956552 Geary May 1976 A
4034134 Gregorian et al. Jul 1977 A
4037008 Tugwell Jul 1977 A
4058644 DeVries et al. Nov 1977 A
4086379 Brown Apr 1978 A
4102456 Morris Jul 1978 A
4107365 Reed et al. Aug 1978 A
4169169 Kitabatake Sep 1979 A
4224358 Hare Sep 1980 A
4235657 Greenman et al. Nov 1980 A
4284456 Hare Aug 1981 A
4390387 Mahn Jun 1983 A
4399209 Sanders et al. Aug 1983 A
4423106 Mahn Dec 1983 A
4461793 Blok et al. Jul 1984 A
4514457 Sasaki Apr 1985 A
4548857 Galante Oct 1985 A
4549824 Sachdev et al. Oct 1985 A
4594276 Relyea Jun 1986 A
4643917 Koshizuka et al. Feb 1987 A
4664735 Pernicano May 1987 A
4685984 Powers et al. Aug 1987 A
4758952 Harris et al. Jul 1988 A
4863781 Kronzer Sep 1989 A
4880678 Goffi Nov 1989 A
4966815 Hare Oct 1990 A
4971644 Mahn, Sr. et al. Nov 1990 A
4980224 Hare Dec 1990 A
5019475 Higashiyama et al. May 1991 A
5028028 Yamada et al. Jul 1991 A
5045383 Maeda et al. Sep 1991 A
5059580 Shibata et al. Oct 1991 A
5097861 Hopkins et al. Mar 1992 A
5110389 Hiyoshi et al. May 1992 A
5133819 Croner Jul 1992 A
5139917 Hare Aug 1992 A
5217793 Yamane et al. Jun 1993 A
5236801 Hare Aug 1993 A
5242739 Kronzer et al. Sep 1993 A
5252531 Yasuda et al. Oct 1993 A
5271990 Kronzer et al. Dec 1993 A
5312645 Dressler May 1994 A
5312673 Dressler May 1994 A
5320885 Yamane et al. Jun 1994 A
5334439 Kawaguchi et al. Aug 1994 A
5350474 Yamane Sep 1994 A
5360456 Lecomte et al. Nov 1994 A
5362703 Kawasaki et al. Nov 1994 A
5372884 Abe et al. Dec 1994 A
5400246 Wilson et al. Mar 1995 A
5407724 Mimura et al. Apr 1995 A
5431501 Hale et al. Jul 1995 A
5434598 Shimonine et al. Jul 1995 A
5468532 Ho et al. Nov 1995 A
5501902 Kronzer et al. Mar 1996 A
5521229 Lu et al. May 1996 A
5597637 Abrams et al. Jan 1997 A
5614345 Gumbiowski et al. Mar 1997 A
5620548 Hare Apr 1997 A
5665476 Oez Sep 1997 A
5667614 Stahl Sep 1997 A
5707925 Akada et al. Jan 1998 A
5747148 Warner et al. May 1998 A
5770268 Kuo et al. Jun 1998 A
5798161 Kita et al. Aug 1998 A
5798179 Kronzer Aug 1998 A
5821028 Maejima et al. Oct 1998 A
5833790 Hare Nov 1998 A
5861355 Olson et al. Jan 1999 A
5866248 Dressler Feb 1999 A
5905497 Vaughan et al. May 1999 A
5917730 Rittie et al. Jun 1999 A
5925712 Kronzer Jul 1999 A
5942335 Chen et al. Aug 1999 A
5948586 Hare Sep 1999 A
5962149 Kronzer Oct 1999 A
5981045 Kuwabara et al. Nov 1999 A
5981077 Taniguchi Nov 1999 A
6017611 Cheng et al. Jan 2000 A
6033739 Kronzer Mar 2000 A
6033824 Hare et al. Mar 2000 A
6036808 Shaw-Klein et al. Mar 2000 A
6042914 Lubar Mar 2000 A
6054223 Tsuchiya et al. Apr 2000 A
6066387 Ueda et al. May 2000 A
6071368 Boyd et al. Jun 2000 A
6083656 Hare et al. Jul 2000 A
6087061 Hare et al. Jul 2000 A
6090520 Hare et al. Jul 2000 A
6096475 Hare et al. Aug 2000 A
6106982 Mientus et al. Aug 2000 A
6113725 Kronzer Sep 2000 A
6120888 Dolsey et al. Sep 2000 A
6139672 Sato et al. Oct 2000 A
6177187 Niemoller et al. Jan 2001 B1
6180256 Sargeant Jan 2001 B1
6200668 Kronzer Mar 2001 B1
6242082 Mukoyoshi et al. Jun 2001 B1
6245710 Hare Jun 2001 B1
6258448 Hare Jul 2001 B1
6265128 Hare et al. Jul 2001 B1
6294307 Hare Sep 2001 B1
6331374 Hare et al. Dec 2001 B1
6338932 Hare et al. Jan 2002 B2
