1. Field of the Disclosure
The present disclosure relates generally to image forming devices and more particularly to an imaging unit having positional control features for use in an electrophotographic image forming device.
2. Description of the Related Art
In order to reduce the premature replacement of components traditionally housed in a toner cartridge of an electrophotographic image forming device, toner cartridge manufacturers have begun to separate components having a longer life from those having a shorter life into separate replaceable units. Relatively longer life components, such as a photoconductive drum, a cleaner blade/roll, a charge roll and a developer roll, are positioned in one replaceable unit, which may be referred to as an imaging unit. The image forming device's toner supply, which is consumed relatively quickly in comparison with the components housed in the imaging unit, is provided in a reservoir in a separate replaceable unit in the form of a toner cartridge that feeds toner to the imaging unit.
It is important that the imaging unit is precisely aligned within the image forming device. If the imaging unit is misaligned, the photoconductive drum on the imaging unit may be misaligned relative to the media sheet or intermediate transfer member that receives toner from the photoconductive drum, which may result in print defects. If the imaging unit is misaligned, a toner inlet port on the imaging unit may not seal against a toner outlet port on the toner cartridge or intermediate toner delivery member potentially causing toner leakage. Further, one or more drive couplers on the imaging unit may not achieve proper mesh with corresponding drive couplers in the image forming device if the imaging unit is misaligned. The imaging unit must also be rigidly held in place after it is installed in the image forming device in order to prevent the positional alignment of the imaging unit from being disturbed during operation. The requirement for tight positional control must be balanced with the need to permit a user to easily load and unload the imaging unit into and out of the image forming device. Accordingly, it will be appreciated that precise alignment of the imaging unit and relatively simple insertion and removal of the imaging unit into and out of the image forming device is desired.
A replaceable imaging unit for use in an electrophotographic image forming device according to one example embodiment includes a housing having a top, a bottom, a front and a rear positioned between a first side and a second side of the housing. The housing includes a photoconductor unit positioned at the front of the housing. The photoconductor unit includes a rotatable photoconductive drum having a rotational axis that extends from the first side of the housing to the second side of the housing. The housing includes a developer unit having a reservoir for storing toner and a rotatable developer roll positioned to transfer toner from the reservoir to the photoconductive drum. A first alignment guide extends outward from the first side of the housing on the photoconductor unit and a second alignment guide extends outward from the second side of the housing on the photoconductor unit at the same height as the first alignment guide. The first and second alignment guides run parallel to each other along a front-to-rear dimension of the housing. Each of the first and second alignment guides includes a front contact member at a front end of said alignment guide and a rear contact member at a rear end of said alignment guide. The front contact members are positioned further outward sideways than the rear contact members. Bottom surfaces of the front and rear contact members are unobstructed to permit the bottom surfaces of the front and rear contact members to sit on top of corresponding guide rails in the image forming device to control a vertical position of the imaging unit during insertion of the imaging unit into the image forming device. In some embodiments, each of the front and rear contact members of the first and second alignment guides includes a roll that is rotatable relative to the housing. Some embodiments include a first blocking rib extending outward from the first side of the housing on the photoconductor unit and a second blocking rib extending outward from the second side of the housing on the photoconductor unit at the same height as the first blocking rib. The first and second blocking ribs are positioned at front portions of the first and second alignment guides directly rearward from the front contact members of the first and second alignment guides. Top surfaces of the first and second blocking ribs are positioned higher than rotational axes of the rolls of the front contact members of the first and second alignment guides.
