This application claims the benefit of Japanese Priority Patent Application JP 2017-166541 filed Aug. 31, 2017, the entire contents of which are incorporated herein by reference.
The present disclosure relates to an imaging apparatus and an electronic apparatus, and more particularly, to an imaging apparatus and an electronic apparatus that are capable of realizing downsizing and reduction in height of the apparatus structure and performing imaging while suppressing occurrence of flare and ghost.
In recent years, in a solid-state imaging element used in a camera-equipped mobile terminal apparatus, a digital still camera, and the like, the number of pixels in a camera has been increased and the camera has been downsized and reduced in height.
Along with the increase in number of pixels and the downsizing of the camera, a distance between the lens and the solid-state imaging element in the optical axis is shorter. Thus, it is general to arrange an infrared cut filter in the periphery of the lens.
For example, a technology of forming a lens in a lowermost layer of a lens group including a plurality of lenses on the solid-state imaging element, to thereby downsize the solid-state imaging element has been proposed (see Patent Literature 1).
However, in the case where the lens in the lowermost layer is formed on the solid-state imaging element, it contributes to the downsizing and reduction in height of the apparatus structure, though the distance between the infrared cut filter and the lens is shorter and thus, flare and ghost due to internal diffused reflection of reflection of light occur.
The present disclosure has been made in view of the above circumstances to realize downsizing and reduction in height and suppress occurrence of flare and ghost particularly in a solid-state imaging element.
In accordance with an aspect of the present disclosure, there is provided an imaging apparatus including an imaging structure including an imaging element that converts received light into electric charge; a transparent substrate disposed on the imaging element; at least one lens disposed on the transparent substrate; and an air cavity between the transparent substrate and the at least one lens.
The at least one lens includes a first surface and a second surface opposite to the first surface, and the first surface includes a concave portion.
The second surface includes at least one protrusion fixed to the transparent substrate such that the air cavity is defined between the transparent substrate and the at least one lens.
The at least one protrusion is fixed to the transparent substrate by an adhesive.
The imaging apparatus may further include a circuit substrate including a circuit; a spacer including at least one fixing portion that guides the imaging structure to a desired position on the circuit substrate when the imaging structure is mounted on the circuit substrate; and a light absorbing material disposed on at least one side surface of the imaging structure such that that light absorbing material is between the imaging structure and the at least one fixing portion.
The at least one side surface of the imaging structure includes a side surface of the at least one lens.
The light absorbing material is disposed on the first surface of the at least one lens.
The at least one fixing portion includes four fixing portions that guide the imaging structure to the desired position.
The four fixing portions are defined by a cavity in the spacer and have shapes that guide respective corners of the imaging structure to the desired position, and the at least one side surface of the imaging structure includes side surfaces at locations that correspond to the respective corners.
The light absorbing material is disposed on an entirety of the side surfaces at the locations that correspond to the respective corners.
The imaging structure further comprises an infrared cut filter between the transparent substrate and the at least one lens.
The infrared cut filter is adhered to the second surface of the at least one lens such that the air cavity is between the infrared cut filter and the transparent substrate.
The at least one lens includes a plurality of lenses.
The imaging structure further comprises a lens stack including a plurality of lenses, wherein the lens stack is spaced apart from the at least one lens; and an actuator that supports the lens stack.
The transparent substrate is an infrared cut filter.
The at least one lens includes a first surface and a second surface opposite to the first surface, the first surface includes a concave portion, and the second surface includes at least one protrusion fixed to the infrared cut filter such that the air cavity is defined between the infrared cut filter and the at least one lens. The at least one protrusion is at a peripheral of the at least one lens. The at least one protrusion is fixed to the infrared cut filter at a peripheral of the infrared cut filter.
The displacement between the incident position of the incident light entering the solid-state imaging element and the incident position of the totally-reflected and turned-back component may be substantially constant, the totally-reflected and turned-back component re-entering the solid-state imaging element in such a manner that the incident light is totally reflected on the imaging surface of the solid-state imaging element and the resulting totally-reflected component of the incident light is reflected at the boundary with the cavity layer.
In accordance with an aspect of the present disclosure, there is provided an electronic apparatus including a signal processing unit; and an imaging apparatus. The imaging apparatus includes an imaging structure including an imaging element that converts received light into electric charge; a transparent substrate disposed on the imaging element; at least one lens disposed on the transparent substrate; and an air cavity between the transparent substrate and the at least one lens. The at least one lens includes a first surface and a second surface opposite to the first surface, the first surface includes a concave portion, and the second surface includes at least one protrusion fixed to the transparent substrate such that the air cavity is defined between the transparent substrate and the at least one lens.
In accordance with an aspect of the present disclosure, there is provided a manufacturing method for an imaging apparatus including
a solid-state imaging element configured to photoelectrically convert received light into an electric signal corresponding to an amount of the received light,
a lower layer lens that is a part of a lens group including a plurality of lenses configured to condense the received light, the lower layer lens being placed at a position in front of the solid-state imaging element, the position being closer to the solid-state imaging element than an upper layer lens that is a different part of the lens group, and
a cavity layer including an air layer, the cavity layer being formed between the lower layer lens and the solid-state imaging element, the manufacturing method including:
fixing the solid-state imaging element to a circuit substrate; and
mounting the lower layer lens on the solid-state imaging element such that the cavity layer is formed.
In an aspect of the present disclosure, received light is photoelectrically converted by a solid-state imaging element into an electric signal corresponding to an amount of the received light. A lower layer lens and a cavity layer are formed. The lower layer lens is a part of a lens group including a plurality of lenses configured to condense the received light, the lower layer lens being placed at a position in front of the solid-state imaging element, the position being closer to the solid-state imaging element than an upper layer lens that is a different part of the lens group. The cavity layer includes an air layer, the cavity layer being formed between the lower layer lens and the solid-state imaging element.
In accordance with an aspect of the present disclosure, it is possible to realize downsizing and reduction in height of an apparatus structure and suppress occurrence of flare and ghost particularly in a solid-state imaging element.
Hereinafter, favorable embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. It should be noted that the components having substantially the same functional configuration will be denoted by the same reference symbols, and duplicate description will be omitted herein and in the drawings.
Further, the description will be given in the following order.
1. First Embodiment
2. Second Embodiment
3. Third Embodiment
4. Fourth Embodiment
5. Fifth Embodiment
6. Sixth Embodiment
7. Seventh Embodiment
8. Eighth Embodiment
9. Regarding Configuration of CSP Solid-State Imaging Element
10. Example of Application to Electronic Apparatuses
11. Usage Example of Imaging Apparatus
12. Example of Application to Internal Information Acquisition System
13. Example of Application to Endoscopic Operation System
14. Example of Application to Movable Object
15. Configuration Example of Stacked-Type Solid-State Imaging Apparatus to Which Technology According to Present Disclosure Can Be Applied
The imaging apparatus illustrated in
The CSP (Chip Size Package) solid-state imaging element 20 illustrated in
In more detail, the solid-state imaging element 1 is, for example, a CCD (Charged Coupled Devices) image sensor or a CMOS (Complementary Metal Oxide Semi-conductor) image sensor. The solid-state imaging element 1 generates charges by photoelectrically converting, according to the amount of light, light entering the solid-state imaging element 1 via the lens 6 constituted of the integrated lenses 61 and 62, and outputs a pixel signal including an electric signal corresponding thereto. The solid-state imaging element 1 and the glass substrate 2 are adhered to each other by a transparent adhesive 31. The lens 62 in the lowermost layer includes a convex portion 62a protruding in a lower direction of the figure in a peripheral portion, and is adhered to the glass substrate 2 by an adhesive 33. Further, the infrared cut filter 4 that is a filter that cuts infrared light is adhered by a transparent adhesive 32 at the bottom of the lens 62 in the lowermost layer in the figure, on a rear side in the light transmission direction, excluding the convex portion 62a in the peripheral portion. A cavity layer 5 is provided between the infrared cut filter 4 and the glass substrate 2. Specifically, excluding the convex portion 62a provided in the peripheral portion of the lens 62, the lens 62, the adhesive 32, the infrared cut filter 4, the cavity layer 5, the glass substrate 2, the adhesive 31, and the solid-state imaging element 1 are stacked in the stated order from above in the figure.
