Imaging devices and methods can be used for forming hard copy images upon media. An imaging method used in digital lithography can form an image using “electrical pinning,” which can separate a carrier liquid from ink solids. An example imaging method using “electrical pinning” can include applying a marking agent on an imaging drum and selectively charging a marking agent layer with a charge emitting head based on the desired image. A developing fluid may be applied to the imaging drum to develop the charged image and a first removal device may remove the development fluid after the charged marking agent is developed. Additional charge may be applied to the developed marking agent with a blanket electrical charge which can stiffen the image and increase the resistance of a developed image to shear stresses during subsequent processes such as drying or image transfer. During processing prior to transfer to paper or other substrate, additional development fluid may be removed from the imaging drum using a second removal device, such as a vacuum head, suction device, or a heater device to evaporate the development fluid. A transfer assembly can directly transfer the stiffening marking agent corresponding to the developed image to a media (e.g., paper, plastic, etc.).
Alterations and further modifications of the illustrated features, and additional applications of the principles of the examples, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the disclosure. The same reference numerals in different drawings represent the same element.
In a method for forming an image, a roller can be used to apply a marking agent in a carrier fluid or remove the carrier fluid. In another example, a roller can be used to apply and/or remove a carrier fluid with a development agent (development fluid). In an example imaging method, an image can be formed using “electrical pinning,” which can separate a carrier liquid from ink solids in a marking agent. The separation of the liquid from the solid can allow the carrier liquid to be extracted through mechanical approaches, such as a reverse roller, a squeegee, or a blade. Mechanical separation can reduce the time for thermal evaporation or eliminate an evaporation mechanism, such as a vacuum or infrared (IR) heater. Mechanical approaches can be referred to as “cold” processes and can consume significantly less energy than evaporation and eliminate environmental issues associated with volatile carriers.
The roller used to remove a carrier fluid from an imaging drum can be referred to as a removal roller. An application roller can be used to apply a carrier fluid. The application roller can use a similar mechanism as a removal roller assembly. The application roller can be either a reverse roller or forward roller. The removal roller can be either a reverse roller or forward roller. The forward roller can use a similar mechanism as a reverse roller but with a rotation of the roller opposite that of the reverse roller. The roller used in the imaging device described may be a forward/reverse roller, which can be determined by the rotation of the roller.
For example in an imaging device 100, a reverse roller 130 may be rotatably coupled to an imaging drum 110, as illustrated by
The reverse roller can remove a portion of the carrier fluid leaving a thinner and/or uniform fluid layer 142. The reverse roller can be efficient in fluid removal, which can produce a fluid layer thickness less than 3 μm. A reverse roller and the imaging drum can have the same rotation relative to each other, either both clockwise or both counterclockwise, so a surface of the imaging drum moves in opposite or reverse direction as a surface of the reverse roller. The reverse direction of the imaging drum surface and the reverse roller surface with respect to each other can create a mechanism to remove the carrier fluid.
Cold removal of ink carrier can use significantly less energy than thermal evaporation. The cold process allows most of the carrier fluid to be cycled without going through evaporation and/or re-condensation, significantly reducing the volatile organic compound (VOC) emission of a printing press using the imaging device. VOCs can refer to organic chemical compounds which can have significant vapor pressures and which can affect the environment and human health. Typical IR heaters can take several seconds to evaporate a thick fluid layer (such as 20 μm), while cold removal takes a shorter length of time (e.g., several milliseconds or less) to complete the same task.
Two types of cold removal approaches can include contact removal and non-contact removal. As their names imply, contact removal such as squeegee and blade can make physical contact with the latent image, whereas the non-contact approach, taking reverse roller (RR) as an example, can remove the carrier without touching the imaging surface. Non-contact removal can minimize the interference with the latent image and reduce the chance of ink back-transfer and dot smearing. As a result, using a non-contact removal can have some advantages over contact removal.