6340550 Hare et al. Jan 2002 B2
6358660 Agler et al. Mar 2002 B1
6383710 Hare et al. May 2002 B2
6423466 Hare Jul 2002 B2
6428878 Kronzer Aug 2002 B1
6450633 Kronzer Sep 2002 B1
6495241 Sato et al. Dec 2002 B2
6497781 Dalvey et al. Dec 2002 B1
6506445 Popat et al. Jan 2003 B2
6509131 Hare et al. Jan 2003 B2
6521327 Franke Feb 2003 B1
6531216 Williams et al. Mar 2003 B1
6539652 Barry Apr 2003 B1
6551692 Dalvey et al. Apr 2003 B1
6582803 Cole et al. Jun 2003 B2
6613412 Dressler Sep 2003 B1
6638604 Bamberg et al. Oct 2003 B1
6638682 Hare et al. Oct 2003 B2
6667093 Yuan et al. Dec 2003 B2
6677009 Boyd et al. Jan 2004 B2
6703086 Kronzer et al. Mar 2004 B2
6723773 Williams et al. Apr 2004 B2
6753050 Dalvey et al. Jun 2004 B1
6786994 Williams et al. Sep 2004 B2
6849312 Williams Feb 2005 B1
6869910 Williams et al. Mar 2005 B2
6871950 Higuma et al. Mar 2005 B2
6875487 Williams et al. Apr 2005 B1
6878423 Nakanishi Apr 2005 B2
6884311 Dalvey et al. Apr 2005 B1
6916589 Hare et al. Jul 2005 B2
6916751 Kronzer Jul 2005 B1
6951671 Mukherjee et al. Oct 2005 B2
6998211 Riley et al. Feb 2006 B2
7001649 Wagner et al. Feb 2006 B2
7008746 Williams et al. Mar 2006 B2
7021666 Hare Apr 2006 B2
7022385 Nasser Apr 2006 B1
7026024 Chang et al. Apr 2006 B2
7081324 Hare et al. Jul 2006 B1
7160411 Williams et al. Jan 2007 B2
7220705 Hare May 2007 B2
7238410 Kronzer Jul 2007 B2
7361247 Kronzer Apr 2008 B2
7364636 Kronzer Apr 2008 B2
7749581 Nasser et al. Jul 2010 B2
7754042 Dalvey et al. Jul 2010 B2
7766475 Dalvey et al. Aug 2010 B2
7771554 Dalvey et al. Aug 2010 B2
RE41623 Schwendimann et al. Sep 2010 E
7824748 Dalvey et al. Nov 2010 B2
RE42541 Dalvey et al. Jul 2011 E
8197918 Dalvey et al. Jun 2012 B2
8361574 Delvey et al. Jan 2013 B2
8541071 Schwendimann et al. Sep 2013 B2
8703256 Schwendimann Apr 2014 B2
8826902 Schwendimann et al. Sep 2014 B2
9321298 Schwendimann Apr 2016 B2
20010051265 Williams et al. Dec 2001 A1
20020025208 Sato et al. Feb 2002 A1
20020048656 Sato et al. Apr 2002 A1
20020192434 Yuan et al. Dec 2002 A1
20030008112 Cole et al. Jan 2003 A1
20030021962 Mukherjee et al. Jan 2003 A1
20040100546 Horvath May 2004 A1
20040146700 Boyd et al. Jul 2004 A1
20050048230 Dalvey et al. Mar 2005 A1
20070172609 Williams Jul 2007 A1
20070172610 Williams Jul 2007 A1
20070221317 Kronzer et al. Sep 2007 A1
20070231509 Xu et al. Oct 2007 A1
20080149263 Dalvey et al. Jun 2008 A1
20080302473 Dalvey et al. Dec 2008 A1
20080305253 Dalvey et al. Dec 2008 A1
20080305288 Dalvey et al. Dec 2008 A1
20100323132 Dalvey et al. Dec 2010 A1
20110067806 Dalvey et al. Mar 2011 A1
20120202020 Dalvey et al. Aug 2012 A1
20130142970 Schwendimann et al. Jun 2013 A1
20130248094 Schwendimann et al. Sep 2013 A1
20140134356 Schwendimann et al. May 2014 A1
Foreign Referenced Citations (11)
Number Date Country
0466503 Jan 1992 EP
0782931 Jul 1997 EP
0881092 Dec 1998 EP
0899121 Mar 1999 EP
0933225 Aug 1999 EP
2295973 Jun 1996 GB
63122592 May 1988 JP
1037233 Feb 1989 JP
7276833 Oct 1995 JP
8085269 Apr 1996 JP
0073570 Dec 2000 WO
Non-Patent Literature Citations (149)
Entry
“U.S. Appl. No. 09/150,983, Final Office Action mailed Aug. 2, 2000”, 9 pgs.