Since the CSP solid-state imaging element 20 is configured as illustrated in
When regarding the two groups including the lenses 61 and 62 constituting the lens 6 as one optical system, the lens 61 constitutes one of the two groups, and includes one or more lenses for condensing object light on the imaging surface of the solid-state imaging element 1.
The actuator 8 has at least one of functions of an autofocus function and a camera shake correction function, i.e., drives the lens 61 in the vertical direction and the horizontal direction in
The circuit substrate 7 outputs the electric signal of the CSP solid-state imaging element 20 to the outside. The spacer 10 is fixed by being connected to a fixing agent (or light absorbing material) 13 formed of, for example, black resin that absorbs light from the circuit substrate 7 and the CSP solid-state imaging element 20. Further, the spacer 10 fixes the lens 61 and the actuator 8 by mounting the actuator 8 on the upper surface part thereof illustrated in
On the circuit substrate 7 and the spacer 10, semiconductor components 12 such as a capacitor and an actuator control LSI (Large-Scale Integration) necessary for driving the solid-state imaging element 1 and the actuator 8 of the CSP solid-state imaging element 20 are mounted. Here, it should be understood that a collection of various elements in
Further, as illustrated in
Note that the fixing portions 11-1 to 11-4 are formed to have a size that slight space is generated between the fixing portions 11-1 to 11-4 and the CSP solid-state imaging element 20 in the range in which the CSP solid-state imaging element 20 is allowed to intersect with the fixing portions 11-1 to 11-4 when the CSP solid-state imaging element 20 is placed at an appropriate position of the opening of the spacer 10. However, the fixing portions 11-1 to 11-4 have a structure for suppressing inclination and displacement of the CSP solid-state imaging element 20 due to warpage, distortion, or contraction thereof by coming into contact with the CSP solid-state imaging element 20 to guide the CSP solid-state imaging element 20 to an appropriate position when warpage, distortion, contraction, or the like of the CSP solid-state imaging element 20 is about to occur.
Therefore, by placing the CSP solid-state imaging element 20 on the spacer 10 so that the four corners are fitted into the fixing portions 11-1 to 11-4, the CSP solid-state imaging element 20 can be guided to and placed at an appropriate position on the circuit substrate 7 by the fixing portions 11-1 to 11-4, under the action of gravity by its own weight.
Further, after the CSP solid-state imaging element 20 is guided to and placed at an appropriate position on the circuit substrate 7, the position of the CSP solid-state imaging element 20 is not displaced even when injecting the fixing agent 13 into space between the CSP solid-state imaging element 20 and the spacer 10. Therefore, even when, for example, the fixing agent 13 is deformed before the fixing agent 13 is dried and fixed (cured), it is possible to suppress distortion, warpage, and inclination of the CSP solid-state imaging element 20 with respect to the circuit substrate 7.
Note that the spacer 10 may have a circuit configuration similar to that of the circuit substrate 7. Further, it is desirable that the material of the circuit substrate 7 is a material similar to (having a linear expansion coefficient similar to that of) silicon that is the material of the solid-state imaging element 1, or a material having a low elastic modulus lower than a predetermined elastic modulus.
Further, the actuator 8 may have at least one of an autofocus function and a camera shake correction function, or may be a fixed-focal lens holder.
Further, the autofocus function and the camera shake correction function may be realized by means other than the actuator.
A connector 9 externally outputs an image signal output by the solid-state imaging element 1, via the circuit substrate 7. The connector 9 is connected to an external terminal 23, and outputs the image signal to a signal processing unit 21 via a cable 22. The signal processing unit 21 corrects the image signal in a manner that depends on needs, converts the image signal into a predetermined compression format, and outputs the converted image signal.
<Example in Case where Infrared Cut Filter is Provided in Upper Layer Lens and Cavity Layer is not Provided>
For describing effects in the imaging apparatus illustrated in
In the case where the infrared cut filter 4 is provided on the side of the upper layer lens 61 and the cavity layer 5 is not provided, a configuration illustrated in the upper left part of
Here, it is assumed that the lens 62, the glass substrate 2, and the adhesive 31 all have an identical refractive index. Then, it is obvious that the refractive index of the solid-state imaging element 1 is higher than the refractive index of the lens 62, the glass substrate 2, and the adhesive 31.
Thus, as illustrated in the lower left part of
By the way, the thickness of the lens 62 concentrically varies in a manner that depends on a distance from the central position of the lens 62. Therefore, in a manner that depends on an incident position of incident light from the central position of the lens 62, an incident position of a corresponding totally-reflected and turned-back component varies.
In more detail, as illustrated in the lower left part of
On the other hand, when incident light L11 enters the solid-state imaging element 1, part thereof is reflected as a totally-reflected component RF11, is reflected at the boundary between the lens 62 and the air layer, and re-enters the solid-state imaging element 1 as a totally-reflected and turned-back component RF12, for example.
Specifically, regarding a distance W1 between an incident position of the incident light L1 and a position of re-incidence of light (second-incident position) as the totally-reflected and turned-back component RF2 and a distance W2 between an incident position of the incident light L11 and a second-incident position of the totally-reflected and turned-back component RF12, the distance W2 is larger than the distance W1. Therefore, the captured image formed by the incident light L1 and the totally-reflected and turned-back component RF2 is, for example, an image P1. Meanwhile, the captured image formed by the incident light L11 and the totally-reflected and turned-back component RF12 is, for example, an image P2. As a result, the size of an image of an object in the image P1 and the size of an image of an object in the image P2 are different due to displacements generated with respect to an identical image.
Specifically, regarding an image generated by the totally-reflected component RF1 and the totally-reflected and turned-back component RF2 and an image generated by the totally-reflected component RF11 and the totally-reflected and turned-back component RF12, displacement widths between the generated images are different due to light-path differences thereof.
Therefore, for correcting the displacement of the image generated by the totally-reflected and turned-back component included in the captured image, the signal processing unit 21 needs to perform different types of processing in a manner that depends on the lens shape and the distance from the central position of the lens. However, the lens shape and the correction processing by the signal processing unit 21 considering variations in the lens shape and the like can result in complicated correction-related processing and an increase in processing time.
Further, as illustrated in the upper right part of
As a result, for example, as shown in an image P11, reflection images RF31 and RF32 are generated by re-incidence at the focal points RFP2 and RFP3, with respect to an image formed by incidence at the original focal point RFP1.
In addition, as illustrated in the lower right part of
<Effect of Configuration in Which Infrared Cut Filter of Imaging Apparatus Illustrated in
Next, an effect of the configuration in the imaging apparatus illustrated in
By providing a cavity layer (gap) 5 between the glass substrate 2 and the infrared cut filter 4 adhered by the adhesive 31 to the surface of the lens 62 in the lowermost layer, on the lower side in the figure, in the imaging apparatus illustrated in
Due to this cavity layer 5 including the air layer, the totally-reflected component is reflected as the totally-reflected and turned-back component at the boundary between the cavity layer 5 including the air layer and the glass substrate 2, and re-enters the solid-state imaging element 1.
For example, as illustrated in the upper left part of
Further, when incident light L61 far from the central position of the lens 62 enters the solid-state imaging element 1, part thereof is reflected as a totally-reflected component RF61, is reflected at the boundary between the lens 62 and the cavity layer 5 including the air layer, and re-enters the solid-state imaging element 1 as a totally-reflected and turned-back component RF62, for example.
Regarding a distance W11 between an incident position of the incident light L51 and a second-incident position of the totally-reflected and turned-back component RF52 and a distance W12 between an incident position of the incident light L61 and a second-incident position of the totally-reflected and turned-back component RF62, the light paths are substantially identical, and hence the displacements of generated images are substantially identical.