A replaceable imaging unit for use in an electrophotographic image forming device according to another example embodiment includes a housing having a top, a bottom, a front and a rear positioned between a first side and a second side of the housing. The housing includes a photoconductor unit positioned at the front of the housing. The photoconductor unit includes a rotatable photoconductive drum having a rotational axis that extends from the first side of the housing to the second side of the housing. The housing includes a developer unit having a reservoir for storing toner and a rotatable developer roll positioned to transfer toner from the reservoir to the photoconductive drum. The housing includes a handle frame positioned at the rear of the housing and attached to the photoconductor unit. The handle frame includes a handle exposed for user engagement to assist with insertion and removal of the imaging unit into and out of the image forming device. A first alignment wing extends outward from the first side of the housing on the handle frame and a second alignment wing extends outward from the second side of the housing on the handle frame at the same height as the first alignment wing. The first and second alignment wings run parallel to each other along a front-to-rear dimension of the housing. Each of the first and second alignment wings includes an outer side surface that is unobstructed to permit the outer side surfaces to contact corresponding guides in the image forming device during insertion of the imaging unit into the image forming device. A first upstop extends outward from the first side of the housing on the handle frame at a rear end of the handle frame and a second upstop extends outward from the second side of the housing on the handle frame at the rear end of the handle frame at the same height as the first upstop. The first and second alignment wings lead rearward to the first and second upstops. The first and second upstops extend further outward sideways than the first and second alignment wings. A top portion of each of the first and second upstops is unobstructed to permit the top portions of the first and second upstops to contact the corresponding guides in the image forming device to limit upward travel of the handle frame during removal of the imaging unit from the image forming device. In some embodiments, each of the first and second alignment wings includes a tapered front portion that inclines outward sideways as the tapered front portion extends rearward. In some embodiments, each of the first and second alignment wings includes a trailing portion having a constant position in an axial dimension of the photoconductive drum. The tapered front portions of the first and second alignment wings lead rearward to the trailing portions of the first and second alignment wings.
In some embodiments, the photoconductor unit includes a drive coupler rotatably coupled to the photoconductive drum and exposed on the first side of the housing to engage a corresponding drive coupler in the image forming device when the imaging unit is installed in the image forming device. A lead-in guide is positioned on the first side of the housing immediately in front of the drive coupler of the photoconductor unit. The lead-in guide includes an inclined contact surface that inclines outward sideways as the inclined contact surface extends rearward toward the drive coupler of the photoconductor unit. The inclined contact surface is unobstructed to permit the corresponding drive coupler in the image forming device to contact the inclined contact surface during insertion of the imaging unit into the image forming device.
Some embodiments include an axial biasing surface on the first side of the housing on the photoconductor unit below the first alignment guide. The axial biasing surface includes a leading surface portion, a ramped surface portion and a trailing surface portion. The leading surface portion extends rearward from the front of the housing and leads rearward to the ramped surface portion. The ramped surface portion inclines outward sideways as the ramped surface portion extends rearward and leads rearward to the trailing surface portion. The trailing surface portion is positioned further outward sideways than the leading surface portion. The axial biasing surface is unobstructed to permit the axial biasing surface to directly receive an inward sideways biasing force from a corresponding biasing member in the image forming device to control a position of the imaging unit in the image forming device along an axial dimension of the photoconductive drum.
Some embodiments include a first foot and a second foot each formed integrally with a frame of the photoconductor unit. The first foot extends downward at the bottom of the housing on the first side of the housing and the second foot extends downward at the bottom of the housing on the second side of the housing. Bottom surfaces of the first and second feet are unobstructed to permit the bottom surfaces of the first and second feet to provide rotational stops to prevent the imaging unit from rotating about the rotational axis of the photoconductive drum when the imaging unit is installed in the image forming device.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present disclosure, and together with the description serve to explain the principles of the present disclosure.
In the following description, reference is made to the accompanying drawings where like numerals represent like elements. The embodiments are described in sufficient detail to enable those skilled in the art to practice the present disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and mechanical changes, etc., may be made without departing from the scope of the present disclosure. Examples merely typify possible variations. Portions and features of some embodiments may be included in or substituted for those of others. The following description, therefore, is not to be taken in a limiting sense and the scope of the present disclosure is defined only by the appended claims and their equivalents.