“U.S. Appl. No. 09/150,983, Non Final Office Action mailed Jan. 30, 2001”, 7 pgs.
“U.S. Appl. No. 09/150,983, Non Final Office Action mailed Apr. 11, 2000”, 5 pgs.
“U.S. Appl. No. 09/150,983, Non Final Office Action mailed Dec. 28, 1999”, 5 pgs.
“U.S. Appl. No. 09/150,983, Notice of Allowance mailed Nov. 19, 2002”, 8 pgs.
“U.S. Appl. No. 09/150,983, Response filed Feb. 16, 2000 to Non Final Office Action mailed Dec. 28, 1999”, 3 pgs.
“U.S. Appl. No. 09/150,983, Response filed Jun. 20, 2000 to Non Final Office Action mailed Apr. 11, 2000”, 7 pgs.
“U.S. Appl. No. 09/150,983, Response filed Aug. 7, 2002 to Non Final Office Action mailed Jan. 30, 2001”, 9 pgs.
“U.S. Appl. No. 09/391,910, Restriction Requirement mailed Jun. 18, 2001”, 5 pgs.
“U.S. Appl. No. 09/535,937, Non Final Office Action mailed Nov. 29, 2001” 8 pgs.
“U.S. Appl. No. 09/535,937, Notice of Allowance mailed Sep. 10, 2002”, 9 pgs.
“U.S. Appl. No. 09/535,937, Preliminary Amendment filed Mar. 24, 2000”, 1 pg.
“U.S. Appl. No. 09/535,937, Response filed May 28, 2002 to Non Final Office Action mailed Nov. 29, 2001”, 6 pgs.
“U.S. Appl. No. 09/541,845, Final Office Action mailed Nov. 25, 2003”, 4 pgs.
“U.S. Appl. No. 09/541,845, Non Final Office Action mailed Apr. 16, 2003”, 4 pgs.
“U.S. Appl. No. 09/541,845, Notice of Allowance mailed May 4, 2004”, 4 pgs.
“U.S. Appl. No. 09/541,845, Response filed Jan. 10, 2003 to Restriction Requirement mailed Aug. 22, 2002”, 1 pg.
“U.S. Appl. No. 09/541,845, Response filed Mar. 23, 2004 to Final Office Action mailed Nov. 25, 2003”, 6 pgs.
“U.S. Appl. No. 09/541,845, Response filed Jul. 15, 2003 to Non Final Office Action mailed Apr. 14, 2003”, 5 pgs.
“U.S. Appl. No. 09/541,845, Restriction Requirement mailed Aug. 22, 2002”, 5 pgs.
“U.S. Appl. No. 09/541,845, Supplemental Notice of Allowability mailed Jan. 26, 2005”, 2 pgs.
“U.S. Appl. No. 09/541,845, Supplemental Restriction Requirement mailed Jan. 6, 2003”, 5 pgs.
“U.S. Appl. No. 09/661,532, Final Office Action mailed May 20, 2003”, 8 pgs.
“U.S. Appl. No. 09/661,532, Non Final Office Action mailed Mar. 1, 2002”, 9 pgs.
“U.S. Appl. No. 09/661,532, Notice of Allowance mailed Feb. 12, 2004”, 4 pgs.