Therefore, the captured image formed by the incident light L51 and the totally-reflected and turned-back component RF52 is, for example, an image P31. Meanwhile, the captured image formed by the incident light L61 and the totally-reflected and turned-back component RF62 is, for example, an image P32. As a result, the displacements generated with respect to the identical image are substantially identical in the image P31 and the image P32.
On the other hand, for example, as illustrated in the lower left part of
Further, when incident light L81 far from the central position of the lens 62 enters the solid-state imaging element 1, part thereof is reflected as a totally-reflected component RF81, is reflected at the boundary between the lens 62 and the cavity layer 5 including the air layer, and re-enters the solid-state imaging element 1 as a totally-reflected and turned-back component RF82, for example.
Regarding a distance W21 between an incident position of the incident light L71 and a second-incident position of the totally-reflected and turned-back component RF72 and a distance W22 between an incident position of the incident light L81 and a second-incident position of the totally-reflected and turned-back component RF82, the light paths are substantially identical, and hence the displacements of generated images are substantially identical.
Therefore, the captured image formed by the incident light L71 and the totally-reflected and turned-back component RF72 is, for example, an image P51. Meanwhile, the captured image formed by the incident light L81 and the totally-reflected and turned-back component RF82 is, for example, an image P52. As a result, the displacements generated with respect to the identical image are substantially identical in the image P51 and the image P52.
Specifically, the totally-reflected component is turned back at the boundary with the cavity layer 5 including the air layer on the glass substrate 2, and re-enters the solid-state imaging element 1 as the totally-reflected and turned-back component. The difference between the incident light to the solid-state imaging element 1 and the totally-reflected and turned-back component becomes a constant displacement in the imaging surface of the solid-state imaging element. Therefore, the difference between the incident light to the solid-state imaging element 1 and the totally-reflected and turned-back component is substantially constant in the imaging surface of the solid-state imaging element 1. Thus, the processing load related to the correction of the signal processing unit 21 can be reduced.
Further, as illustrated in the upper left part and the lower left part of
Specifically, as the thickness of the glass substrate 2 becomes smaller, i.e., as the light path difference between the totally-reflected and turned-back component and the totally-reflected component becomes smaller, it is possible to reduce the distance that is the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component, it is difficult to see the displacement of the image, and the processing load related to the correction of the signal processing unit 21 can be reduced. Therefore, if the thickness of the glass substrate 2 can be reduced such that the displacement of the image is sufficiently smaller than a predetermined value, it is also possible to omit the correction processing by the signal processing unit 21 in a manner that depends on needs.
In addition, as illustrated in the upper right part of
Further, as illustrated in the lower right part of
<Effect of Suppressing Occurrence of Flare in Imaging Apparatus Illustrated in
Next, an effect of suppressing occurrence of a flare in the imaging apparatus illustrated in
Further, by using the fixing agent 13 having black color or the like, which absorbs light, to fill the space up to the spacer 10 while covering the entire periphery of the side surface of the CSP solid-state imaging element 20, even in the case where incident light is reflected on the spacer 10, the reflected light is absorbed, so that the reflection is suppressed. As a result, it is possible to suppress occurrence of a flare phenomenon due to diffused reflection of light from the spacer 10. Note that it is desirable to use, as the fixing agent 13 formed of a light absorbing material such as black resin that absorbs light, one having a reflectance of not more than 5%, for example.
Note that in the imaging apparatus illustrated in
Specifically, a mask processing of applying a mask formed of a black light absorbing material to the surfaces of the fixing portions 11 of the spacer 10 for correcting the inclination of the glass substrate and the solid-state imaging element may be performed. With this, the influence due to the flare phenomenon is reduced.
An example in which the fixing agent 13 formed of a light absorbing material such as black resin that absorbs light is provided so as to cover the entire periphery of the side surface of the CSP solid-state imaging element 20 or a mask formed of a black light absorbing material that absorbs light is applied to the walls (surfaces) of the fixing portions 11 has been described. However, in the imaging apparatus illustrated in
Specifically, as illustrated in the upper left part of
Specifically, a light beam from the lens 62 that enters the effective pixel area Z101 generally enters pixels in the effective pixel area Z101 of the CSP solid-state imaging element 20 at an acute angle from the outside, which may cause a flare phenomenon to occur. In this regard, as illustrated in the left part of
Note that the size of the mask area Z102 surrounding the outer peripheral portion of the lens 62 in the lowermost layer is calculated on the basis of design values of the upper layer lens 61 and the microlens of the pixel of the CSP solid-state imaging element 20.
Further, the mask area Z102 including the periphery of the side surface of the CSP solid-state imaging element 20 and the outer peripheral portion of the lens 62 may include the mask 81 formed of, for example, not the fixing agent 13 but a black light absorbing material as illustrated in the right part of
Further, as illustrated in the left part of
Meanwhile, in the case of applying the fixing agent 13 formed of a light absorbing material such as black resin to the area up to the mask area Z102 of the lens 62 in the lowermost layer with high accuracy by a coating apparatus at the time of production of a solid-state imaging apparatus, there is a possibility that the coating apparatus becomes expensive or a high degree of control is necessary, which increases the cost in any case.
In this regard, as illustrated in the right part of
Note that the mask 81 may be applied directly to the lens 62 itself in the lowermost layer before the lens 62 is formed in the CSP solid-state imaging element 20. Alternatively, the mask 81 may be applied to the lens 62 in the lowermost layer after the lens 62 is formed in the CSP solid-state imaging element 20.
<Manufacturing Method for Imaging Apparatus>
Next, a manufacturing method for the imaging apparatus illustrated in
In Step 11, the CSP solid-state imaging element 20 is mounted on the circuit substrate 7.
In Step S12, the lens 62 to which the infrared cut filter 4 is adhered by the adhesive 32 is adhered to and mounted on the CSP solid-state imaging element 20 via the adhesive 33 applied to the convex portion 62a. Specifically, with this processing, the lens 62 including the infrared cut filter 4 is mounted on the CSP solid-state imaging element 20 via the cavity layer 5.
In Step S13, the spacer 10 is mounted on the circuit substrate 7 by an adhesive in the state where the four corners of the CSP solid-state imaging element 20 on which the lens 62 including the infrared cut filter 4 is mounted are fitted into the fixing portions 11-1 to 11-4 of the spacer 10 so as to be guided to appropriate positions on the circuit substrate 7. As a result, the CSP solid-state imaging element 20 is guided by the fixing portions 11-1 to 11-4 and placed at an appropriate position on the circuit substrate 7 where electrical connection is possible, under the action of gravity by its own weight, even on the thin circuit substrate 7 in which deflection and the like are likely to occur.
In Step S14, the fixing agent 13 formed of a light absorbing material such as black resin that absorbs light for suppressing reflection of light from the side (periphery of the side surface) is injected into space between the CSP solid-state imaging element 20 and the spacer 10 in order to suppress a flare phenomenon due to diffused reflection of light. In Step S15, the fixing agent 13 is cured (fixed). Note that the fixing agent 13 is applied to the area from the bottom portion of the CSP solid-state imaging element 20 to the outer peripheral portion of the lens 62 to suppress reflection of light from the side (periphery of the side surface). As a result, the CSP solid-state imaging element 20, the spacer 10, and the circuit substrate 7 are fixed via the fixing agent 13. Since the state where the CSP solid-state imaging element 20 is placed at an appropriate position by the fixing portions 11-1 to 11-4 is kept until the fixing agent 13 is fixed after the fixing agent 13 is injected, the CSP solid-state imaging element 20 is appropriately fixed without causing distortion, warpage, and inclination to occur.
In Step S16, the actuator 8 is mounted on the spacer 10.
In the case of using the mask 81, it is necessary to perform a process of applying the mask 81 to the walls (surfaces) of the fixing portions 11 in advance.
