IMAGING LENS ASSEMBLY, IMAGE CAPTURING UNIT AND ELECTRONIC DEVICE

Information

  • Patent Application
  • 20230408795
  • Publication Number
    20230408795
  • Date Filed
    August 23, 2022
    a year ago
  • Date Published
    December 21, 2023
    5 months ago
Abstract
An imaging lens assembly includes, in order from an object side to an image side along an optical path: a first lens element through an eighth lens element. The first lens element with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element has an object-side surface being convex in a paraxial region thereof. The fifth lens element has positive refractive power. The sixth lens element with negative refractive power has an image-side surface being concave in a paraxial region thereof. The seventh lens element with positive refractive power has an object-side surface being convex in a paraxial region thereof. The eighth lens element has negative refractive power. At least one lens surface of the imaging lens assembly has at least one critical point in an off-axis region thereof.
Description
RELATED APPLICATIONS

This application claims priority to Taiwan Application 111122801, filed on Jun. 20, 2022, which is incorporated by reference herein in its entirety.


BACKGROUND
Technical Field

The present disclosure relates to an imaging lens assembly, an image capturing unit and an electronic device, more particularly to an imaging lens assembly and an image capturing unit applicable to an electronic device.


Description of Related Art

With the development of semiconductor manufacturing technology, the performance of image sensors has improved, and the pixel size thereof has been scaled down. Therefore, featuring high image quality becomes one of the indispensable features of an optical system nowadays.


Furthermore, due to the rapid changes in technology, electronic devices equipped with optical systems are trending towards multi-functionality for various applications, and therefore the functionality requirements for the optical systems have been increasing. However, it is difficult for a conventional optical system to obtain a balance among the requirements such as high image quality, low sensitivity, a proper aperture size, miniaturization and a desirable field of view.


SUMMARY

According to one aspect of the present disclosure, an imaging lens assembly includes eight lens elements. The eight lens elements are, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element and an eighth lens element. Each of the eight lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side.


The first lens element has positive refractive power, the object-side surface of the first lens element is convex in a paraxial region thereof, and the image-side surface of the first lens element is concave in a paraxial region thereof. The object-side surface of the second lens element is convex in a paraxial region thereof, and the image-side surface of the second lens element is concave in a paraxial region thereof. The fifth lens element has positive refractive power. The sixth lens element has negative refractive power, and the image-side surface of the sixth lens element is concave in a paraxial region thereof. The seventh lens element has positive refractive power, and the object-side surface of the seventh lens element is convex in a paraxial region thereof. The eighth lens element has negative refractive power. At least one of the object-side surface and the image-side surface of at least one lens element of the imaging lens assembly has at least one critical point in an off-axis region thereof.


When an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, an Abbe number of the fifth lens element is V5, a curvature radius of the image-side surface of the sixth lens element is R12, a curvature radius of the object-side surface of the seventh lens element is R13, a focal length of the first lens element is f1, a focal length of the fifth lens element is f5, a focal length of the sixth lens element is f6, a focal length of the seventh lens element is f7, and a focal length of the eighth lens element is f8, the following conditions are satisfied:





2.0<(V1+V3+V5)/(V2+V4)<9.0;





0.60<R12/R13<3.3;





0.20<f5/f1<4.0;





0.10<f6/f8<4.5; and





−1.7<f7/f8<−0.20.


According to another aspect of the present disclosure, an imaging lens assembly includes eight lens elements. The eight lens elements are, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element and an eighth lens element. Each of the eight lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side.


The first lens element has positive refractive power, the object-side surface of the first lens element is convex in a paraxial region thereof, and the image-side surface of the first lens element is concave in a paraxial region thereof. The object-side surface of the second lens element is convex in a paraxial region thereof. The fifth lens element has positive refractive power. The sixth lens element has negative refractive power, and the image-side surface of the sixth lens element is concave in a paraxial region thereof. The seventh lens element has positive refractive power, and the object-side surface of the seventh lens element is convex in a paraxial region thereof. The eighth lens element has negative refractive power. At least one of the object-side surface and the image-side surface of at least one lens element of the imaging lens assembly has at least one critical point in an off-axis region thereof.


When an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, an Abbe number of the fifth lens element is V5, a curvature radius of the image-side surface of the sixth lens element is R12, a curvature radius of the object-side surface of the seventh lens element is R13, a focal length of the first lens element is f1, a focal length of the fifth lens element is f5, a focal length of the sixth lens element is f6, a focal length of the seventh lens element is f7, and a focal length of the eighth lens element is f8, the following conditions are satisfied:





2.5<(V1+V3+V5)/(V2+V4)<8.5;





0.60<R12/R13<3.3;





0.20<f5/f1<4.0;





0.10<f6/f8<4.5; and





−1.7<f7/f8<−0.20.


According to another aspect of the present disclosure, an imaging lens assembly includes eight lens elements. The eight lens elements are, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element and an eighth lens element. Each of the eight lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side.


The first lens element has positive refractive power, the object-side surface of the first lens element is convex in a paraxial region thereof, and the image-side surface of the first lens element is concave in a paraxial region thereof. The object-side surface of the second lens element is convex in a paraxial region thereof, and the image-side surface of the second lens element is concave in a paraxial region thereof. The fifth lens element has positive refractive power. The sixth lens element has negative refractive power, and the image-side surface of the sixth lens element is concave in a paraxial region thereof. The seventh lens element has positive refractive power, and the object-side surface of the seventh lens element is convex in a paraxial region thereof. The eighth lens element has negative refractive power. At least one of the object-side surface and the image-side surface of at least one lens element of the imaging lens assembly has at least one critical point in an off-axis region thereof.