In another example illustrated by
The reverse roller may be paired with a fluid applicator that provides fluid to couple the reverse roller with the wet latent image. In one example, the fluid applicator can use a forward roller (FR) 120, which can leverage the same mechanical design of the reverse roller (RR) 130, as illustrated in
Another example illustrated by
The imaging drum 110 can have an imaging drum surface, where images may be formed and developed prior to being transferred to media (e.g., paper, plastic, etc.). The imaging drum may be electrically grounded and/or electrically conductive and include electrically conductive materials such as metal. A marking agent in a carrier fluid (e.g., liquid marking agent) may be applied in a layer to the imaging drum using a marking agent supply device 122. The marking agent supply device may include a forward roller. A marking agent layer 144 may include colorant particles suspended in an electrically insulative carrier fluid and the marking agent layer may have a solids concentration between 5% and 30%.
An image head 150 may electrically charge some portions of the layer of marking agent and leave other portions of the layer of marking agent unexposed. The control charge exposure operations of the image head can transfer an image pattern to be generated on the imaging drum. The electrically charged selected portions of the marking agent can define the images. The cohesion and adhesion to the imaging drum of the portions of the layer of the marking agent exposed to the electrical charge can be increased by the electrical charge compared with the portions not receiving the electrical charge. In other words, the exposed portions of the marking agent can be stiffened by the electrical charge.
A development assembly including a development fluid applicator 124 and a development fluid removal device 132 can be located adjacent to the surface of the imaging drum. In one example, following the exposure of the portions of the marking agent layer corresponding to an image to be formed, the unexposed portions of the marking agent corresponding to the background areas may be removed (washed away) from the imaging drum surface during development by the development assembly. The development fluid can be used to develop images in marking agent layer after the image has been exposed by the image head 150. The development fluid applicator may apply the development fluid using a forward roller to the imaging drum having the exposed and unexposed portions of marking agent thereon. The development fluid can be combined with the marking agent in the carrier fluid carrier forming a carrier and development fluid layer 146. The development fluid can operate to help detach and flush away the unexposed portions of the marking agent from the imaging drum surface leaving the exposed portions of the marking agent corresponding to the image to be formed upon imaging drum surface. The development fluid can develop the image by cleaning the marking agent from the uncharged areas of the imaging drum surface not corresponding to the latent image. The development fluid removal device may remove the development fluid and/or carrier fluid from the imaging drum using a reverse roller.
In one example discussed below, an additional removal device 134 may be implemented to remove development fluid remaining upon the imaging drum surface after development by the development assembly. A charge device 152 may be placed adjacent to the imaging drum surface to provide an additional electrical charge to the developed portions of the marking agent over the imaging drum surface. The charge device can provide an electrical charge for an axial length of the imaging drum including both developed marking agent and background image areas. The provision of the additional electrical charge may maintain image quality during subsequent imaging operations.
As discussed previously, the marking agent in the carrier fluid on the imaging drum can be exposed to two electrical charge devices. An initial attraction force (e.g., electrostatic force) may be provided between the exposed portions of the marking agent and the imaging drum surface after exposure by image head 150. The initial attraction force attracts the exposed portions to the imaging drum surface. The application of the electrical charge by the charge device 152 can operate to increase the attraction force between the exposed portions of the marking agent (i.e., corresponding to the developed portions after development by development assembly). The charge provided by the charge device can operate to clamp the developed image to the imaging drum surface which can enable the utilization of the subsequent imaging operations described below without significant image degradation, such as distortion or smearing. The increased charge density provided by the charge device can increase the resistance of a developed image to shear stresses during subsequent processing such as drying or image transfer. In one example, the electrical charge provided by the charge device can increase the image stiffness (i.e., increases the viscosity if a liquid marking agent is used) and can increase the shear strength of a developed image.
Following charging by the charge device 152, the developed portions of the marking agent corresponding to the developed image can be processed by an optional removal device 134, as previously discussed. The removal device can remove additional development fluid and/or carrier from the imaging drum surface depending on the development fluid and/or carrier removed by development fluid removal device 132 and a remaining fluid layer 148 left on the imaging drum surface. The removal device can include a reverse roller and/or a dryer, which may create a flow of air over the imaging drum surface to remove remaining development fluid from the imaging drum surface which may otherwise degrade the resultant image generated by imaging device 106 if left upon the imaging drum surface. Examples of the removal device can include an air knife to provide the flow of air, a vacuum head or other suction device configured to remove the development fluid, a heater to evaporate the development fluid upon the imaging drum surface, and/or as a reverse roller to shear away excess development fluid. A transfer assembly 154 can be used to directly transfer the stiffened marking agent corresponding to the developed image from the imaging drum surface to a media 156.