Further, in the case of applying the mask 81 to the outer peripheral portion of the lens 62 in the lowermost layer, it is necessary to perform a process of applying the mask 81 to the outer peripheral portion of the lens 62 in the lowermost layer.
By the series of manufacturing methods described above, it is possible to fix the CSP solid-state imaging element 20 by the fixing agent 13 in the state where the CSP solid-state imaging element 20 is placed at an appropriate position on the thin circuit substrate 7 in which deflection is likely to occur.
Further, the lens 62 including the infrared cut filter 4 is formed in the state where the cavity layer 5 including the air layer is formed in front of the CSP solid-state imaging element. Therefore, the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component becomes substantially identical irrespective of the thickness of the lens 62, i.e., irrespective of the distance from the central position of the lens 62. Therefore, the processing load in correcting the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component by the signal processing unit 21 can be reduced, and high-speed, lower-power processing can be realized.
Note that, by reducing the thickness of the glass substrate 2, the displacement between the incident light and the totally-reflected and turned-back component can be made smaller. Therefore, the processing load of the signal processing unit 21 can be further reduced. Further, if the thickness of the glass substrate 2 can be adjusted such that the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component is made extremely small, the correction processing for the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component in the signal processing unit 21 may be omitted.
Further, it is possible to suppress deterioration of the yield and optical performance of the imaging apparatus, and realize a high-performance, small-sized, and thin imaging apparatus capable of suppressing a flare phenomenon due to diffused reflection of light.
Next, imaging processing by the imaging apparatus illustrated in
In Step S31, the CSP solid-state imaging element 20 generates an image signal formed of pixel signals corresponding to an amount of incident light entering via the lens 61, the lens 62, the adhesive 33, the infrared cut filter 4, and the cavity layer 5 including the air layer, which is adjusted by the actuator 8 to a predetermined focal point position or subjected to shake correction, and outputs the generated image signal to the signal processing unit 21 via the connector 9, the terminal 23, and the cable 22.
In Step S32, the signal processing unit 21 performs correction processing and encoding processing on the image signal supplied from the CSP solid-state imaging element 20, and externally outputs the image signal.
At this time, as described with reference to
Note that the CSP solid-state imaging element 20 illustrated in
The example in which the infrared cut filter 4 is adhered to the lens 62 by the transparent adhesive 32 has been described above. However, by sandwiching the infrared cut filter 4 between the glass substrate 2 and the solid-state imaging element 1, the inexpensive infrared cut filter 4 may be used.
On the imaging apparatus illustrated in
With such a configuration, even when using the inexpensive infrared cut filter 4 having relatively large warpage and distortion, by sandwiching the infrared cut filter 4 between the glass substrate 2 and the solid-state imaging element 1 having small warpage and distortion, warpage and distortion of the inexpensive infrared cut filter 4 can be physically suppressed. Therefore, it is possible to realize a small-sized and thin imaging apparatus having small optical warpage, distortion, and inclination at low cost, and suppress a flare phenomenon and a ghost phenomenon due to diffused reflection of light.
Further, by forming the cavity layer 5 on the front surface of the glass substrate 2, the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component, which depends on the distance from the central position of the lens 62, can be made substantially constant. Therefore, the processing load of the signal processing unit 21 can be reduced.
The example in which the cost is reduced by sandwiching the infrared cut filter 4 between the glass substrate 2 and the solid-state imaging element 1 has been described above. However, instead of the infrared cut filter 4, a material similar to the glass substrate 2, which can reduce infrared light, may be used.
Specifically, the glass substrate 2 serving as a key component of the imaging apparatus illustrated in
With such a configuration, since it is possible to suppress warpage and distortion without using the expensive infrared cut filter 4 having small warpage and distortion, it is possible to realize a small-sized and thin imaging apparatus having small optical warpage, distortion, and inclination at low cost, and suppress a flare phenomenon due to diffused reflection of light.
Further, by forming the cavity layer 5 on the front surface of the infrared cut filter 4, the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component, which depends on the distance from the central position of the lens 62, can be made substantially constant. Therefore, the processing load of the signal processing unit 21 can be reduced.
Note that the CSP solid-state imaging element 20 in the imaging apparatus illustrated in
In the configuration of the CSP solid-state imaging element 20, the lens 62 in the lowermost layer may be formed to have two or more lenses.
Note that, in the case of using a coating apparatus capable of applying the fixing agent 13 formed of a light absorbing material such as black resin or the mask 81 formed of a black light absorbing material to the mask area Z102 (
In this regard, in the imaging apparatus illustrated in
Further, by forming the cavity layer 5 on the front surface of the glass substrate 2, the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component, which depends on the distance from the central position of the lens 62, can be made substantially constant. Therefore, the processing load of the signal processing unit 21 can be reduced.
Note that the lens 111 in the lowermost layer may be painted black in advance, or the lens 111 in the lowermost layer may be formed in the CSP solid-state imaging element 20 before the lens 111 in the lowermost layer is painted black. Further, the configuration of the lens 111 in the lowermost layer only needs to include one or more lenses, and may, of course, include a lens group consisting of two or more lenses.
It should be noted that, in the case where the periphery of the center of the lens 111 is lower than the outer peripheral portion thereof, there is a possibility that the applied fixing agent 13 flows toward the center by the action of gravity before being dried, which may narrow the effective pixel area Z101. In this regard, in the case where the periphery of the center of the lens 111 is lower than the outer peripheral portion thereof, it is desirable that the mask 81 is formed by performing mask processing on the mask area Z102.
Further, as illustrated in
The example in which the lens 62 in the lowermost layer is formed to have two or more lenses has been described above. However, the mask 81 formed of black resin and the like may be formed in an area of the lens 62, which corresponds to the mask area Z102 in
In the imaging apparatus illustrated in
Specifically, in the imaging apparatus illustrated in
Further, by forming the cavity layer 5 on the front surface of the glass substrate 2, the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component, which depends on the distance from the central position of the lens 62, can be made substantially constant. Therefore, the processing load of the signal processing unit 21 can be reduced.
In recent years, it is known that the shape of the circuit substrate 7 of the imaging apparatus is changed for each product due to diversification of camera products on the market. In this regard, as illustrated in
Further, the configuration example in which the fixing portions 11-1 to 11-4 are provided at positions on the spacer 10 so as to guide the four corners of the CSP solid-state imaging element 20 to appropriate positions has been described above. However, the fixing portions 11-1 to 11-4 may be provided at other positions.
Specifically, the fixing portions 11-11 to 11-14 are provided on the spacer 10 so as to guide the periphery of the central portions of the four sides of the CSP solid-state imaging element 20 to appropriate positions. Along with this, the fixing agent 13 is injected into the periphery of the four corners of the CSP solid-state imaging element 20, and fixed to the spacer 10.
As described above, by providing the fixing portions 11 so as to guide the four sides of the CSP solid-state imaging element 20 to appropriate positions, it is possible to place the CSP solid-state imaging element 20 at an appropriate position on the circuit substrate 7 with high accuracy.
The arrangement of the fixing portions 11 is not limited to the above. For example, as illustrated in the uppermost part of
Similarly, as illustrated in the second part from the top of
Even in the case where the fixing portions 11 for guiding all of the four sides of the CSP solid-state imaging element 20 to appropriate positions are not used, by guiding a part of the CSP solid-state imaging element 20 to an appropriate position, it is possible to place the CSP solid-state imaging element 20 at an appropriate position with high accuracy as compared with the case where the fixing portions 11 are not provided.
For example, as illustrated in the second part from the bottom of
Further, for example, as illustrated in the lowermost part of
Specifically, by providing the fixing portions 11 so as to guide at least two opposite sides of the CSP solid-state imaging element 20 having a rectangular shape to appropriate positions, it is possible to improve the accuracy of placing the CSP solid-state imaging element 20.