Referring now to the drawings and particularly to
In the example embodiment shown in
Controller 28 includes a processor unit and associated electronic memory 29. The processor may include one or more integrated circuits in the form of a microprocessor or central processing unit and may be formed as one or more Application-specific integrated circuits (ASICs). Memory 29 may be any volatile or non-volatile memory or combination thereof, such as, for example, random access memory (RAM), read only memory (ROM), flash memory and/or non-volatile RAM (NVRAM). Memory 29 may be in the form of a separate memory (e.g., RAM, ROM, and/or NVRAM), a hard drive, a CD or DVD drive, or any memory device convenient for use with controller 28. Controller 28 may be, for example, a combined printer and scanner controller.
In the example embodiment illustrated, controller 28 communicates with print engine 30 via a communications link 50. Controller 28 communicates with imaging unit 200 and processing circuitry 44 thereon via a communications link 51. Controller 28 communicates with toner cartridge 100 and processing circuitry 45 thereon via a communications link 52. Controller 28 communicates with a fuser 37 and processing circuitry 46 thereon via a communications link 53. Controller 28 communicates with media feed system 38 via a communications link 54. Controller 28 communicates with scanner system 40 via a communications link 55. User interface 36 is communicatively coupled to controller 28 via a communications link 56. Controller 28 processes print and scan data and operates print engine 30 during printing and scanner system 40 during scanning. Processing circuitry 44, 45, 46 may provide authentication functions, safety and operational interlocks, operating parameters and usage information related to imaging unit 200, toner cartridge 100 and fuser 37, respectively. Each of processing circuitry 44, 45, 46 includes a processor unit and associated electronic memory. As discussed above, the processor may include one or more integrated circuits in the form of a microprocessor or central processing unit and may be formed as one or more Application-specific integrated circuits (ASICs). The memory may be any volatile or non-volatile memory or combination thereof or any memory device convenient for use with processing circuitry 44, 45, 46.
Computer 24, which is optional, may be, for example, a personal computer, including electronic memory 60, such as RAM, ROM, and/or NVRAM, an input device 62, such as a keyboard and/or a mouse, and a display monitor 64. Computer 24 also includes a processor, input/output (I/O) interfaces, and may include at least one mass data storage device, such as a hard drive, a CD-ROM and/or a DVD unit (not shown). Computer 24 may also be a device capable of communicating with image forming device 22 other than a personal computer such as, for example, a tablet computer, a smartphone, or other electronic device.
In the example embodiment illustrated, computer 24 includes in its memory a software program including program instructions that function as an imaging driver 66, e.g., printer/scanner driver software, for image forming device 22, Imaging driver 66 is in communication with controller 28 of image forming device 22 via communications link 26. Imaging driver 66 facilitates communication between image forming device 22 and computer 24. One aspect of imaging driver 66 may be, for example, to provide formatted print data to image forming device 22, and more particularly to print engine 30, to print an image. Another aspect of imaging driver 66 may be, for example, to facilitate collection of scanned data from scanner system 40.
In some circumstances, it may be desirable to operate image forming device 22 in a standalone mode. In the standalone mode, image forming device 22 is capable of functioning without computer 24. Accordingly, all or a portion of imaging driver 66, or a similar driver, may be located in controller 28 of image forming device 22 so as to accommodate printing and/or scanning functionality when operating in the standalone mode.
Print engine 30 includes a laser scan unit (LSU) 31, toner cartridge 100, imaging unit 200 and fuser 37, all mounted within image forming device 22. Imaging unit 200 is removably mounted in image forming device 22 and includes a developer unit 202 that houses a toner reservoir and a toner development system. In one embodiment, the toner development system utilizes what is commonly referred to as a single component development system. In this embodiment, the toner development system includes a toner adder roll that provides toner from the toner reservoir to a developer roll. A doctor blade provides a metered uniform layer of toner on the surface of the developer roll. In another embodiment, the toner development system utilizes what is commonly referred to as a dual component development system. In this embodiment, toner in the toner reservoir of developer unit 202 is mixed with magnetic carrier beads. The magnetic carrier beads may be coated with a polymeric film to provide triboelectric properties to attract toner to the carrier beads as the toner and the magnetic carrier beads are mixed in the toner reservoir. In this embodiment, developer unit 202 includes a developer roll that attracts the magnetic carrier beads having toner thereon to the developer roll through the use of magnetic fields. Imaging unit 200 also includes a photoconductor unit (“PC unit”) 204 that houses a photoconductive drum and a waste toner removal system.