“U.S. Appl. No. 09/661,532, Response filed Aug. 20, 2003 to Final Office Action mailed May 20, 2003”, 5 pgs.
“U.S. Appl. No. 09/661,532, Response filed Aug. 30, 2002 to Non Final Office Action mailed Mar. 1, 2002”, 8 pgs.
“U.S. Appl. No. 09/661,532, Response filed Dec. 23, 2002 to Restriction Requirement mailed Nov. 26, 2002”, 2 pgs.
“U.S. Appl. No. 09/661,532, Restriction Requirement mailed Nov. 26, 2002”, 5 pgs.
“U.S. Appl. No. 10/719,220, Non Final Office Action mailed Sep. 9, 2004”, 3 pgs.
“U.S. Appl. No. 10/719,220, Preliminary Amendment filed Nov. 21, 2003”, 3 pgs.
“U.S. Appl. No. 10/911,249, Examiner Interview Summary mailed Jan. 15, 2010”, 4 pgs.
“U.S. Appl. No. 10/911,249, Final Office Action mailed Jan. 29, 2008”, 6 pgs.
“U.S. Appl. No. 10/911,249, Final Office Action mailed Jun. 30, 2009”, 5 pgs.
“U.S. Appl. No. 10/911,249, Final Office Action mailed Jul. 26, 2005”, 3 pgs.
“U.S. Appl. No. 10/911,249, Final Office Action mailed Dec. 8, 2006”, 3 pgs.
“U.S. Appl. No. 10/911,249, Final Office Action mailed Dec. 14, 2006”, 3 pgs.
“U.S. Appl. No. 10/911,249, Non Final Office Action mailed Feb. 8, 2005”, 5 pgs.
“U.S. Appl. No. 10/911,249, Non Final Office Action mailed Mar. 13, 2007”, 4 pgs.
“U.S. Appl. No. 10/911,249, Non Final Office Action mailed Mar. 16, 2010”, 6 pgs.
“U.S. Appl. No. 10/911,249, Non Final Office Action mailed Sep. 20, 2007”, 5 pgs.
“U.S. Appl. No. 10/911,249, Notice of Allowance mailed Mar. 25, 2008”, 4 pgs.
“U.S. Appl. No. 10/911,249, Notice of Allowance mailed Aug. 20, 2010”, 16 pgs.
“U.S. Appl. No. 10/911,249, Preliminary Amendment filed Aug. 4, 2004”, 4 pgs.
“U.S. Appl. No. 10/911,249, Response filed Jan. 5, 2009 to Final Office Action mailed Dec. 5, 2008”, 10 pgs.
“U.S. Appl. No. 10/911,249, Response filed Jan. 24, 2007 to Non Final Office Action mailed Dec. 14, 2006”, 8 pgs.
“U.S. Appl. No. 10/911,249, Response filed Jan. 26, 2006 to Final Office Action filed Jul. 26, 2005”, 7 pgs.
“U.S. Appl. No. 10/911,249, Response filed Feb. 18, 2008 to Final Office Action filed Jan. 29, 2008”, 7 pgs.
“U.S. Appl. No. 10/911,249, Response filed Mar. 11, 2009 to Final Office Action mailed Feb. 9, 2009”, 13 pgs.
“U.S. Appl. No. 10/911,249, Response filed May 4, 2005 to Non Final Office Action mailed Feb. 8, 2005”, 6 pgs.
“U.S. Appl. No. 10/911,249, Response filed Jun. 7, 2010 to Non Final Office Action mailed Mar. 16, 2010”, 14 pgs.
“U.S. Appl. No. 10/911,249, Response filed Jul. 11, 2007 to Non Final Office Action mailed Mar. 13, 2007”, 11 pgs.
“U.S. Appl. No. 10/911,249, Response filed Jul. 29, 2008 to Final Office Action mailed Jan. 29, 2008”, 19 pgs.
“U.S. Appl. No. 10/911,249, Response filed Nov. 30, 2009 to Non Final Office Action mailed Sep. 21, 2009”, 17 pgs.
“U.S. Appl. No. 10/911,249, Response filed Dec. 14, 2007 to Non Final Office Action mailed Sep. 20, 2007”, 9 pgs.
“U.S. Appl. No. 10/911,249, Response to Notice of Non-Compliant Amendment filed Jun. 2, 2005”, 5 pgs.
“U.S. Appl. No. 10/911,249, Response to Notice of Non-Compliant Amendment filed Nov. 24, 2008”, 25 pgs.