When an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, an Abbe number of the fifth lens element is V5, a curvature radius of the image-side surface of the sixth lens element is R12, a curvature radius of the object-side surface of the seventh lens element is R13, a focal length of the first lens element is f1, a focal length of the fifth lens element is f5, a focal length of the sixth lens element is f6, a focal length of the eighth lens element is f8, an axial distance between the fifth lens element and the sixth lens element is T56, and an axial distance between the sixth lens element and the seventh lens element is T67, the following conditions are satisfied:





2.0<(V1+V3+V5)/(V2+V4)<9.0;





0.60<R12/R13<3.3;





0.20<f5/f1<4.0;





0.10<f6/f8<4.5; and





0.95<T56/T67.


According to another aspect of the present disclosure, an image capturing unit includes one of the aforementioned imaging lens assemblies and an image sensor, wherein the image sensor is disposed on an image surface of the imaging lens assembly.


According to another aspect of the present disclosure, an electronic device includes the aforementioned image capturing unit.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure can be better understood by reading the following detailed description of the embodiments, with reference made to the accompanying drawings as follows:



FIG. 1 is a schematic view of an image capturing unit according to the 1st embodiment of the present disclosure;



FIG. 2 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 1st embodiment;



FIG. 3 is a schematic view of an image capturing unit according to the 2nd embodiment of the present disclosure;



FIG. 4 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 2nd embodiment;



FIG. 5 is a schematic view of an image capturing unit according to the 3rd embodiment of the present disclosure;



FIG. 6 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 3rd embodiment;



FIG. 7 is a schematic view of an image capturing unit according to the 4th embodiment of the present disclosure;



FIG. 8 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 4th embodiment;



FIG. 9 is a schematic view of an image capturing unit according to the 5th embodiment of the present disclosure;



FIG. 10 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 5th embodiment;



FIG. 11 is a schematic view of an image capturing unit according to the 6th embodiment of the present disclosure;



FIG. 12 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 6th embodiment;



FIG. 13 is a schematic view of an image capturing unit according to the 7th embodiment of the present disclosure;



FIG. 14 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 7th embodiment;



FIG. 15 is a schematic view of an image capturing unit according to the 8th embodiment of the present disclosure;



FIG. 16 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 8th embodiment;



FIG. 17 is a schematic view of an image capturing unit according to the 9th embodiment of the present disclosure;



FIG. 18 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 9th embodiment;



FIG. 19 is a perspective view of an image capturing unit according to the 10th embodiment of the present disclosure;



FIG. 20 is one perspective view of an electronic device according to the 11th embodiment of the present disclosure;



FIG. 21 is another perspective view of the electronic device in FIG. 20;



FIG. 22 is a block diagram of the electronic device in FIG. 20;



FIG. 23 is one perspective view of an electronic device according to the 12th embodiment of the present disclosure;



FIG. 24 is one perspective view of an electronic device according to the 13th embodiment of the present disclosure;



FIG. 25 shows a schematic view of Y42, Y62, Y71, Y72, Y82, Yc42, Yc62, Yc71, Yc72, Yc82 and several critical points of lens elements in off-axis regions thereof according to the 1st embodiment of the present disclosure;



FIG. 26 shows a schematic view of a configuration of a light-folding element in an imaging lens assembly according to one embodiment of the present disclosure;



FIG. 27 shows a schematic view of another configuration of a light-folding element in an imaging lens assembly according to one embodiment of the present disclosure; and



FIG. 28 shows a schematic view of a configuration of two light-folding elements in an imaging lens assembly according to one embodiment of the present disclosure.





DETAILED DESCRIPTION

An imaging lens assembly includes eight lens elements. The eight lens elements are, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element and an eighth lens element. Each of the eight lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side.


The first lens element has positive refractive power. Therefore, it is favorable for miniaturizing the object side of the imaging lens assembly. The object-side surface of the first lens element is convex in a paraxial region thereof. Therefore, it is favorable for adjusting the traveling direction of incident light into the imaging lens assembly, thereby increasing the field of view. The image-side surface of the first lens element is concave in a paraxial region thereof. Therefore, it is favorable for adjusting the travelling direction of light, thereby reducing the outer diameter at the object side of the imaging lens assembly.


The object-side surface of the second lens element is convex in a paraxial region thereof. Therefore, it is favorable for combining the second lens element with the first lens element to correct aberrations. The image-side surface of the second lens element can be concave in a paraxial region thereof. Therefore, it is favorable for adjusting the lens shape of the second lens element, thereby correcting aberrations such as astigmatism.


The image-side surface of the fourth lens element can be concave in a paraxial region thereof. Therefore, it is favorable for combining the fourth lens element with the fifth lens element to correct aberrations.


The fifth lens element has positive refractive power. Therefore, it is favorable for properly adjusting the refractive power distribution of the imaging lens assembly, thereby reducing the sensitivity thereof so as to increase assembly yield rate.


The sixth lens element has negative refractive power. Therefore, it is favorable for balancing the refractive power distribution at the image side of the imaging lens assembly, thereby correcting aberrations such as spherical aberration. The image-side surface of the sixth lens element is concave in a paraxial region thereof. Therefore, it is favorable for adjusting the lens shape and the refractive power of the sixth lens element so as to correct aberrations.


The seventh lens element has positive refractive power. Therefore, it is favorable for miniaturizing the image side of the imaging lens assembly. The object-side surface of the seventh lens element is convex in a paraxial region thereof. Therefore, it is favorable for adjusting the lens shape and the refractive power of the seventh lens element so as to correct aberrations.