Note that, although, in the imaging apparatus illustrated in
As a result, also in the imaging apparatus illustrated in
Hereinabove, in the case where the lens 62, the infrared cut filter 4, the cavity layer 5, the glass substrate 2, and the solid-state imaging element 1 are arranged in the stated order with respect to the incident direction of the incident light, the infrared cut filter 4 is adhered to the lens 62 by the adhesive 32 as illustrated in
In the imaging apparatus illustrated in
In
Further, by forming the cavity layer 5 on the front surface of the infrared cut filter 4 with respect to the incident direction of the incident light, the displacement between the incident position of the incident light and the incident position of the totally-reflected and turned-back component, which depends on the distance from the central position of the lens 62, can be made substantially constant. Therefore, the processing load of the signal processing unit 21 can be reduced. It should be noted that, in
The example in which the cavity layer 5 is formed between the lens 62 and the infrared cut filter 4 has been described above. However, if it is difficult to provide the convex portion 62a in forming the lens 62, a spacer corresponding to the convex portion 62a may be additionally provided.
Specifically, in the imaging apparatus illustrated in
In more detail, the lens 62 is not provided with the convex portion 62a. Therefore, the upper surface of the spacer 131 in the figure is adhered to the peripheral portion of the lower surface of the lens 62 in the figure by the adhesive 33. Further, the lower surface of the spacer 131 in the figure is adhered to the peripheral portion of the glass substrate 2 by an adhesive 36. In addition, as illustrated in the right part of
Among the configuration of the CSP solid-state imaging element 20, the connection portion of the circuit substrate 7 may be any of a BGA (Ball Grid Array) terminal 151 illustrated in the upper left part of
Further, for the glass substrate 2 among the configurations of the CSP solid-state imaging element 20, a configuration in which a frame 2a is provided in the periphery thereof and a cavity 181 is provided between the solid-state imaging element 1 and the glass substrate 2 as illustrated in the lower left part and the lower right part of
Even with any of the connection portions, the displacement between the incident position of the incident light to the solid-state imaging element 1 and the incident position of the totally-reflected and turned-back component is substantially constant in the imaging surface of the solid-state imaging element 1, with the above-mentioned configuration. Therefore, the load related to the correction processing of the signal processing unit 21 can be reduced.
The above-mentioned imaging element may be applied to, for example, various electronic apparatuses including imaging apparatuses such as digital still cameras and digital video cameras, mobile phones having imaging functions, or other apparatuses having imaging functions.
An imaging apparatus 201 illustrated in
The optical system 202 includes one or a plurality of lenses and guides light (incident light) from an object to the solid-state imaging element 204 to form an image on the image receiving surface of the solid-state imaging element 204.
The shutter apparatus 203 is arranged between the optical system 202 and the solid-state imaging element 204 and controls a light irradiation period and a light shielding period to the solid-state imaging element 204 according to the control of the driving circuit 205.
The solid-state imaging element 204 includes a package including the above-mentioned solid-state imaging element. The solid-state imaging element 204 accumulates signal charges for a certain period of time according to the light guided onto the light-receiving surface via the optical system 202 and the shutter apparatus 203. The signal charges accumulated in the solid-state imaging element 204 are transferred according to a driving signal (timing signal) supplied from the driving circuit 205.
The driving circuit 205 outputs driving signals for controlling the transfer operation of the solid-state imaging element 204 and the shutter operation of the shutter apparatus 203 to drive the solid-state imaging element 204 and the shutter apparatus 203.
The signal processing circuit 206 applies various signal processing to signal charges output from the solid-state imaging element 204. An image (image data) obtained when the signal processing circuit 206 applies the signal processing to the pixel signals is supplied to and displayed on the monitor 207 or is supplied to and stored (recorded) in the memory 208.
Also in the imaging apparatus 201 configured as described above, by applying the CSP solid-state imaging element 20 of the above-mentioned imaging apparatus illustrated in
The above-mentioned imaging apparatus can be used in various cases of sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
The technology according to the present disclosure (present technology) may be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
An internal information acquisition system 10001 includes an endoscopic capsule 10100 and an external control device 10200.
The endoscopic capsule 10100 is swallowed by a patient in an examination. The endoscopic capsule 10100 has an image capture function and a wireless communication function. The endoscopic capsule 10100 moves through the interior of organs such as the stomach and the intestines by peristaltic movement or the like until being excreted naturally from the patient, while also successively capturing images (hereinafter, also referred to as internal images) of the interior of the relevant organs at predetermined intervals, and successively wirelessly transmitting information about the internal images to the external control device 10200 outside the body.
The external control device 10200 centrally controls the operation of the internal information acquisition system 10001. Further, the external control device 10200 receives information about the internal images transmitted from the endoscopic capsule 10100. Based on the received information about the internal images, the external control device 10200 generates image data for displaying the internal images on a display device (not illustrated).
In this way, with the internal information acquisition system 10001, images depicting the patient's internal conditions can be obtained continually from the time the endoscopic capsule 10100 is swallowed to the time the endoscopic capsule 10100 is excreted.
The configurations and functions of the endoscopic capsule 10100 and the external control device 10200 will be described in further detail.
The endoscopic capsule 10100 includes a capsule-shaped housing 10101, and includes a light source unit 10111, an image capture unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, a power source unit 10116, and a control unit 10117 built in the capsule-shaped housing 10101.
The light source unit 10111 includes a light source such as a light-emitting diode (LED), for example, and irradiates the imaging field of the image capture unit 10112 with light.
The image capture unit 10112 includes an image sensor, and an optical system made up of multiple lenses provided in front of the image sensor. Reflected light (hereinafter, referred to as observation light) from the light radiated to a body tissue which is an object of observation is condensed by the optical system and incident on the image sensor. The image sensor of the image capture unit 10112 receives and photoelectrically converts the observation light, to thereby generate an image signal corresponding to the observation light. The image signal generated by the image capture unit 10112 is provided to the image processing unit 10113.
The image processing unit 10113 includes a processor such as a central processing unit (CPU) and a graphics processing unit (GPU), and performs various types of signal processing on the image signal generated by the image capture unit 10112. The image processing unit 10113 provides the image signal subjected to the signal processing to the wireless communication unit 10114 as raw data.
The wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that was subjected to the signal processing by the image processing unit 10113, and transmits the image signal to the external control device 10200 via an antenna 10114A. In addition, the wireless communication unit 10114 receives, from the external control device 10200 via the antenna 10114A, a control signal related to driving control of the endoscopic capsule 10100. The wireless communication unit 10114 provides control signals received from the external control device 10200 to the control unit 10117.
The power supply unit 10115 includes, for example, an antenna coil for receiving power, a power regeneration circuit for regenerating power from a current produced in the antenna coil, and a voltage step-up circuit. In the power supply unit 10115, the principle of what is called contactless or wireless charging is used for generating power.
The power source unit 10116 includes a secondary battery, and stores power generated by the power supply unit 10115.
The control unit 10117 includes a processor such as a CPU. The control unit 10117 appropriately controls driving of the light source unit 10111, the image capture unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power supply unit 10115 in accordance with a control signal transmitted from the external control device 10200.
The external control device 10200 includes a processor such as a CPU and GPU, a microcomputer or a control board on which a processor and a storage element such as a memory are mounted, and the like. The external control device 10200 controls the operation of the endoscopic capsule 10100 by transmitting a control signal to the control unit 10117 of the endoscopic capsule 10100 via an antenna 10200A. In the endoscopic capsule 10100, for example, a light irradiation condition under which the light source unit 10111 irradiates a target of observation with light may be changed by a control signal from the external control device 10200. In addition, an image capture condition (such as the frame rate and the exposure level in the image capture unit 10112) may be changed by a control signal from the external control device 10200. In addition, the content of processing in the image processing unit 10113 and a condition (such as the transmission interval and the number of images to be transmitted) under which the wireless communication unit 10114 transmits the image signal may be changed by a control signal from the external control device 10200.