“U.S. Appl. No. 11/054,717, Final Office Action mailed Mar. 29, 2010”, 5 pgs.
“U.S. Appl. No. 11/054,717, Final Office Action mailed Jun. 1, 2007”, 4 pgs.
“U.S. Appl. No. 11/054,717, Non Final Office Action mailed Jan. 9, 2009”, 10 pgs.
“U.S. Appl. No. 11/054,717, Non Final Office Action mailed Jul. 15, 2010”, 4 pgs.
“U.S. Appl. No. 11/054,717, Non Final Office Action mailed Sep. 11, 2007”, 3 pgs.
“U.S. Appl. No. 11/054,717, Non Final Office Action mailed Oct. 23, 2006”, 4 pgs.
“U.S. Appl. No. 11/054,717, Notice of Allowance mailed Nov. 3, 2010”, 21 pgs.
“U.S. Appl. No. 11/054,717, Preliminary Amendment filed Feb. 9, 2005”, 3 pgs.
“U.S. Appl. No. 11/054,717, Response filed May 11, 2009 to Non Final Office Action mailed Jan. 9, 2009”, 12 pgs.
“U.S. Appl. No. 11/054,717, Response filed Jun. 1, 2010 to Final Office Action mailed Mar. 29, 2010”, 11 pgs.
“U.S. Appl. No. 11/054,717, Response filed Aug. 1, 2007 to Final Office Action mailed Jun. 1, 2007”, 6 pgs.
“U.S. Appl. No. 11/054,717, Response filed Aug. 10, 2010 to Non Final Office Action mailed Jul. 15, 2010”, 9 pgs.
“U.S. Appl. No. 11/054,717, Response filed Dec. 10, 2007 to Non Final Office Action mailed Sep. 11, 2007”, 5 pgs.
“U.S. Appl. No. 11/054,717, Response filed Nov. 26, 2008 to Restriction Requirement mailed Nov. 20, 2008”, 9 pgs.
“U.S. Appl. No. 11/054,717, Response filed Dec. 5, 2006 to Non Final Office Action mailed Oct. 23, 2006”, 9 pgs.
“U.S. Appl. No. 11/054,717, Restriction Requirement mailed Nov. 20, 2009”, 5 pgs.
“U.S. Appl. No. 11/054,717, Supplemental Amendment filed Oct. 24, 2008”, 8 pgs.
“U.S. Appl. No. 11/054,717, Supplemental Amendment filed Sep. 30, 2008”, 10 pgs.
“U.S. Appl. No. 12/034,932, 312 Amendment filed Jul. 1, 2010”, 2 pgs.
“U.S. Appl. No. 12/034,932, Examiner Interview Summary mailed Jan. 15, 2010”, 4 pgs.
“U.S. Appl. No. 12/034,932, Final Office Action mailed May 7, 2010”, 4 pgs.
“U.S. Appl. No. 12/034,932, Non Final Office Action mailed Sep. 10, 2009”, 5 pgs.
“U.S. Appl. No. 12/034,932, Notice of Allowance mailed Jun. 9, 2010”, 4 pgs.
“U.S. Appl. No. 12/034,932, Preliminary Amendment filed Aug. 18, 2008”, 14 pgs.
“U.S. Appl. No. 12/034,932, PTO Response to 312 Amendment mailed Jul. 8, 2010”, 2 pgs.
“U.S. Appl. No. 12/034,932, Response filed Feb. 10, 2010 to Non Final Office Action mailed Sep. 10, 2009”, 16 pgs.
“U.S. Appl. No. 12/034,932, Response filed May 14, 2010 to Final Office Action mailed May 7, 2010”, 7 pgs.
“U.S. Appl. No. 12/193,562, Examiner Interview Summary mailed Jan. 13, 2010”, 4 pgs.
“U.S. Appl. No. 12/193,562, Final Office Action mailed Mar. 24, 2010”, 5 pgs.
“U.S. Appl. No. 12/193,562, Non Final Office Action mailed Sep. 9, 2009”, 5 pgs.
“U.S. Appl. No. 12/193,562, Notice of Allowance mailed Jun. 15, 2010”, 8 pgs.
“U.S. Appl. No. 12/193,562, Response filed May 24, 2010 to Final Office Action mailed Mar. 24, 2010”, 8 pgs.