In an example, a forward roller and/or reverse roller unit 200 of the imaging device may include a roller 230 coupled to a fluid container 210, as illustrated in
The forward/reverse roller unit can provide cold application/removal of a carrier fluid used in imaging or printing. Using a fluid container offers controllability, reliability and flexibility in using a roller. The roller can provide efficient fluid removal producing a thin (less than 3 μm) and uniform fluid layer, and the container can allow the operation of the roller over a wide range of angles (allowing the roller unit more or less gravity independent) and a no drip operation (beneficial for image quality).
As illustrated in
The fluid container can include fluid seal mounts 322A and 322B for sealing the fluid container 210 against the roller 230 and sealing the carrier fluid in the fluid container. The fluid seals may be attached or integrated on each end of the fluid container. A first seal 320A may be attached or integrated on a first side, face, or edge of the fluid container and a second fluid seal 320B may be attached or integrated on a second side, face, or edge of the fluid container opposite from the first fluid seal. The first fluid seal and the second fluid seal can conform to the curvature of the roller. The seal material for the first fluid seal and the second fluid seal can be selected to minimize friction at the interface with the roller. Closed-cell foams can be used to seal the carrier fluid at the roller sides. Other material that can minimize friction and seal the carrier fluid may also be used. The first fluid seal and the second fluid seal can channel the carrier fluid on the roller between first fluid seal and the second fluid seal. The seals may be coupled to a fluid container with seal mounts. The seal mounts 322A and 322B can provide rigid support for the fluid seals on the fluid container. The seal mounts may be formed of a plastic material, a metal material, or combination of these materials. The seal mounts may be coupled to the fluid container with rivets, screws, bolts, or other fastener. With the blade 340 and the seal mounts 320A and 320B, the carrier fluid with the agents in the carrier fluid can be enclosed in the fluid reservoir of the fluid container leaving a small gap for fluid to pass in and out of the fluid reservoir.
The forward roller and/or reverse roller unit 400 can include the roller 230 rotatably coupled to a roller frame 450, as illustrated in
A roller frame 450 can include a resilient member 452, such as a spring, for applying a force to press the fluid container 210 against the roller 230. The force applied by the resilient member on the fluid container against the roller can improve the seal provided by the blade and the fluid seals. The resilient member may include a spring or elastic mechanism to apply a force on the fluid container from a point on the roller frame. The resilient member can bias the fluid container, together with the curved seals and the blade onto a roller surface. In an example, the roller frame may allow for adjustable angles of the fluid container with respect to the roller.
The forward roller and/or reverse roller unit 500 can include a motor frame 570 and 572 that can be built on the roller shaft to mount a motor and gears 534 and 562 to the roller 230, as illustrated in
The forward roller and/or reverse roller unit 600 can include the motor frame 570 and 572 that can be coupled to an image drum mount 680, as illustrated in
Referring back to
To allow for the positioning of the forward roller and/or reverse roller units at a wide array of angular positions the FR/RR units may be drip free (or reducing drips) as any leak may potentially fall on the image, which may cause unacceptable image degradation. The roller with a relatively small, closed fluid container can eliminate fluid overflow and dripping, which will be discussed further below. The roller unit may be able to collect excessive fluid removed from the imaging surface and guide the fluid back to a reservoir in confined channels. The roller with a closed fluid container can enabled improved control over fluid dispensing speed and coating uniformity and improves mounting flexibility of the roller unit to make the roller unit compatible with multiple angular positions.
Greater detail of the roller unit in a reverse mode and a forward mode is provided. In the reverse roller mode, the fluid container 210 of the reverse roller unit 700 can be used with a collection reservoir 714 for a carrier fluid 740, as illustrated in
In the forward roller mode, the forward roller 830 of the forward roller unit 800 rotates 834 (clockwise direction in
In the forward roller mode, the blade 340, which seals the carrier fluid in the fluid container, can prevent or impede excess fluid remaining on the forward roller after applying the carrier onto the imaging device. An external container layer (or shell) 818 (implemented as an L-shape in
The imaging device can use the same roller unit for a forward roller configuration as is used in the reverse roller configuration. In an example, the spacing at the forward roller may be set to be 150 μm from the imaging drum and the reverse nip gap may be set to 50 μm from the imaging drum to produce an approximately 3 μm uniformly thick fluid layer on the imaging surface at 1 meter/second process speed. The imaging device may be used to achieve a coating layer thinner than 3 μm. A thinner coating layer on the imaging drum can reduce or eliminate the energy and/or time for drying or evaporating the carrier fluid. The spacing of the roller from the imaging drum may be larger than the fluid layer thickness. The fluid layer thickness may be altered by the roller and/or imaging drum rotation speed.