Moreover, the external control device 10200 performs various types of image processing on the image signal transmitted from the endoscopic capsule 10100, and generates image data for displaying a captured internal image on a display device. For the image processing, various known signal processing, such as a development process (demosaicing process), an image quality-improving process (such as a band enhancement process, a super-resolution process, a noise reduction (NR) process, and/or a shake correction process), and/or an enlargement process (electronic zoom process), may be performed. The external control device 10200 controls driving of a display device (not illustrated), and causes the display device to display a captured internal image on the basis of the generated image data. Alternatively, the external control device 10200 may also cause a recording device (not illustrated) to record the generated image data, or cause a printing device (not illustrated) to make a printout of the generated image data.
The above describes an example of the internal information acquisition system to which the technology according to the present disclosure may be applied. The technology according to the present disclosure may be applied to the image capture unit 10112 of the above-mentioned configurations, for example. Specifically, the CSP solid-state imaging element 20 of the imaging apparatus illustrated in
The technology according to the present disclosure (present technology) may be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopy surgery system.
The endoscope 11100 includes a lens tube 11101 and a camera head 11102, part of the lens tube 11101 from the tip having a predetermined length being inserted in the body cavity of the patient 11132, the camera head 11102 being connected to the base of the lens tube 11101. The figure illustrates the endoscope 11100 including the rigid lens tube 11101, i.e., a so-called rigid endoscope, for example. Alternatively, the endoscope 11100 may be a so-called flexible endoscope including a flexible lens tube.
The lens tube 11101 has an opening at the tip, an objective lens being fitted in the opening. A light source device 11203 is connected to the endoscope 11100. The light source device 11203 generates light, a light guide extending in the lens tube 11101 guides the light to the tip of the lens tube, the light passes through the objective lens, and an object of observation in the body cavity of the patient 11132 is irradiated with the light. The endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
The camera head 11102 includes an optical system and an image sensor inside. Reflected light (observation light) from the object of observation is condensed on the image sensor by the optical system. The image sensor photoelectrically converts the observation light to thereby generate an electric signal corresponding to the observation light, i.e., an image signal corresponding to an observation image. The image signal, as raw data, is transmitted to a camera control unit (CCU) 11201.
The CCU 11201 includes a central processing unit (CPU), a graphics processing unit (GPU), or the like, and centrally controls the operation of the endoscope 11100 and a display device 11202. Further, the CCU 11201 receives the image signal from the camera head 11102, and performs various types of image processing, e.g., a development process (demosaicing process) and the like, on the image signal. An image is to be displayed on the basis of the image signal.
Controlled by the CCU 11201, the display device 11202 displays an image on the basis of the image signal subjected to the image processing by the CCU 11201.
The light source device 11203 includes a light source such as a light emitting diode (LED), for example, and supplies light to the endoscope 11100, a surgery site or the like being irradiated with the light when its image is captured.
An input device 11204 is an input interface for the endoscopy surgery system 11000.
A user may input various kinds of information and instructions in the endoscopy surgery system 11000 via the input device 11204. For example, a user inputs instructions to change image capture conditions (kind of irradiation light, magnifying power, focal length, and the like) of the endoscope 11100, and other instructions.
A surgical tool control device 11205 controls the driving of the energy surgical tool 11112 that cauterizes a tissue, incises a tissue, seals a blood vessel, or the like. A pneumoperitoneum device 11206 feeds gas into the body cavity via the pneumoperitoneum tube 11111 in order to swell up the body cavity of the patient 11132 for the purpose of securing the imaging field of the endoscope 11100 and securing the workspace for a surgeon. A recorder 11207 is a device capable of recording various kinds of surgical information. A printer 11208 is a device capable of printing the various kinds of surgical information in various kinds of formats such as a text, an image, and a graph.
The light source device 11203, which supplies irradiation light to the endoscope 11100 when an image of a surgery site is captured, may include an LED, a laser light source, or a white light source including a combination of them, for example. Where the white light source includes a combination of RGB laser light sources, the light source device 11203 may adjust the white balance of a captured image since the output intensity and the output timing of each color (each wavelength) may be controlled with a high degree of accuracy. Further, in this case, by irradiating an object of observation with laser lights from the respective RGB laser light sources in time-division and by controlling the driving of the image sensor of the camera head 11102 in synchronization with the irradiation timings, images respectively corresponding to RGB may be captured in time-division. In accordance with this method, the image sensor without color filters may obtain color images.
Further, the driving of the light source device 11203 may be controlled to change the intensity of output light at predetermined time intervals. By controlling the driving of the image sensor of the camera head 11102 in synchronization with the timings of changing the intensity of the light to thereby obtain images in time-division and by combining the images, high-dynamic-range images without so-called black-clipping and white-clipping may be generated.
Further, the light source device 11203 may be configured to be capable of supplying light having a predetermined wavelength band corresponding to special light imaging. An example of the special light imaging is so-called narrow band imaging, which makes use of the fact that absorption of light by a body tissue depends on the wavelength of light. In the narrow band imaging, a body tissue is irradiated with light having a narrower band than the band of irradiation light (i.e., white light) in the normal imaging, and thereby a high-contrast image of a predetermined tissue such as a blood vessel of a mucous membrane surface is captured. Another possible example of the special light imaging is fluorescence imaging, in which a body tissue is irradiated with excitation light, fluorescence is thereby generated, and a fluorescence image is obtained. In the fluorescence imaging, a body tissue is irradiated with excitation light, and fluorescence from the body tissue is imaged (auto-fluorescence imaging). For another possible example, a reagent such as indocyanine green (ICG) is locally injected into a body tissue and, in addition, the body tissue is irradiated with excitation light corresponding to the fluorescence wavelength of the reagent to thereby obtain a fluorescence image. The light source device 11203 may be configured to be capable of supplying narrow band light and/or excitation light corresponding to the special light imaging.
The camera head 11102 includes a lens unit 11401, an image capture unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 is connected to the CCU 11201 via a transmission cable 11400, which enables bidirectional communication.
The lens unit 11401 is an optical system provided at a portion of the camera head 11102, to which the lens tube 11101 is connected. Observation light is introduced from the tip of the lens tube 1110, is guided to the camera head 11102, and enters the lens unit 11401. The lens unit 11401 includes a plurality of lenses including a zoom lens and a focal lens in combination.
The image capture unit 11402 includes an image sensor/image sensors. The image capture unit 11402 may include one (i.e., single) image sensor or a plurality of (i.e., multiple) image sensors. Where the image capture unit 11402 includes multiple image sensors, for example, the respective image sensors may generate image signals corresponding to RGB, and a color image may be obtained by combining the RGB image signals. Alternatively, the image capture unit 11402 may include a pair of image sensors for obtaining right-eye and left-eye image signals corresponding to 3D (Dimensional) display. Thanks to the 3D display, the surgeon 11131 is capable of grasping the depth of a biological tissue at a surgery site more accurately. Where the image capture unit 11402 includes multiple image sensors, a plurality of series of lens units 11401 may be provided corresponding to the image sensors, respectively.
Further, the image capture unit 11402 is not necessarily provided in the camera head 11102. For example, the image capture unit 11402 may be provided immediately after the objective lens in the lens tube 11101.
The driving unit 11403 includes an actuator. Controlled by the camera head control unit 11405, the driving unit 11403 causes the zoom lens and the focal lens of the lens unit 11401 to move for a predetermined distance along the optical axis. As a result, the magnifying power and the focus of an image captured by the image capture unit 11402 may be adjusted appropriately.
The communication unit 11404 includes a communication device for transmitting/receiving various kinds of information to/from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the image capture unit 11402 to the CCU 11201 via the transmission cable 11400 as raw data.
Further, the communication unit 11404 receives a control signal related to driving control of the camera head 11102 from the CCU 11201, and supplies the control signal to the camera head control unit 11405. For example, the control signal includes information about image capture conditions, which includes information for specifying the frame rate of a captured image, information for specifying the exposure level when capturing an image, information for specifying the magnifying power and the focus of a captured image, and/or the like.