The eighth lens element has negative refractive power. Therefore, it is favorable for properly balancing the refractive power distribution at the image side of the imaging lens assembly so as to correct aberrations. The image-side surface of the eighth lens element can be concave in a paraxial region thereof. Therefore, it is favorable for reducing the back focal length.


According to the present disclosure, at least one of the object-side surface and the image-side surface of at least one lens element of the imaging lens assembly has at least one critical point in an off-axis region thereof. Therefore, it is favorable for increasing design flexibility of the lens surface, thereby miniaturizing the overall size and correcting aberrations. Moreover, at least one of the object-side surface and the image-side surface of each of at least two lens elements of the imaging lens assembly can have at least one critical point in an off-axis region thereof. Moreover, at least one of the object-side surface and the image-side surface of each of at least three lens elements of the imaging lens assembly can have at least one critical point in an off-axis region thereof. Moreover, the image-side surface of the fourth lens element can have at least one convex critical point in an off-axis region thereof. Therefore, it is favorable for adjusting the travelling direction of light, thereby improving image quality such as relative illuminance at the periphery of the image surface. When a vertical distance between a convex critical point on the image-side surface of the fourth lens element and an optical axis is Yc42, and a maximum effective radius of the image-side surface of the fourth lens element is Y42, at least one convex critical point on the image-side surface of the fourth lens element in the off-axis region can satisfy the following condition: 0.25<Yc42/Y42<0.80. Therefore, it is favorable for further improving image quality. Moreover, the image-side surface of the sixth lens element can have at least one convex critical point in an off-axis region thereof. Therefore, it is favorable for adjusting the lens shape of the sixth lens element, thereby correcting off-axis aberrations such as field curvature. When a vertical distance between a convex critical point on the image-side surface of the sixth lens element and the optical axis is Yc62, and a maximum effective radius of the image-side surface of the sixth lens element is Y62, at least one convex critical point on the image-side surface of the sixth lens element in the off-axis region can satisfy the following condition: 0.15<Yc62/Y62<0.55. Therefore, it is favorable for further correcting aberrations. Moreover, the object-side surface of the seventh lens element can have at least one concave critical point in an off-axis region thereof. Therefore, it is favorable for adjusting the light incident angle on the seventh lens element, thereby reducing surface reflection of light from the wide field of view. When a vertical distance between a concave critical point on the object-side surface of the seventh lens element and the optical axis is Yc71, and a maximum effective radius of the object-side surface of the seventh lens element is Y71, at least one concave critical point on the object-side surface of the seventh lens element in the off-axis region can satisfy the following condition: 0.35<Yc71/Y71<0.75. Therefore, it is favorable for further reducing surface reflection. Moreover, the image-side surface of the seventh lens element can have at least one convex critical point in an off-axis region thereof. Therefore, it is favorable for adjusting the lens shape of the seventh lens element so as to correct off-axis aberrations. When a vertical distance between a convex critical point on the image-side surface of the seventh lens element and the optical axis is Yc72, and a maximum effective radius of the image-side surface of the seventh lens element is Y72, at least one convex critical point on the image-side surface of the seventh lens element in the off-axis region can satisfy the following condition: 0.35<Yc72/Y72<0.80. Therefore, it is favorable for further correcting aberrations. Moreover, the image-side surface of the eighth lens element can have at least one convex critical point in an off-axis region thereof. Therefore, it is favorable for adjusting the light incident angle on the image surface so as to increase response efficiency of the image sensor, thereby further improving image quality such as illuminance. When a vertical distance between a convex critical point on the image-side surface of the eighth lens element and the optical axis is Yc82, and a maximum effective radius of the image-side surface of the eighth lens element is Y82, at least one convex critical point on the image-side surface of the eighth lens element in the off-axis region can satisfy the following condition: 0.15<Yc82/Y82<0.55. Therefore, it is favorable further improving image quality. Please refer to FIG. 25, which shows a schematic view of Y42, Y62, Y71, Y72, Y82, Yc42, Yc62, Yc71, Yc72, Yc82 and several critical points C of lens elements in off-axis regions thereof according to the 1st embodiment of the present disclosure.


When an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, and an Abbe number of the fifth lens element is V5, the following condition is satisfied: 2.0<(V1+V3+V5)/(V2+V4)<9.0. Therefore, it is favorable for adjusting the material configuration of the imaging lens assembly so as to correct aberrations such as chromatic aberrations. Moreover, the following condition can also be satisfied: 2.5<(V1+V3+V5)/(V2+V4)<8.5. Moreover, the following condition can also be satisfied: 3.0<(V1+V3+V5)/(V2+V4)<8.0. Moreover, the following condition can also be satisfied: 3.5<(V1+V3+V5)/(V2+V4)<7.5. Moreover, the following condition can also be satisfied: 4.0<(V1+V3+V5)/(V2+V4)<7.0.


When a curvature radius of the image-side surface of the sixth lens element is R12, and a curvature radius of the object-side surface of the seventh lens element is R13, the following condition is satisfied: 0.60<R12/R13<3.3. Therefore, it is favorable for the sixth lens element collaborating with the seventh lens element so as to correct aberrations. Moreover, the following condition can also be satisfied: 0.78<R12/R13<3.0. Moreover, the following condition can also be satisfied: 0.96<R12/R13<2.6. Moreover, the following condition can also be satisfied: 1.1<R12/R13<2.4.


