1. Field of the Invention
The present invention relates to an imaging apparatus, and, more particularly, to an imaging apparatus having a media sensor.
2. Description of the Related Art
Media sensors are used to detect the presence or absence of print media, and in some cases, are also used to determine the print media type. One form of a media sensor includes a single light source, such as a light emitting diode (LED), and a light detector, such as a phototransistor. Typically, the light detector is located on the same side of a print media as the light source. During operation, the LED directs light at a predefined angle onto a material surface of the print media, and the surface characteristics of the print media are examined in terms of the amount of light reflected from the surface that is received by the light detector. For example, the presence of the print media is detected based upon a predetermined amount of light reflected from the media to the light detector.
Some media sensors include a pair of light detectors, one of the light detectors being positioned to sense reflected diffuse light and a second detector positioned to sense reflected specular light. Such a sensor may be used, for example, to detect and discriminate between paper media and transparency media.
A media sensor that contacts directly a surface of a print media sheet is known in the art as a contact media sensor. Often, the contact media sensor is spring biased to be in contact with the media surface. Typically, such a contact media sensor includes a skid surface which slides along the surface of a print media sheet as the print media sheet advances in a sheet feed direction. The friction created by the contact of the skid surface of the contact media sensor and the surface of the print media sheet often permanently marks or scuffs the surface of the print media sheet.
What is needed in the art is an imaging apparatus configured to reduce or eliminate the marking or scuffing of a surface of a print media sheet resulting from contact between a media sensor and the surface of the print media sheet.
The present invention relates to an imaging apparatus configured to reduce or eliminate the marking or scuffing of a surface of a print media sheet resulting from contact between a media sensor and the surface of the print media sheet.
The invention, in one form thereof, is directed to an imaging device having a print media path for transporting a print media sheet in a sheet feed direction. The imaging device includes a frame. A mounting device is coupled to the frame. A media sensor has a body and at least one rotating member rotatably coupled to the body. The body is coupled to the mounting device. The mounting device is configured to facilitate movement of the media sensor in a direction toward the media path and to restrain movement of the media sensor in the sheet feed direction. The media sensor is positioned by the mounting device such that at least one rotating member rotates due to contact with a surface of the print media sheet as the print media sheet moves relative to the media sensor in the sheet feed direction along the print media path.
In another form thereof, the invention is directed to an imaging apparatus including a frame and a print media source coupled to the frame. The print media source includes a media support defining, in part, a print media path along which a print media sheet is transported in a sheet feed direction. A mounting device is coupled to the frame. A media sensor has a body and at least one rotating member rotatably coupled to the body. The body is coupled to the mounting device. The mounting device is configured to facilitate movement of the media sensor in a direction toward the media support and to restrain movement of the media sensor in the sheet feed direction. The media sensor is positioned by the mounting device such that at least one rotating member rotates due to contact with a surface of the print media sheet as the print media sheet moves relative to the media sensor in the sheet feed direction.
An advantage of the present invention is that the media surface that is contacted by the media sensor is less likely to be marked or scuffed as a result of such contact.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and particularly to
Computer 8 is typical of that known in the art, and includes a display, an input device, e.g., a keyboard, a processor, and associated memory. Resident in the memory of computer 8 is printer driver software. The printer driver software places print data and print commands in a format that can be recognized by ink jet printer 10. The format can be, for example, a data packet including print data and printing commands for a given area, such as a print swath, and including a print header that identifies the swath data.
Ink jet printer 10 includes a printhead carrier system 12, a feed roller unit 14, a media sensor assembly 16, a controller 18, a mid-frame 20 and a media source 22.
Media source 22, such as a paper tray, is configured and located to supply individual print media sheets 23 to feed roller unit 14, which in turn further transports the print media sheets 23 during a printing operation.
Printhead carrier system 12 includes a printhead carrier 24 for carrying a color printhead 26 and a black printhead 28. A color ink reservoir 30 is provided in fluid communication with color printhead 26, and a black ink reservoir 32 is provided in fluid communication with black printhead 28. Printhead carrier system 12 and printheads 26, 28 may be configured for unidirectional printing or bi-directional printing.