The above-mentioned image capture conditions such as the frame rate, the exposure level, the magnifying power, and the focus may be specified appropriately by a user, or may be set automatically on the basis of the obtained image signal by the control unit 11413 of the CCU 11201. In the latter case, it is expected that the endoscope 11100 has the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
The camera head control unit 11405 controls the driving of the camera head 11102 on the basis of the control signal received from the CCU 11201 via the communication unit 11404.
The communication unit 11411 includes a communication device for transmitting/receiving various kinds of information to/from the camera head 11102. The communication unit 11411 receives the image signal transmitted from the camera head 11102 via the transmission cable 11400.
Further, the communication unit 11411 transmits the control signal related to driving control of the camera head 11102 to the camera head 11102. The image signal and the control signal may be transmitted via the electric communication, the optical communication, or the like.
The image processing unit 11412 performs various types of image processing on the image signal transmitted from the camera head 11102 as raw data.
The control unit 11413 performs various types of control on capturing an image of a surgery site or the like by the endoscope 11100 and control on displaying the captured image obtained by capturing the surgery site or the like. For example, the control unit 11413 generates a control signal related to driving control of the camera head 11102.
Further, the control unit 11413 causes the display device 11202 to display a captured image of the surgery site or the like on the basis of the image signal subjected to the image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various kinds of objects in the captured image by making use of various kinds of image recognition techniques. For example, by detecting the edge shape, the color, and the like of an object in the captured image, the control unit 11413 is capable of recognizing a surgical instrument such as forceps, a certain biological site, bleeding, mist generated when using the energy surgical tool 11112, and the like. When the control unit 11413 causes the display device 11202 to display a captured image, the control unit 11413 may display various kinds of surgery assistance information superimposed on the image of the surgery site by making use of the result of the recognition. By displaying the surgery assistance information superimposed on the image, which is presented to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and it is possible for the surgeon 11131 to reliably carry on the surgery.
The transmission cable 11400, which connects the camera head 11102 and the CCU 11201, is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable of them.
Here, in the illustrated example, wired communication is performed via the transmission cable 11400. Alternatively, communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
The above describes an example of the endoscopy surgery system to which the technology according to the present disclosure may be applied. The technology according to the present disclosure may be applied to the endoscope 11100 and the image capture unit 11402 of the camera head 11102 of the above-mentioned configurations, for example. Specifically, the CSP solid-state imaging element 20 of the imaging apparatus illustrated in
Although the above describes the endoscopy surgery system for an example, the technology according to the present disclosure may be applied to another system, e.g., a microscope surgery system or the like.
The technology (present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be realized as a device mounted on any kind of movable objects such as a car, an electric car, a hybrid electric car, a motorcycle, a bicycle, a personal mobility, an aircraft, a drone, a ship, and a robot.
A vehicle control system 12000 includes a plurality of electronic control units connected to each other via a communication network 12001. In the example of
The drive-system control unit 12010 executes various kinds of programs, to thereby control the operations of the devices related to the drive system of the vehicle. For example, the drive-system control unit 12010 functions as a control device that controls driving force generation devices such as an internal-combustion engine and a driving motor for generating a driving force of the vehicle, a driving force transmission mechanism for transmitting the driving force to wheels, a steering mechanism that adjusts the steering angle of the vehicle, a brake device that generates a braking force of the vehicle, and the like.
The body-system control unit 12020 executes various kinds of programs, to thereby control the operations of the various kinds devices equipped in a vehicle body. For example, the body-system control unit 12020 functions as a control device that controls a keyless entry system, a smart key system, a power window device, or various lamps such as head lamps, back lamps, brake lamps, side-turn lamps, and fog lamps. In this case, an electric wave transmitted from a mobile device in place of a key or signals from various switches may be input in the body-system control unit 12020. The body-system control unit 12020 receives the input electric wave or signal, and controls a door lock device, the power window device, the lamps, and the like of the vehicle.
The vehicle exterior information detection unit 12030 detects information outside the vehicle including the vehicle control system 12000. For example, an image capture unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle exterior information detection unit 12030 causes the image capture unit 12031 to capture an environment image and receives the captured image. The vehicle exterior information detection unit 12030 may perform an object detection process of detecting a man, a vehicle, an obstacle, a sign, a signage on a road, or the like on the basis of the received image, or may perform a distance detection process on the basis of the received image.
The image capture unit 12031 is an optical sensor that receives light and outputs an electric signal corresponding to the amount of light received. The image capture unit 12031 may output the electric signal as an image or may output as distance measurement information. Further, the light that the image capture unit 12031 receives may be visible light or invisible light such as infrared light.
The vehicle interior information detection unit 12040 detects vehicle interior information. For example, a driver condition detector 12041 that detects the condition of a driver is connected to the vehicle interior information detection unit 12040. For example, the driver condition detector 12041 may include a camera that captures an image of a driver. The vehicle interior information detection unit 12040 may calculate the fatigue level or the concentration level of the driver on the basis of the detected information input from the driver condition detector 12041, and may determine whether the driver is sleeping.
The microcomputer 12051 may calculate the control target value of the driving force generation device, the steering mechanism, or the brake device on the basis of the vehicle interior/vehicle exterior information obtained by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and may output a control command to the drive-system control unit 12010. For example, the microcomputer 12051 may perform coordinated control for the purpose of realizing the advanced driver assistance system (ADAS) function including avoiding a vehicle collision, lowering impacts of a vehicle collision, follow-up driving based on a distance between vehicles, constant speed driving, vehicle collision warning, a vehicle's lane departure warning, or the like.
Further, by controlling the driving force generation device, the steering mechanism, the brake device, or the like on the basis of information about the environment around the vehicle obtained by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, the microcomputer 12051 may perform coordinated control for the purpose of realizing self-driving, i.e., autonomous driving without the need of drivers' operations, and the like.
Further, the microcomputer 12051 may output a control command to the body-system control unit 12020 on the basis of vehicle exterior information obtained by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 may perform coordinated control including controlling the head lamps on the basis of the location of a leading vehicle or an oncoming vehicle detected by the vehicle exterior information detection unit 12030 and changing high beams to low beams, for example, for the purpose of anti-glare.
The sound/image output unit 12052 transmits at least one of a sound output signal and an image output signal to an output device, which is capable of notifying a passenger of the vehicle or a person outside the vehicle of information visually or auditorily. In the example of
In
For example, the image capture units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, the side-view mirrors, the rear bumper or the rear door, and an upper part of the windshield in the cabin of the vehicle 12100. Each of the image capture unit 12101 on the front nose and the image capture unit 12105 on the upper part of the windshield in the cabin mainly obtains an image of the front of the vehicle 12100. Each of the image capture units 12102 and 12103 on the side-view minors mainly obtains an image of a side of the vehicle 12100. The image capture unit 12104 on the rear bumper or the rear door mainly obtains an image of the rear of the vehicle 12100. The images of the front obtained by the image capture units 12101 and 12105 are mainly used for detecting a leading vehicle or detecting a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
At least one of the image capture units 12101 to 12104 may have a function of obtaining distance information. For example, at least one of the image capture units 12101 to 12104 may be a stereo camera including a plurality of image sensors or an image sensor including pixels for phase difference detection.
For example, by obtaining the distance between the vehicle 12100 and each three-dimensional (3D) object in the image capture ranges 12111 to 12114 and the temporal change (relative speed to the vehicle 12100) of the distance on the basis of the distance information obtained from the image capture units 12101 to 12104, the microcomputer 12051 may extract, as a leading vehicle, a 3D object which is especially the closest 3D object driving on the track on which the vehicle 12100 is driving at a predetermined speed (e.g., 0 km/h or more) in the direction substantially the same as the driving direction of the vehicle 12100. Further, by presetting a distance between the vehicle 12100 and a leading vehicle to be secured, the microcomputer 12051 may perform autobrake control (including follow-up stop control), automatic acceleration control (including follow-up start-driving control), and the like. In this way, it is possible to perform coordinated control for the purpose of realizing self-driving, i.e., autonomous driving without the need of drivers' operations, and the like.