When a focal length of the first lens element is f1, and a focal length of the fifth lens element is f5, the following condition is satisfied: 0.20<f5/f1<4.0. Therefore, it is favorable for properly adjusting the refractive power distribution of the imaging lens assembly, thereby preventing overmuch aberrations generated while miniaturizing the overall size. Moreover, the following condition can also be satisfied: 0.40<f5/f1<3.5. Moreover, the following condition can also be satisfied: 0.60<f5/f1<3.0. Moreover, the following condition can also be satisfied: 0.80<f5/f1<2.5.


When a focal length of the sixth lens element is f6, and a focal length of the eighth lens element is f8, the following condition is satisfied: 0.10<f6/f8<4.5. Therefore, it is favorable for properly adjusting the refractive power distribution at the image side of the imaging lens assembly, thereby reducing the sensitivity of the imaging lens assembly so as to increase assembly yield rate. Moreover, the following condition can also be satisfied: 0.50<f6/f8<4.0. Moreover, the following condition can also be satisfied: 0.90<f6/f8<3.5.


When a focal length of the seventh lens element is f7, and the focal length of the eighth lens element is f8, the following condition can be satisfied: −1.7<f7/f8<−0.20. Therefore, it is favorable for the seventh lens element collaborating with the eighth lens element so as to correct aberrations such as spherical aberration. Moreover, the following condition can also be satisfied: −1.5<f7/f8<−0.40. Moreover, the following condition can also be satisfied: −1.3<f7/f8<−0.60.


When an axial distance between the fifth lens element and the sixth lens element is T56, and an axial distance between the sixth lens element and the seventh lens element is T67, the following condition can be satisfied: 0.95<T56/T67. Therefore, it is favorable for adjusting the lens configuration at the image side of the imaging lens assembly, thereby obtaining a proper balance between size distribution and image quality. Moreover, the following condition can also be satisfied: 1.4<T56/T67<60. Moreover, the following condition can also be satisfied: 1.8<T56/T67<50. Moreover, the following condition can also be satisfied: 2.2<T56/T67<40. Moreover, the following condition can also be satisfied: 2.6<T56/T67<30.


When a central thickness of the first lens element is CT1, a central thickness of the fifth lens element is CT5, an axial distance between the first lens element and the second lens element is T12, and an axial distance between the fourth lens element and the fifth lens element is T45, the following condition can be satisfied: 25.0<CT1/T12+CT5/T45. Therefore, it is favorable for properly adjusting the lens configuration at the object side of the imaging lens assembly, thereby miniaturizing the size at the object side. Moreover, the following condition can also be satisfied: 29.0<CT1/T12+CT5/T45<150. Moreover, the following condition can also be satisfied: 33.0<CT1/T12+CT5/T45<100.


When a curvature radius of the object-side surface of the second lens element is R3, a curvature radius of the image-side surface of the second lens element is R4, and a focal length of the second lens element is f2, the following condition can be satisfied: 0≤(R3+R4)/|f2|<0.90. Therefore, it is favorable for adjusting the lens shape and the refractive power of the second lens element so as to correct aberrations. Moreover, the following condition can also be satisfied: 0≤(R3+R4)/|f2|<0.70.


When an f-number of the imaging lens assembly is Fno, the following condition can be satisfied: 0.90<Fno<2.0. Therefore, it is favorable for obtaining a proper balance among illuminance, the depth of field and image quality. Moreover, the following condition can also be satisfied: 1.1<Fno<1.8.


When half of a maximum field of view of the imaging lens assembly is HFOV, the following condition can be satisfied: 3.5<1/1|−tan(HFOV)|. Therefore, it is favorable for obtaining a proper balance between the field of view and image quality.


When a focal length of the imaging lens assembly is f, the curvature radius of the image-side surface of the sixth lens element is R12, and the curvature radius of the object-side surface of the seventh lens element is R13, the following condition can be satisfied: 3.4<f/R12+f/R13<7.0. Therefore, it is favorable for the sixth lens element collaborating with the seventh lens element so as to correct aberrations.


When the focal length of the imaging lens assembly is f, an axial distance between the object-side surface of the first lens element and the image surface is TL, an entrance pupil diameter of the imaging lens assembly is EPD, and a maximum image height of the imaging lens assembly (which can be half of a diagonal length of an effective photosensitive area of the image sensor) is ImgH, the following condition can be satisfied: 1.2<(f×TL)/(EPD×ImgH)<2.2. Therefore, it is favorable for obtaining a proper balance among the field of view, the overall size, the aperture size and the size of the image surface.


When a curvature radius of the object-side surface of the first lens element is R1, and a curvature radius of the image-side surface of the first lens element is R2, the following condition can be satisfied: 1.5<R2/R1<4.5. Therefore, it is favorable for adjusting the lens shape of the first lens element, thereby correcting aberrations such as astigmatism.


When the focal length of the imaging lens assembly is f, the focal length of the second lens element is f2, a focal length of the third lens element is f3, and a focal length of the fourth lens element is f4, the following condition can be satisfied: |f/f2|+|f/f3|+|f/f4|<1.2. Therefore, it is favorable for the refractive powers of the second lens element through the fourth lens element collaborating with one another so as to enlarge the field of view and correct aberrations.


When a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, an axial distance between the second lens element and the third lens element is T23, and an axial distance between the third lens element and the fourth lens element is T34, the following condition can be satisfied: 0.80<(CT2+CT3+CT4)/(T23+T34)<1.7. Therefore, it is favorable for the second lens element through the fourth lens element collaborating with one another so as to miniaturize the object side of the imaging lens assembly.