The use of the reverse roller with an attached closed container can enable efficient “cold removal” at minimal interference with latent images on imaging surface. Cold removal of an ink carrier (a fluid carrier with a marking agent) can make imaging and printing more energy efficient and environmentally friendly compared to other existing platforms. Both the FR-based fluid applicator and the RR-based removal offer excellent controllability and/or synchronization of the fluid coating and removing processes. Fluid container can be used to reduce and prevent overflow and leaks. Fluid flow can be guided in confined channels without interfering with other stations around the imaging drum. The device can be mounted at multiple angular positions without leaks and at multiple locations around the imaging drum for added system flexibility in placing applicators and removal
Another example provides a method 900 for collecting a carrier fluid from an imaging drum, as shown in the flow chart in
Additionally, the method for collecting a carrier fluid from an imaging drum may include various other steps. The carrier fluid can be channeled on the roller between a first fluid seal and a second fluid seal. The first fluid seal and the second fluid seal can be attached to the fluid container and conform to the curvature of the roller. An excess carrier fluid can be drained in a reservoir chamber of the fluid container with an overflow channel. The fluid container can be guided against the roller with a guide on a roller frame. The roller frame can couple the roller to the fluid container. The fluid container can be pressed against the roller with a resilient member coupled to a roller frame for applying a force on the fluid container. The roller frame can couple the roller to the fluid container.
Another example provides a method 1000 for applying a carrier fluid onto an imaging drum, as shown in the flow chart in
Additionally, the method for applying a carrier fluid onto an imaging drum may include collecting the excess carrier fluid in an overflow channel of the fluid container and/or returning the excess carrier fluid to a reservoir chamber of the fluid container.
While the forgoing examples are illustrative of the principles of the present disclosure in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts described. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.
The present application is a divisional of U.S. patent application Ser. No. 13/153,029, filed on Jun. 3, 2011, now patented as U.S. Pat. No. 9,248,639 issued on Feb. 2, 2016, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3661079 | Stapleford | May 1972 | A |
4041864 | Dahlgren et al. | Aug 1977 | A |
4270450 | Difflipp et al. | Jun 1981 | A |
4581995 | Stone | Apr 1986 | A |
4782756 | Howard | Nov 1988 | A |
5058502 | Kobler | Oct 1991 | A |
5103732 | Wells | Apr 1992 | A |
5213037 | Leopardi, II | May 1993 | A |
5410961 | DeNicola et al. | May 1995 | A |
5651316 | DeMoore et al. | Jul 1997 | A |
5983797 | Secor | Nov 1999 | A |
6116158 | DeMoore et al. | Sep 2000 | A |
6314881 | Gotting | Nov 2001 | B1 |
6557465 | Baum | May 2003 | B2 |
6615004 | Gila et al. | Sep 2003 | B1 |
7487724 | Evans | Feb 2009 | B1 |
7497160 | Kumagai | Mar 2009 | B2 |
7650850 | Iwasaki et al. | Jan 2010 | B2 |
7760217 | Fotland et al. | Jul 2010 | B1 |
7896966 | Masuyama et al. | Mar 2011 | B2 |
20050201785 | Gila et al. | Sep 2005 | A1 |
20060029430 | Hosoya et al. | Feb 2006 | A1 |
20100258015 | Boettcher | Oct 2010 | A1 |
20100284709 | Izawa et al. | Nov 2010 | A1 |
20110100242 | Krueger | May 2011 | A1 |
20120118183 | Masuch | May 2012 | A1 |
Number | Date | Country |
---|---|---|
WO 2010127913 | Nov 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20160159081 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13153029 | Jun 2011 | US |
Child | 14988567 | US |