For example, the microcomputer 12051 may sort 3D object data of 3D objects into motorcycles, standard-size vehicles, large-size vehicles, pedestrians, and the other 3D objects such as utility poles on the basis of the distance information obtained from the image capture units 12101 to 12104, extract data, and use the data to automatically avoid obstacles. For example, the microcomputer 12051 sorts obstacles around the vehicle 12100 into obstacles that a driver of the vehicle 12100 can see and obstacles that it is difficult for the driver to see. Then, the microcomputer 12051 determines a collision risk, which indicates a hazard level of a collision with each obstacle. When the collision risk is a preset value or more and when there is a possibility of a collision occurrence, the microcomputer 12051 may perform driving assistance to avoid a collision, in which the microcomputer 12051 outputs warning to the driver via the audio speaker 12061 or the display unit 12062, or mandatorily reduces the speed or performs collision-avoidance steering via the drive-system control unit 12010.
At least one of the image capture units 12101 to 12104 may be an infrared camera that detects infrared light. For example, the microcomputer 12051 may recognize a pedestrian by determining whether or not images captured by the image capture units 12101 to 12104 include the pedestrian. The method of recognizing a pedestrian includes, for example, the step of extracting characteristic points in the images captured by the image capture units 12101 to 12104 being infrared cameras, and the step of performing the pattern matching process with respect to a series of characteristic points indicating an outline of an object, to thereby determine whether or not the object is a pedestrian. Where the microcomputer 12051 determines that the images captured by the image capture units 12101 to 12104 include a pedestrian and recognizes the pedestrian, the sound/image output unit 12052 controls the display unit 12062 to display a rectangular contour superimposed on the recognized pedestrian to emphasize the pedestrian. Further, the sound/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
The above describes an example of the vehicle control system to which the technology according to the present disclosure may be applied. The technology according to the present disclosure may be applied to the image capture unit 12031 of the above-mentioned configurations, for example. Specifically, the CSP solid-state imaging element 20 of the imaging apparatus illustrated in
A of
B and C of
In B of
In C of
In the sensor die 23021, a photodiode (PD), a floating diffusion (FD), and transistors (Tr) (MOS FET), which constitute a pixel that becomes the pixel region 23012, and Tr and the like, which become the control circuit 23013, are formed. In addition, a wiring layer 23101 is formed in the sensor die 23021. The wiring layer 23101 includes a plurality of layers, in this example, three-layer wires 23110. Note that (Tr that becomes) the control circuit 23013 can be formed in not the sensor die 23021 but the logic die 23024.
Tr constituting the logic circuit 23014 is formed in the logic die 23024. In addition, a wiring layer 23161 is formed in the logic die 23024. The wiring layer 23161 includes a plurality of layers, in this example, three-layer wires 23170. Further, a connection hole 23171 is formed in the logic die 23024. The connection hole 23171 has an insulation film 23172 formed on an inner wall surface thereof. A connection conductor 23173 to be connected to the wire 23170 and the like is embedded in the connection hole 23171.
The sensor die 23021 and the logic die 23024 are bonded to each other such that the wiring layers 23101 and 23161 thereof face each other. With this, the stacked-type solid-state imaging apparatus 23020 in which the sensor die 23021 and the logic die 23024 are stacked is formed. A film 23191 such as a protection film is formed in a face on which the sensor die 23021 and the logic die 23024 are bonded to each other.
A connection hole 23111 is formed in the sensor die 23021. The connection hole 23111 penetrates the sensor die 23021 from the backside (side on which light enters the PD) (upper side) of the sensor die 23021 and reaches an uppermost layer wire 23170 of the logic die 23024. In addition, a connection hole 23121 is formed in the sensor die 23021. The connection hole 23121 is located in proximity of the connection hole 23111 and reaches a first-layer wire 23110 from the backside of the sensor die 23021. An insulation film 23112 is formed on an inner wall surface of the connection hole 23111. An insulation film 23122 is formed on an inner wall surface of the connection hole 23121. Then, connection conductors 23113 and 23123 are embedded in the connection holes 23111 and 23121, respectively. The connection conductor 23113 and the connection conductor 23123 electrically connected to each other on the back side of the sensor die 23021. With this, the sensor die 23021 and the logic die 23024 are electrically connected to each other via the wiring layer 23101, the connection hole 23121, the connection hole 23111, and the wiring layer 23161.
In a second configuration example of the solid-state imaging apparatus 23020, ((the wire 23110 of) the wiring layer 23101 of) the sensor die 23021 and ((the wire 23170 of) the wiring layer 23161 of) the logic die 23024 are electrically connected to each other through a single connection hole 23211 formed in the sensor die 23021.
Specifically, in
In the solid-state imaging apparatus 23020 of
The sensor die 23021 and the logic die 23024 are superimposed on each other such that the wires 23110 and 23170 are held in direct contact. Then, the wires 23110 and 23170 are directly joined with each other by heating the wires 23110 and 23170 while adding necessary weight on the wires 23110 and 23170. In this manner, the solid-state imaging apparatus 23020 of
In
The memory die 23413 includes a memory circuit. The memory circuit stores data temporarily necessary in signal processing performed in the logic die 23412, for example.
In
Note that, in
A gate electrode is formed via a gate insulation film around the PD. A pixel Tr 23421 and a pixel Tr 23422 are formed by the gate electrode and the paired source/drain regions.
The pixel Tr 23421 adjacent to the PD is a transfer Tr. One of the paired source/drain regions that constitute the pixel Tr 23421 is an FD.
Further, an inter-layer insulation film is formed in the sensor die 23411. A connection hole is formed in the inter-layer insulation film. The pixel Tr 23421 and connection conductors 23431 that connects to the pixel Tr 23422 are formed in the connection hole.
In addition, a wiring layer 23433 having a plurality of layers with layer wires 23432 which connect to each of the connection conductors 23431 is formed in the sensor die 23411.
Further, an aluminum pad 23434 that becomes an electrode for external connection is formed in a lowermost layer of the wiring layer 23433 of the sensor die 23411. Specifically, in the sensor die 23411, the aluminum pad 23434 is formed at a position closer to a surface 23440 bonding with the logic die 23412 than the wires 23432. The aluminum pad 23434 is used as one end of a wire associated with input/output of signals into/from the outside.
In addition, a contact 23441 used for electric connection with the logic die 23412 is formed in the sensor die 23411. The contact 23441 is connected to a contact 23451 of the logic die 23412 and also connected to an aluminum pad 23442 of the sensor die 23411.
Then, a pad hole 23443 is formed in the sensor die 23411, reaching the aluminum pad 23442 from a backside (upper side) of the sensor die 23411.
The technology according to the present disclosure can be applied to the solid-state imaging apparatus as described above.
It should be noted that the present disclosure can also take the following configurations.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
1 Solid-state imaging element
2 Glass substrate
4 Infrared cut filter
5 Cavity
6 Lens
7 Circuit board
8 Actuator
9 Connector
10 Spacer
11, 11-1 to 11-4, 11-21 to 11-24, 11-31, 11-32, 11-41 to 11-43, 11-51, 11-52 Fixing portion
12 Semiconductor component
13, 13-1 to 13-4, 13-21 to 13-24, 13-31, 13-32, 13-41 to 1#-43, 13-51, 13-52 Fixing agent
31, 32 Adhesive
41 Glass substrate
61 Upper layer lens
62 Lower layer lens
81 Mask
91 ACF terminal
111 Lens
131 Spacer
Number | Date | Country | Kind |
---|---|---|---|
2017-166541 | Aug 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/030494 | 8/17/2018 | WO | 00 |