When a central thickness of the seventh lens element is CT7, a central thickness of the eighth lens element is CT8, and an axial distance between the seventh lens element and the eighth lens element is T78, the following condition can be satisfied: 0.65<(CT7+CT8)/T78<2.2. Therefore, it is favorable for the seventh lens element collaborating with the eighth lens element, thereby correcting off-axis aberrations. Moreover, the following condition can also be satisfied: 0.75<(CT7+CT8)/T78<1.9.


When the axial distance between the object-side surface of the first lens element and the image surface is TL, and the maximum image height of the imaging lens assembly is ImgH, the following condition can be satisfied: 0.80<TL/ImgH<1.5. Therefore, it is favorable for obtaining a proper balance between reduction of the total track length and enlargement of the image surface.


When the focal length of the imaging lens assembly is f, and a curvature radius of the image-side surface of the eighth lens element is R16, the following condition can be satisfied: 1.8<f/R16<4.0. Therefore, it is favorable for adjusting the lens shape and the refractive power of the eighth lens element, thereby correcting aberrations and reducing the back focal length. Moreover, the following condition can also be satisfied: 2.1<f/R16<3.5.


According to the present disclosure, the aforementioned features and conditions can be utilized in numerous combinations so as to achieve corresponding effects.


According to the present disclosure, the lens elements of the imaging lens assembly can be made of either glass or plastic material. When the lens elements are made of glass material, the refractive power distribution of the imaging lens assembly may be more flexible, and the influence on imaging caused by external environment temperature change may be reduced. The glass lens element can either be made by grinding or molding. When the lens elements are made of plastic material, the manufacturing costs can be effectively reduced. Furthermore, surfaces of each lens element can be arranged to be spherical or aspheric. Spherical lens elements are simple in manufacture. Aspheric lens element design allows more control variables for eliminating aberrations thereof and reducing the required number of lens elements, and the total track length of the imaging lens assembly can therefore be effectively shortened. Additionally, the aspheric surfaces may be formed by plastic injection molding or glass molding.


According to the present disclosure, when a lens surface is aspheric, it means that the lens surface has an aspheric shape throughout its optically effective area, or a portion(s) thereof.


According to the present disclosure, one or more of the lens elements' material may optionally include an additive which generates light absorption and interference effects and alters the lens elements' transmittance in a specific range of wavelength for a reduction in unwanted stray light or color deviation. For example, the additive may optionally filter out light in the wavelength range of 600 nm to 800 nm to reduce excessive red light and/or near infrared light; or may optionally filter out light in the wavelength range of 350 nm to 450 nm to reduce excessive blue light and/or near ultraviolet light from interfering the final image. The additive may be homogeneously mixed with a plastic material to be used in manufacturing a mixed-material lens element by injection molding. Moreover, the additive may be coated on the lens surfaces to provide the abovementioned effects.


According to the present disclosure, each of an object-side surface and an image-side surface has a paraxial region and an off-axis region. The paraxial region refers to the region of the surface where light rays travel close to the optical axis, and the off-axis region refers to the region of the surface away from the paraxial region. Particularly, unless otherwise stated, when the lens element has a convex surface, it indicates that the surface is convex in the paraxial region thereof; when the lens element has a concave surface, it indicates that the surface is concave in the paraxial region thereof. Moreover, when a region of refractive power or focus of a lens element is not defined, it indicates that the region of refractive power or focus of the lens element is in the paraxial region thereof.


According to the present disclosure, a critical point is a non-axial point of the lens surface where its tangent is perpendicular to the optical axis.


According to the present disclosure, the image surface of the imaging lens assembly, based on the corresponding image sensor, can be flat or curved, especially a curved surface being concave facing towards the object side of the imaging lens assembly.


According to the present disclosure, an image correction unit, such as a field flattener, can be optionally disposed between the lens element closest to the image side of the imaging lens assembly along the optical path and the image surface for correction of aberrations such as field curvature. The optical properties of the image correction unit, such as curvature, thickness, index of refraction, position and surface shape (convex or concave surface with spherical, aspheric, diffractive or Fresnel types), can be adjusted according to the design of the image capturing unit. In general, a preferable image correction unit is, for example, a thin transparent element having a concave object-side surface and a planar image-side surface, and the thin transparent element is disposed near the image surface.


According to the present disclosure, at least one light-folding element, such as a prism or a mirror, can be optionally disposed between an imaged object and the image surface on the imaging optical path, such that the imaging lens assembly can be more flexible in space arrangement, and therefore the dimensions of an electronic device is not restricted by the total track length of the imaging lens assembly. Specifically, please refer to FIG. 26 and FIG. 27. FIG. 26 shows a schematic view of a configuration of a light-folding element in an imaging lens assembly according to one embodiment of the present disclosure, and FIG. 27 shows a schematic view of another configuration of a light-folding element in an imaging lens assembly according to one embodiment of the present disclosure. In FIG. 26 and FIG. 27, the imaging lens assembly can have, in order from an imaged object (not shown in the figures) to an image surface IMG along an optical path, a first optical axis OA1, a light-folding element LF and a second optical axis OA2. The light-folding element LF can be disposed between the imaged object and a lens group LG of the imaging lens assembly as shown in FIG. 26 or disposed between a lens group LG of the imaging lens assembly and the image surface IMG as shown in FIG. 27. Furthermore, please refer to FIG. 28, which shows a schematic view of a configuration of two light-folding elements in an imaging lens assembly according to one embodiment of the present disclosure. In FIG. 28, the imaging lens assembly can have, in order from an imaged object (not shown in the figure) to an image surface IMG along an optical path, a first optical axis OA1, a first light-folding element LF1, a second optical axis OA2, a second light-folding element LF2 and a third optical axis OA3. The first light-folding element LF1 is disposed between the imaged object and a lens group LG of the imaging lens assembly, the second light-folding element LF2 is disposed between the lens group LG of the imaging lens assembly and the image surface IMG, and the travelling direction of light on the first optical axis OA1 can be the same direction as the travelling direction of light on the third optical axis OA3 as shown in FIG. 28. The imaging lens assembly can be optionally provided with three or more light-folding elements, and the present disclosure is not limited to the type, amount and position of the light-folding elements of the embodiments disclosed in the aforementioned figures.