Printhead carrier 24 is guided by a pair of guide members 34. Each of guide members 34 may be, for example, a guide rod or a guide rail. The axes 36 of guide members 34 define a bi-directional scanning path 36 for printhead carrier 24. Printhead carrier 24 is connected to a carrier transport belt 38 that is driven by a carrier motor 40 via a carrier pulley 42. Carrier motor 40 has a rotating carrier motor shaft 44 that is attached to carrier pulley 42. At the directive of controller 18, printhead carrier 24 is transported in a reciprocating manner along guide members 34. Carrier motor 40 can be, for example, a direct current (DC) motor or a stepper motor.
The reciprocation of printhead carrier 24 transports ink jet printheads 26, 28 across the print media sheet 23, such as paper, along bi-directional scanning path 36 to define a two-dimensional, e.g., rectangular, print zone 50 of printer 10. This reciprocation occurs in a main scan direction 52. The print media sheet 23 is transported in a sheet feed direction 54. In the orientation of
Referring also to
Controller 18 is electrically connected to printheads 26 and 28 via a printhead interface cable 62. Controller 18 is electrically connected to carrier motor 40 via an interface cable 64. Controller 18 is electrically connected to drive unit 60 via an interface cable 66. Controller 18 is electrically connected to media sensor assembly 16 via an interface cable 68.
Controller 18 includes a microprocessor having an associated random access memory (RAM) and read only memory (ROM). Controller 18 executes program instructions to effect the printing of an image on the print media sheet 23, which can be one or more media types, such as coated paper, plain paper, photo paper and transparency. In addition, controller 18 executes instructions to conduct media sensing, such as detecting the presence or absence of the print media sheet 23, or the determination of media type, based on information received from media sensor assembly 16.
Media sensor assembly 16 includes a mounting device 78 and a media sensor 80. Media sensor assembly 16 is coupled to frame 70 via mounting device 78. Mounting device 78 includes a pivot arm 82 that is pivotably attached to frame 70 via a pivot rod 84, and is pivotably attached to media sensor 80 via pivot pins 86. A spring 90 provides a biasing force to pivot media sensor assembly 16 about axis 92 in the direction indicated by arrow 94. In an alternative arrangement, sensor assembly 16 may be biased simply by the forces of gravity. Thus, mounting device 78 is configured to facilitate movement of media sensor 80 in a direction 88 toward print media path 55, and more particularly, toward media support 72, and to restrain movement of media sensor 80 in sheet feed direction 54.
Media sensor assembly 16 includes a body 100 and at least one rotating member 102, such as for example, one or more wheels. Media sensor 80 is positioned by mounting device 78 such that each rotating member 102 rotates due to contact with a surface 104 of print media sheet 23 as print media sheet 23 moves relative to media sensor 80 in sheet feed direction 54 along print media path 55.
Contained within body 100 are the electrical sensory components, such as for example, a light source, a specular detector and/or a diffuse detector, the configuration and operation of which is known in the art. In its simplest form, the light source may include, for example, a light emitting diode (LED). In a more complex form, the light source may further include additional optical components for generating a collimated light beam. Each of the specular detector and/or the diffuse detector can be, for example, a phototransistor.
While this invention has been described with respect to preferred embodiments, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4892426 | Steele | Jan 1990 | A |
| 4970606 | Shima | Nov 1990 | A |
| 4982235 | Fujino | Jan 1991 | A |
| 4994678 | Sasaki | Feb 1991 | A |
| 5325213 | Takahashi et al. | Jun 1994 | A |
| 5508520 | Shoji et al. | Apr 1996 | A |
| 5610731 | Itoh | Mar 1997 | A |
| 5661571 | Ijuin et al. | Aug 1997 | A |
| 5734483 | Itoh | Mar 1998 | A |
| 5764382 | Shiraishi | Jun 1998 | A |
| 5798841 | Takahashi | Aug 1998 | A |
| 5805308 | Tanaka et al. | Sep 1998 | A |
| 5878319 | Itoh | Mar 1999 | A |
| 5900951 | Tsai | May 1999 | A |
| 5907413 | Han | May 1999 | A |
| 5999277 | Tsai | Dec 1999 | A |
| 6005685 | Tsai | Dec 1999 | A |
| 6147339 | Matsumoto | Nov 2000 | A |
| 6152443 | Claramunt et al. | Nov 2000 | A |
| 6246492 | Chang et al. | Jun 2001 | B1 |
| 6424435 | Kao | Jul 2002 | B1 |
| 6464414 | Washnock | Oct 2002 | B1 |
| Number | Date | Country | |
|---|---|---|---|
| 20040114201 A1 | Jun 2004 | US |