Toner cartridge 100 is removably mounted in imaging forming device 22 in a mating relationship with developer unit 202 of imaging unit 200. An outlet port on toner cartridge 100 communicates with an inlet port on developer unit 202 allowing toner to be periodically transferred from toner cartridge 100 to resupply the toner reservoir in developer unit 202.
The electrophotographic printing process is well known in the art and, therefore, is described briefly herein, During a printing operation, a charge roll in PC unit 204 electrically charges the outer surface of the photoconductive drum in PC unit 204 to a predetermined voltage. Laser scan unit 31 then discharges a selected portion of the outer surface of the photoconductive drum to create a latent image on the outer surface of the photoconductive drum. Toner is transferred from the toner reservoir in developer unit 202 to the latent image on the photoconductive drum by the developer roll to create a toned image on the outer surface of the photoconductive drum. The toned image is then transferred to a media sheet received by imaging unit 200 from media input tray 39 for punting. Toner may be transferred directly to the media sheet by the photoconductive drum or by an intermediate transfer member that receives the toner from the photoconductive drum. Toner remnants are removed from the photoconductive drum by the waste toner removal system. The toner image is bonded to the media sheet in fuser 37 and then sent to an output location or to one or more finishing options such as a duplexer, a stapler or a hole-punch.
Referring now to
Imaging unit 200 is shown according to one example embodiment in
Developer unit 202 includes a toner inlet port 220 on top 212 of housing 210 near side 215 that is positioned to receive toner from toner cartridge 100. Toner received by inlet port 220 is stored in the toner reservoir of developer unit 202. Developer unit 202 includes a rotatable developer roll 222 that is mated with a rotatable photoconductive drum (“PC drum”) 224 of PC unit 204. As discussed above, developer roll 222 transfers toner from the toner reservoir in developer unit 202 to the latent image on PC drum 224 to create a toned image on the surface of PC drum 224. Developer unit 202 may also include one or more toner agitators for mixing toner stored in the toner reservoir of developer unit 202 and may further include a toner adder roll for moving toner in the toner reservoir to the outer surface of developer roll 222. In the example embodiment illustrated, developer unit 202 includes a drive coupler 223 exposed on side 214 of housing 210. Drive coupler 223 mates with a corresponding drive coupler in image forming device 22 when imaging unit 200 is installed in image forming device 22 in order to receive rotational motion from an electric motor in image forming device 22. Drive coupler 223 is rotatably coupled to developer roll 222 via a drive train on developer unit 202 such that rotation of drive coupler 223 provides rotational motion to developer roll 222. Drive coupler 223 may also be rotatably coupled to other components of developer unit 202, such as a toner adder roll and/or various toner agitators of developer unit 202.
PC unit 204 includes a drive coupler 225 exposed on side 214 of housing 210. Drive coupler 225 mates with a corresponding drive coupler in image forming device 22 when imaging unit 200 is installed in image forming device 22 in order to receive rotational motion from an electric motor in image forming device 22. Drive coupler 225 is rotatably coupled to PC drum 224 such that rotation of drive coupler 225 provides rotational motion to PC drum 224. For example, in the embodiment illustrated, drive coupler 225 is positioned on an axial end of PC drum 224. A portion of the outer surface of PC drum 224 is exposed on bottom 213 of housing 210. Toner on the outer surface of PC drum 224 is transferred from the portion of the outer surface of PC drum 224 that is exposed on bottom 213 of housing 210 to a media sheet or intermediate transfer member during a print operation. A narrow slit 226 is formed between PC unit 204 and developer unit 202 at the top 212 of housing 210. Slit 226 permits a laser of laser scan unit 31 to discharge selected portions of the outer surface of PC drum 224 in order to create the latent image on the outer surface of PC drum 224. PC unit 204 also includes a rotatable charge roll in contact with the outer surface of PC drum 224 that charges the outer surface of PC drum 224 to a predetermined voltage. PC unit 204 also includes a waste toner removal system that may include a cleaner blade or roll that removes residual toner from the outer surface of PC drum 224. In the example embodiment illustrated, PC unit 204 includes a waste toner sump 229 positioned at the front 216 of housing 210. Waste toner sump 229 stores toner removed from PC drum 224 by the cleaner blade or roll.