According to the present disclosure, the imaging lens assembly can include at least one stop, such as an aperture stop, a glare stop or a field stop. Said glare stop or said field stop is set for eliminating the stray light and thereby improving image quality thereof.


According to the present disclosure, an aperture stop can be configured as a front stop or a middle stop. A front stop disposed between an imaged object and the first lens element can provide a longer distance between an exit pupil of the imaging lens assembly and the image surface to produce a telecentric effect, and thereby improves the image-sensing efficiency of an image sensor (for example, CCD or CMOS). A middle stop disposed between the first lens element and the image surface is favorable for enlarging the viewing angle of the imaging lens assembly and thereby provides a wider field of view for the same.


According to the present disclosure, the imaging lens assembly can include an aperture control unit. The aperture control unit may be a mechanical component or a light modulator, which can control the size and shape of the aperture through electricity or electrical signals. The mechanical component can include a movable member, such as a blade assembly or a light shielding sheet. The light modulator can include a shielding element, such as a filter, an electrochromic material or a liquid-crystal layer. The aperture control unit controls the amount of incident light or exposure time to enhance the capability of image quality adjustment. In addition, the aperture control unit can be the aperture stop of the present disclosure, which changes the f-number to obtain different image effects, such as the depth of field or lens speed.


According to the present disclosure, the imaging lens assembly can include one or more optical elements for limiting the form of light passing through the imaging lens assembly. Each optical element can be, but not limited to, a filter, a polarizer, etc., and each optical element can be, but not limited to, a single-piece element, a composite component, a thin film, etc. The optical element can be located at the object side or the image side of the imaging lens assembly or between any two adjacent lens elements so as to allow light in a specific form to pass through, thereby meeting application requirements.


According to the above description of the present disclosure, the following specific embodiments are provided for further explanation.


1st Embodiment


FIG. 1 is a schematic view of an image capturing unit according to the 1st embodiment of the present disclosure. FIG. 2 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 1st embodiment. In FIG. 1, the image capturing unit 1 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, a stop S1, an aperture stop ST, a first lens element E1, a second lens element E2, a third lens element E3, a stop S2, a fourth lens element E4, a fifth lens element E5, a sixth lens element E6, a seventh lens element E7, a stop S3, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has one critical point in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has two critical points in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The equation of the aspheric surface profiles of the aforementioned lens elements of the 1st embodiment is expressed as follows:







X

(
Y
)

=



(


Y
2

/
R

)

/

(

1
+

sqrt
(

1
-


(

1
+
k

)

×


(

Y
/
R

)

2



)


)


+



i



(
Ai
)

×

(

Y
i

)










    • where,

    • X is the displacement in parallel with an optical axis from an axial vertex on the aspheric surface to a point at a distance of Y from the optical axis on the aspheric surface;

    • Y is the vertical distance from the point on the aspheric surface to the optical axis;

    • R is the curvature radius;

    • k is the conic coefficient; and

    • Ai is the i-th aspheric coefficient, and in the embodiments, i may be, but is not limited to, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30.





In the imaging lens assembly of the image capturing unit 1 according to the 1st embodiment, when a focal length of the imaging lens assembly is f, an f-number of the imaging lens assembly is Fno, and half of a maximum field of view of the imaging lens assembly is HFOV, these parameters have the following values: f=6.92 millimeters (mm), Fno=1.38, HFOV=41.3 degrees (deg.).


When an Abbe number of the first lens element E1 is V1, an Abbe number of the second lens element E2 is V2, an Abbe number of the third lens element E3 is V3, an Abbe number of the fourth lens element E4 is V4, and an Abbe number of the fifth lens element E5 is V5, the following condition is satisfied: (V1+V3+V5)/(V2+V4)=4.57.


When a central thickness of the first lens element E1 is CT1, a central thickness of the fifth lens element E5 is CT5, an axial distance between the first lens element E1 and the second lens element E2 is T12, and an axial distance between the fourth lens element E4 and the fifth lens element E5 is T45, the following condition is satisfied: CT1/T12+CT5/T45=39.14. In this embodiment, an axial distance between two adjacent lens elements is a distance in a paraxial region between two adjacent lens surfaces of the two adjacent lens elements.


When a central thickness of the second lens element E2 is CT2, a central thickness of the third lens element E3 is CT3, a central thickness of the fourth lens element E4 is CT4, an axial distance between the second lens element E2 and the third lens element E3 is T23, and an axial distance between the third lens element E3 and the fourth lens element E4 is T34, the following condition is satisfied:





(CT2+CT3+CT4)/(T23+T34)=1.54.


When a central thickness of the seventh lens element E7 is CT7, a central thickness of the eighth lens element E8 is CT8, and an axial distance between the seventh lens element E7 and the eighth lens element E8 is T78, the following condition is satisfied: (CT7+CT8)/T78=1.05.


When an axial distance between the fifth lens element E5 and the sixth lens element E6 is T56, and an axial distance between the sixth lens element E6 and the seventh lens element E7 is T67, the following condition is satisfied: T56/T67=5.54.