“U.S. Appl. No. 12/193,562, Response filed Dec. 9, 2009 to Non Final Office Action mailed Sep. 9, 2009”, 17 pgs.
“U.S. Appl. No. 12/193,562, Supplemental Response filed Feb. 9, 2010 to Non Final Office Action mailed Sep. 9, 2009”, 9 pgs.
“U.S. Appl. No. 12/193,573, Examiner Interview Summary mailed Jan. 13, 2010”, 4 pgs.
“U.S. Appl. No. 12/193,573, Examiner Interview Summary mailed May 19, 2010”, 1 pg.
“U.S. Appl. No. 12/193,573, Non Final Office Action mailed Apr. 7, 2009”, 11 pgs.
“U.S. Appl. No. 12/193,573, Non Final Office Action mailed Sep. 11, 2009”, 5 pgs.
“U.S. Appl. No. 12/193,573, Notice of Allowance mailed May 5, 2010”, 9 pgs.
“U.S. Appl. No. 12/193,573, Response filed Feb. 10, 2010 to Non Final Office Action mailed Sep. 11, 2009”, 18 pgs.
“U.S. Appl. No. 12/193,573, Response filed Jun. 15, 2009 to Non Final Office Action mailed Apr. 7, 2009”, 19 pgs.
“U.S. Appl. No. 12/193,578, 312 Amendment filed May 19, 2010”, 2 pgs.
“U.S. Appl. No. 12/193,578, Non Final Office Action mailed Feb. 11, 2009”, 12 pgs.
“U.S. Appl. No. 12/193,578, Non Final Office Action mailed Sep. 11, 2009”, 5 pgs.
“U.S. Appl. No. 12/193,578, Notice of Allowance mailed Apr. 22, 2010”, 7 pgs.
“U.S. Appl. No. 12/193,578, PTO Response to 312 Amendment mailed Jun. 4, 2010”, 2 pgs.
“U.S. Appl. No. 12/193,578, Response filed Feb. 10, 2010 to Non Final Office Action mailed Sep. 11, 2009”, 20 pgs.
“U.S. Appl. No. 12/193,578, Response filed Jun. 15, 2009 to Non-Final Office Action mailed Feb. 11, 2009”, 16 pgs.
“U.S. Appl. No. 12/218,260, Examiner Interview Summary mailed Apr. 23, 2010”, 3 pgs.
“U.S. Appl. No. 12/218,260, Examiner Interview Summary mailed May 24, 2010”, 1 pg.
“U.S. Appl. No. 12/218,260, Examiner Interview Summary mailed Jun. 10, 2010”, 3 pgs.
“U.S. Appl. No. 12/218,260, Non Final Office Action mailed Jan. 2, 2009”, 11 pgs.
“U.S. Appl. No. 12/218,260, Non Final Office Action mailed Nov. 3, 2009”, 3 pgs.
“U.S. Appl. No. 12/218,260, Notice of Allowance mailed Apr. 1, 2010”, 9 pgs.
“U.S. Appl. No. 12/218,260, Preliminary Amendment filed Jul. 11, 2008”, 9 pgs.
“U.S. Appl. No. 12/218,260, Preliminary Amendment filed Sep. 10, 2009”, 10 pgs.
“U.S. Appl. No. 12/218,260, Response filed Apr. 2, 2009 to Non Final Office Action mailed Jan. 2, 2009”, 7 pgs.
“U.S. Appl. No. 12/218,260, Response filed Dec. 3, 2009 to Non Final Office Action mailed Nov. 3, 2009”, 12 pgs.
“U.S. Appl. No. 12/218,260, Supplemental Notice of Allowability mailed Jun. 10, 2010”, 6 pgs.
“U.S. Appl. No. 12/875,445, Final Office Action mailed Jun. 13, 2012”, 4 pgs.
“U.S. Appl. No. 12/875,445, Non Final Office Action mailed Aug. 24, 2012”, 6 pgs.
“U.S. Appl. No. 12/875,445, Non Final Office Action mailed Sep. 26, 2011”, 6 pgs.
“U.S. Appl. No. 12/875,445, Non Final Office Action mailed Dec. 2, 2011”, 5 pgs.
“U.S. Appl. No. 12/875,445, Notice of Allowance mailed Sep. 19, 2012”, 6 pgs.