Handle frame 206 includes a handle 228 exposed on housing 210 for user engagement to assist with insertion and removal of imaging unit 200 into and out of image forming device 22. Handle frame 206 may also include alignment features that aid in aligning toner cartridge 100 with imaging unit 200 during insertion of toner cartridge 100 into image forming device 22.
With reference back to
When imaging unit 200 is installed in image forming device 22, various interface features of imaging unit 200 must align with corresponding interface features on toner cartridge 100 and image forming device 22. For example, PC drum 224 must be precisely positioned relative to the media path or to an intermediate transfer member (depending on whether toner is transferred directly or indirectly from PC drum 224 to the media sheets) in order to avoid print defects. Inlet port 220 of developer unit 202 must be precisely aligned and mated with outlet port 118 of toner cartridge 100 in order to avoid toner leakage between toner cartridge 100 and developer unit 202. Drive coupler 223 of developer unit 202 and drive coupler 225 of PC unit 204 must align and mate with the corresponding drive couplers in image forming device 22 in order to reliably provide rotational motion to developer roll 222 and PC drum 224. Further, various electrical contacts of imaging unit 200 may mate with and contact corresponding electrical contacts in image forming device 22. The positions of these various interface points must be tightly controlled in order to ensure proper operation of imaging unit 200. Accordingly, imaging unit 200 includes various positioning features that guide imaging unit 200 during insertion into image forming device 22 and provide precise alignment of imaging unit 200 in the final installed position of imaging unit 200 in image forming device 22.
With reference back to
With reference to
With reference back to
In some embodiments, imaging unit 200 also includes a pair of engagement members 260, 262 positioned on opposite sides 214, 215 of housing 210. Each engagement member 260, 262 is positioned at a topmost portion of housing 210. In the embodiment illustrated, engagement members 260, 262 are positioned on frame 205 of PC unit 204. Engagement member 260 includes an angled front surface 261a that faces upward and forward and an angled rear surface 261b that faces upward and rearward. Similarly, engagement member 262 includes an angled front surface 263a that faces upward and forward and an angled rear surface 263b that faces upward and rearward. Angled front surfaces 261a, 263a extend from the front 216 of housing toward the rear 217 of housing 210. Angled rear surfaces 261b, 263b are positioned at a rear end of PC unit 204, proximate to developer unit 202. Engagement members 260, 262 are unobstructed from above allowing engagement members 260, 262 to receive a hold down force from a corresponding biasing member in image forming device 22 to retain imaging unit 200 in its final position in image forming device 22 as discussed in greater detail below.
Imaging unit 200 may also include a pair of blocking ribs 264, 266 positioned on opposite sides 214, 215 of housing 210. Specifically, blocking rib 264 extends outward from side 214 and blocking rib 266 extends outward from side 215. Blocking ribs 264, 266 are positioned on frame 205 of PC unit 204. Each blocking rib 264, 266 is positioned at a front portion of a respective alignment guide 230, 240 and is aligned in a side-to-side dimension (z-dimension of
In some embodiments, imaging unit 200 includes an axial biasing surface 270 positioned on side 214 of housing 210. Axial biasing surface 270 is positioned on frame 205 of PC unit 204, lower than alignment guide 230. Axial biasing surface 270 includes a leading surface portion 271 that extends rearward from the front 216 of housing 210. In the embodiment illustrated, leading surface portion 271 includes a planar surface on side 214 that is parallel to the front-to-rear dimension of housing 210, having a constant position in the side-to-side dimension of housing 210. Leading surface portion 271 leads rearward along the direction of insertion of imaging unit 200 into image forming device 22 to a ramped surface portion 272 of axial biasing surface 270. Ramped surface portion 272 inclines outward sideways relative to leading surface portion 271 as ramped surface portion 272 extends rearward. In the embodiment illustrated, ramped surface portion 272 includes a planar surface on side 214 that inclines outward sideways as the planar surface extends rearward. Ramped surface portion 272 leads rearward along the direction of insertion of imaging unit 200 into image forming device 22 to a trailing surface portion 273 of axial biasing surface 270. Trailing surface portion 273 is positioned further outward sideways than leading surface portion 271. In the embodiment illustrated, trailing surface portion 273 includes a planar surface on side 214 that is parallel to the front-to-rear dimension of housing 210 (parallel to leading surface portion 271), having a constant position in the side-to-side dimension of housing 210. Trailing surface portion 273 is positioned higher than rotational axis 224a of PC drum 224. Leading surface portion 271, ramped surface portion 272 and trailing surface portion 273 of axial biasing surface 270 are unobstructed from the side allowing axial biasing surface 270 to receive an inward sideways axial biasing force from a corresponding biasing member in image forming device 22 to align imaging unit 200 in the side-to-side dimension of housing 210 as discussed in greater detail below.