When an axial distance between the object-side surface of the first lens element E1 and the image surface IMG is TL, and a maximum image height of the imaging lens assembly is ImgH, the following condition is satisfied: TL/ImgH=1.39.


When a curvature radius of the object-side surface of the first lens element E1 is R1, and a curvature radius of the image-side surface of the first lens element E1 is R2, the following condition is satisfied: R2/R1=2.44.


When a curvature radius of the object-side surface of the second lens element E2 is R3, a curvature radius of the image-side surface of the second lens element E2 is R4, and a focal length of the second lens element E2 is f2, the following condition is satisfied: (R3+R4)/|f2|=0.57.


When a curvature radius of the image-side surface of the sixth lens element E6 is R12, and a curvature radius of the object-side surface of the seventh lens element E7 is R13, the following condition is satisfied: R12/R13=1.65.


When the focal length of the imaging lens assembly is f, the focal length of the second lens element E2 is f2, a focal length of the third lens element E3 is f3, and a focal length of the fourth lens element E4 is f4, the following condition is satisfied:





|f/f2|+|f/f3|+|f/f4|=1.08.


When the focal length of the imaging lens assembly is f, the curvature radius of the image-side surface of the sixth lens element E6 is R12, and the curvature radius of the object-side surface of the seventh lens element E7 is R13, the following condition is satisfied: f/R12+f/R13=4.81.


When the focal length of the imaging lens assembly is f, and a curvature radius of the image-side surface of the eighth lens element E8 is R16, the following condition is satisfied: f/R16=2.91.


When a focal length of the first lens element E1 is f1, and a focal length of the fifth lens element E5 is f5, the following condition is satisfied: f5/f1=2.14.


When a focal length of the sixth lens element E6 is f6, and a focal length of the eighth lens element E8 is f8, the following condition is satisfied: f6/f8=1.99.


When a focal length of the seventh lens element E7 is f7, and the focal length of the eighth lens element E8 is f8, the following condition is satisfied: f7/f8=−0.89.


When the focal length of the imaging lens assembly is f, the axial distance between the object-side surface of the first lens element E1 and the image surface IMG is TL, an entrance pupil diameter of the imaging lens assembly is EPD, and the maximum image height of the imaging lens assembly is ImgH, the following condition is satisfied: (f×TL)/(EPD×ImgH)=1.92.


When half of the maximum field of view of the imaging lens assembly is HFOV, the following condition is satisfied: 1/|1−tan(HFOV)|=8.28.


When a vertical distance between a convex critical point on the image-side surface of the fourth lens element E4 and the optical axis is Yc42, and a maximum effective radius of the image-side surface of the fourth lens element E4 is Y42, the following condition is satisfied: Yc42/Y42=0.52.


When a vertical distance between a convex critical point on the image-side surface of the sixth lens element E6 and the optical axis is Yc62, and a maximum effective radius of the image-side surface of the sixth lens element E6 is Y62, the following condition is satisfied: Yc62/Y62=0.33.


When a vertical distance between a concave critical point on the object-side surface of the seventh lens element E7 and the optical axis is Yc71, and a maximum effective radius of the object-side surface of the seventh lens element E7 is Y71, the following condition is satisfied: Yc71/Y71=0.57.


When a vertical distance between a convex critical point on the image-side surface of the seventh lens element E7 and the optical axis is Yc72, and a maximum effective radius of the image-side surface of the seventh lens element E7 is Y72, the following condition is satisfied: Yc72/Y72=0.59.


When a vertical distance between a convex critical point on the image-side surface of the eighth lens element E8 and the optical axis is Yc82, and a maximum effective radius of the image-side surface of the eighth lens element E8 is Y82, the following condition is satisfied: Yc82/Y82=0.36.


The detailed optical data of the 1st embodiment are shown in Table 1A and the aspheric surface data are shown in Table 1 B below.









TABLE 1A







1st Embodiment


f = 6.92 mm, Fno = 1.38, HFOV = 41.3 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Stop
Plano
1.047


2
Ape. Stop
Plano
−1.215















3
Lens 1
3.2007
(ASP)
1.051
Plastic
1.545
56.1
9.22


4

7.7958
(ASP)
0.039


5
Lens 2
6.0649
(ASP)
0.300
Plastic
1.686
18.4
−17.69


6

3.9625
(ASP)
0.218


7
Lens 3
4.7368
(ASP)
0.579
Plastic
1.544
56.0
17.73


8

8.9064
(ASP)
0.202














9
Stop
Plano
0.359



















10
Lens 4
17.7821
(ASP)
0.320
Plastic
1.686
18.4
−22.83


11

8.2676
(ASP)
0.059


12
Lens 5
15.2276
(ASP)
0.719
Plastic
1.544
56.0
19.75


13

−35.8985
(ASP)
0.676


14
Lens 6
11.1120
(ASP)
0.596
Plastic
1.566
37.4
−10.58


15

3.8161
(ASP)
0.122


16
Lens 7
2.3074
(ASP)
0.634
Plastic
1.544
56.0
4.73


17

20.2457
(ASP)
−0.301














18
Stop
Plano
1.405



















19
Lens 8
15.8844
(ASP)
0.520
Plastic
1.534
56.0
−5.31


20

2.3794
(ASP)
0.500














21
Filter
Plano
0.210
Glass
1.517
64.2



22

Plano
0.480


23
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 1) is 3.120 mm.


An effective radius of the stop S2 (Surface 9) is 2.040 mm.


An effective radius of the stop S3 (Surface 18) is 4.790 mm.