“U.S. Appl. No. 12/875,445, Response filed May 18, 2012 to Non Final Office Action mailed Dec. 2, 2011”, 9 pgs.
“U.S. Appl. No. 12/875,445, Response filed Aug. 13, 2012 to Final Office Action mailed Jun. 13, 2012”, 10 pgs.
“U.S. Appl. No. 12/875,445, Response filed Aug. 29, 2012 to Non Final Office Action mailed Aug. 24, 2012”, 9 pgs.
“U.S. Appl. No. 12/875,445, Response filed Nov. 1, 2011 to Non Final Office Action mailed Sep. 26, 2011”, 12 pgs.
“U.S. Appl. No. 12/955,512, Non Final Office Action mailed Nov. 10, 2011”, 7 pgs.
“U.S. Appl. No. 12/955,512, Notice of Allowance mailed Feb. 21, 2012”, 6 pgs.
“U.S. Appl. No. 12/955,512, Response filed Jan. 26, 2012 to Non Final Office Action mailed Nov. 10, 2011”, 13 pgs.
“U.S. Appl. No. 13/447,886, Non Final Office Action mailed Jul. 18, 2012”, 5 pgs.
“U.S. Appl. No. 13/447,886, Non Final Office Action mailed Dec. 11, 2012”, 4 pgs.
“U.S. Appl. No. 13/447,886, Notice of Allowance mailed Feb. 8, 2013”, 5 pgs.
“U.S. Appl. No. 13/447,886, Response filed Jan. 17, 2013 to Non Final Office Action mailed Dec. 11, 2012”, 7 pgs.
“U.S. Appl. No. 13/447,886, Response filed Nov. 19, 2012 to Non Final Office Action mailed Jul. 18, 2012”, 10 pgs.
“U.S. Appl. No. 13/745,995 , Response filed Sep. 23, 2013 to Non Final Office Action mailed Jun. 21, 2013”, 7 pgs.
“U.S. Appl. No. 13/745,995, Non Final Office Action mailed Jun. 21, 2013”, 4 pgs.
“U.S. Appl. No. 13/745,995, Notice of Allowance mailed Oct. 21, 2013”, 7 pgs.
“U.S. Appl. No. 13/893,748, Final Office Action mailed Jan. 30, 2014” 6 pgs.
“U.S. Appl. No. 13/893,748, Non Final Office Action mailed Sep. 6, 2013”, 7 pgs.
“U.S. Appl. No. 13/893,748, Notice of Allowance mailed May 2, 2014”, 6 pgs.
“U.S. Appl. No. 13/893,748 Preliminary Amendment filed Jun. 4, 2013” 7 pgs.
“U.S. Appl. No. 13/893,748 Response filed Apr. 25, 2014 to Final Office Action mailed Jan. 30, 2014”, 9 pgs.
“U.S. Appl. No. 13/893,748, Response filed Dec. 5, 2013 to Non Final Office Action mailed Sep. 6, 2013”, 11 pgs.
“International Application Serial No. International Application Serial No. PCT/US99/20823, International Preliminary Examination Report mailed Sep. 19, 2000”, 14 pgs.
“International Application Serial No. PCT/US00/24633, International Search Report mailed Nov. 30, 2000”, 7 pgs.
“International Application Serial No. PCT/US99/20823, International Preliminary Examination Report mailed Sep. 19, 2000”, 14 pgs.
“International Application Serial No. PCT/US99/20823, International Search Report mailed Dec. 13, 1999”, 3 pgs.
“International Application Serial No. PCT/US99/20823, International Search Report mailed Dec. 13, 1999”, 8 pgs.
“International Application Serial No. PCT/US99/20823, International Written Opinion mailed May 16, 2000”, 15 pgs.
“International Application Serial No. PCT/US99/20823, Written Opinion mailed May 16, 2000”, 15 pgs.
Related Publications (1)
Number Date Country
20160221323 A1 Aug 2016 US
Divisions (1)
Number Date Country
Parent 09541845 Apr 2000 US
Child 10911249 US
Continuations (4)
Number Date Country
Parent 14160246 Jan 2014 US
Child 15097964 US
Parent 13745995 Jan 2013 US
Child 14160246 US
Parent 12875445 Sep 2010 US
Child 13745995 US
Parent 10911249 Aug 2004 US
Child 12875445 US
Continuation in Parts (1)
Number Date Country
Parent 03391910 Sep 1999 US
Child 09541845 US