In some embodiments, handle frame 206 of imaging unit 200 includes a pair of alignment wings 280, 284 extending outward sideways in opposite directions. Specifically, alignment wing 280 extends outward sideways from side 214 and alignment wing 284 extends outward sideways from side 215. Alignment wings 280, 284 run parallel to each other along the front-to-rear dimension of housing 210. Alignment wings 280, 284 are positioned at the same height as each other on housing 210. Each alignment wing 280, 284 includes an outer side surface 281, 285 that is unobstructed allowing the outer side surface 281, 285 to contact a corresponding guide in image forming device 22 to aid in aligning handle frame 206 in the side-to-side dimension of housing 210 during insertion of imaging unit 200 into image forming device 22 as discussed in greater detail below. Each outer side surface 281, 285 of alignment wings 280, 284 includes a tapered front portion 282, 286 that inclines outward sideways as the tapered front portion 282, 286 extends rearward, Each tapered front portion 282, 286 leads rearward to a trailing portion 283, 287 of the outer side surface 281, 285. Each trailing portion 283, 287 is parallel to the front-to-rear dimension of housing 210, having a constant position in the side-to-side dimension of housing 210.
In some embodiments, handle frame 206 of imaging unit 200 also includes a pair of upstops 288, 289 extending outward sideways in opposite directions. Specifically, upstop 288 extends outward sideways from side 214 and upstop 289 extends outward sideways from side 215. Upstops 288, 289 are positioned at the same height as each other on housing 210. Upstops 288, 289 are positioned at a rear end of handle frame 206 with trailing portions 283, 287 of outer side surfaces 281, 285 of alignment wings 280, 284 leading rearward to upstops 288, 289. In the embodiment illustrated, upstops 288, 289 extend further outward sideways than alignment wings 280, 284. In the example embodiment illustrated, each upstop 288, 289 is formed as a rounded. projection from handle frame 206; however, other shapes and forms may be used as desired. A top portion of each upstop 288, 289 is unobstructed allowing upstops 288, 289 to contact a corresponding guide in image forming device 22 to limit the upward travel of handle frame 206 during removal of imaging unit 200 from image forming device 22 as discussed in greater detail below.
Imaging unit 200 may include a lead-in guide 290 positioned immediately in front of drive coupler 225 of PC drum 224 on side 214 of housing 210. Lead-in guide 290 includes an to inclined contact surface 292 that inclines outward sideways as contact surface 292 extends rearward toward drive coupler 225 of PC drum 224. In the embodiment illustrated, lead-in guide 290 also includes a contact surface 294 that is positioned directly rearward from contact surface 292. Contact surface 294 is parallel to the front-to-rear dimension of housing 210, having a constant position in the side-to-side dimension of housing 210. Contact surfaces 292, 294 of lead-in guide 290 are unobstructed allowing a drive coupler in image forming device 22 that provides rotational motion to drive coupler 225 to contact contact surfaces 292, 294 permitting contact surfaces 292, 294 of lead-in guide 290 to aid in aligning the drive coupler in image forming device 22 with drive coupler 225 as discussed in greater detail below.
In
As imaging unit 200 advances to the final position in image forming device 22, a trailing end of drive coupler 324 passes contact surface 294 of lead-in guide 290 and drive coupler 324 disengages from contact surface 294. When drive coupler 324 disengages from contact surface 294, drive coupler 324 moves in the direction of bias on drive coupler 324, toward side 214 of housing 210, and axially engages drive coupler 225 of PC drum 224 permitting drive coupler 324 to transfer rotational motion to drive coupler 225 of PC drum 224. The tight positional control of PC drum 224 by the V-blocks (such as V-block 322) also aids in preventing misalignment between drive coupler 324 and drive coupler 225 of PC drum 224 in order to ensure that drive coupler 324 meshes properly with drive coupler 225 of PC drum 224.
In the final position of imaging unit 200, biasing member 310 is in contact with angled rear surface 261b of engagement member 260 and a similar biasing member is in contact with angled rear surface 263b of engagement member 262. Each biasing member applies a hold-down force to angled rear surfaces 261b, 263b of engagement members 260, 262 that keeps bearings 227a, 227b of PC drum 224 pressed against the corresponding V-blocks so that imaging unit 200 does not drift rearward or upward away from the V-blocks during operation in order to maintain precise positioning of PC drum 224. As mentioned above, blocking ribs 264, 266 prevent a toner cartridge hold-down feature similar to biasing member 310 from applying a hold-down force to front contact members 232, 242 which could trap imaging unit 200 in image forming device 22 if imaging unit 200 is inadvertently installed along the insertion path for toner cartridge 100 instead of the proper insertion path for imaging unit 200.
In the final position of imaging unit 200, axial biasing member 312 is in contact with trailing surface portion 273 of axial biasing surface 270. Axial biasing member 312 applies an inward biasing force along the side-to-side dimension of housing 210 against trailing surface portion 273. When imaging unit 200 is in the final installed position in image forming device 22, the force from axial biasing member 312 presses an inner surface of frame 205 (
Accordingly, the positioning features of imaging unit 200 help control and guide imaging unit 200 during insertion into image forming device 22 and provide precise alignment of imaging unit 200 in the final installed position of imaging unit 200 in image forming device 22. The positioning features of imaging unit 200 precisely align the interface features of imaging unit 200 with corresponding interface features on toner cartridge 100 and image forming device 22 while also allowing a user to easily load and unload imaging unit 200 into and out of image forming device 22.
Although the example image forming device 22 discussed above includes one toner cartridge 100 and corresponding imaging unit 200, in the case of an image forming device configured to print in color, separate replaceable units may be used for each toner color needed. For example, in one embodiment, the image forming device includes four toner cartridges and four corresponding imaging units, each toner cartridge containing a particular toner color (e.g., black, cyan, yellow and magenta) and each imaging unit corresponding with one of the toner cartridges to permit color printing.
The foregoing description illustrates various aspects of the present disclosure. It is not intended to be exhaustive. Rather, it is chosen to illustrate the principles of the present disclosure and its practical application to enable one of ordinary skill in the art to utilize the present disclosure, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the present disclosure as determined by the appended claims. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.
This patent application is a continuation application of U.S. patent application Ser. No. 15/722,075, filed Oct. 2, 2017, entitled “Imaging Unit Having Positional Control Features for Use in an Electrophotographic Image Forming Device,” which claims priority to U.S. Provisional patent application Ser. No. 62/520,118, filed Jun. 15, 2017, entitled “Imaging Unit Having Positional Control Features For Use in an Electrophotographic Image Forming Device,” the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
10175643 | Carpenter | Jan 2019 | B1 |
20030049046 | Okabe | Mar 2003 | A1 |
20050191090 | Nishimura | Sep 2005 | A1 |
20070098439 | Nakada | May 2007 | A1 |
20140205316 | Lee | Jul 2014 | A1 |
20170075292 | Nagae | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190101862 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
62520118 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15722075 | Oct 2017 | US |
Child | 16207782 | US |