TABLE 1B





Aspheric Coefficients



















Surface #
3
4
5
6





k=
  −6.71428E−02
  8.80443E−01
  −8.97978E+00
  0.00000E+00


A4=
9.645040813E−04
2.831444973E−03
−2.447120117E−03
−1.427223647E−02 


A6=
−5.640914311E−04 
4.047852799E−04
 4.417504132E−03
4.951271969E−03


A8=
8.749713000E−04
−6.193964057E−03 
−9.715229072E−03
−4.147952253E−03 


A10=
−6.858794356E−04 
5.349217294E−03
 8.043886740E−03
2.417931569E−03


A12=
3.223094940E−04
−2.237523718E−03 
−3.600266479E−03
−7.802183192E−04 


A14=
−8.977927882E−05 
5.122177292E−04
 9.530082880E−04
1.139991151E−04


A16=
1.430035425E−05
−5.999333180E−05 
−1.458159204E−04
5.691708173E−06


A18=
−1.173856173E−06 
2.843976289E−06
 1.187400479E−05
−3.527332740E−06 


A20=
3.704125391E−08
−9.364442215E−09 
−4.006597758E−07
2.688505098E−07





Surface #
7
8
10
11





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
    2.16027E+00


A4=
−8.327069484E−03
−4.432163216E−03
−2.558302438E−02
−5.821470989E−02


A6=
 1.582728534E−03
 9.355483398E−04
 1.493521664E−02
 8.263845421E−02


A8=
−1.385152229E−03
−2.869710581E−03
−2.398482519E−02
−1.102377896E−01


A10=
 3.516753299E−05
 3.005812746E−03
 2.041968651E−02
 1.024577091E−01


A12=
 5.112053082E−04
−2.055423426E−03
−1.112258130E−02
−7.018235403E−02


A14=
−3.948506474E−04
 8.563976701E−04
 3.849807137E−03
 3.573271381E−02


A16=
 1.529037102E−04
−2.069795541E−04
−8.093097222E−04
−1.336264161E−02


A18=
−3.154081082E−05
 2.708516993E−05
 9.401611619E−05
 3.590451466E−03


A20=
 3.281616484E−06
−1.499898986E−06
−4.631971109E−06
−6.694219195E−04


A22=
−1.358241828E−07


 8.166294508E−05


A24=



−5.825517721E−06


A26=



 1.832223566E−07





Surface #
12
13
14
15





k=
  0.00000E+00
    0.00000E+00
  0.00000E+00
  −1.04843E+00


A4=
−5.796695373E−02 
−2.007820840E−02
−2.542335478E−02 
−9.629837776E−02 


A6=
8.958392308E−02
 7.371424645E−03
1.019597783E−02
2.473150949E−02


A8=
−1.036786279E−01 
−1.680216954E−03
2.774768978E−03
3.867726951E−03


A10=
8.287811416E−02
−3.037793145E−03
−9.363355284E−03 
−8.483786226E−03 


A12=
−4.622234323E−02 
 3.698234870E−03
8.062685773E−03
5.100040589E−03


A14=
1.728189769E−02
−2.080290133E−03
−4.234325480E−03 
−1.952960788E−03 


A16=
−3.665649238E−03 
 6.935785551E−04
1.511504565E−03
5.228460627E−04


A18=
3.777788602E−05
−1.351130166E−04
−3.768839373E−04 
−9.919037727E−05 


A20=
2.335075206E−04
 1.097588504E−05
6.556662591E−05
1.321062518E−05


A22=
−7.369967510E−05 
 1.210510223E−06
−7.783212796E−06 
−1.202952116E−06 


A24=
1.137038323E−05
−4.049023724E−07
5.994367848E−07
7.110255886E−08


A26=
−9.179175505E−07 
 4.018014638E−08
−2.692859963E−08 
−2.452994798E−09 


A28=
3.092775214E−08
−1.471007201E−09
5.342490121E−10
3.744115152E−11





Surface #
16
17
19
20





k=
  −1.08401E+00
    0.00000E+00
    0.00000E+00
  −7.34250E+00


A4=
−4.365273982E−02
 4.145390831E−02
−9.289881564E−02
−5.081184671E−02


A6=
 1.141929405E−02
−1.522461316E−03
 3.698844633E−02
 2.204104579E−02


A8=
−3.779063364E−03
−1.299060690E−02
−1.316251200E−02
−7.827669114E−03


A10=
−1.213258627E−04
 8.516882216E−03
 3.639973017E−03
 2.055159559E−03


A12=
 8.018164562E−04
−3.045843134E−03
−6.867243259E−04
−3.891601623E−04


A14=
−4.325829547E−04
 7.117056060E−04
 8.769899280E−05
 5.325796035E−05


A16=
 1.293191892E−04
−1.144430840E−04
−7.743458303E−06
−5.305315381E−06


A18=
−2.518804644E−05
 1.288437027E−05
 4.799913232E−07
 3.857961041E−07


A20=
 3.368710126E−06
−1.013392523E−06
−2.090642571E−08
−2.038692948E−08


A22=
−3.101618576E−07
 5.450611993E−08
 6.284004618E−10
 7.717976988E−10


A24=
 1.881226053E−08
−1.908343801E−09
−1.244091169E−11
−2.034344708E−11


A26=
−6.732205228E−10
 3.914288879E−11
 1.462771545E−13
 3.538853385E−13


A28=
 1.069127801E−11
−3.564783177E−13
−7.749933163E−16
−3.647112752E−15


A30=



 1.684926244E−17









In Table 1A, the curvature radius, the thickness and the focal length are shown in millimeters (mm). Surface numbers 0-23 represent the surfaces sequentially arranged from the object side to the image side along the optical axis. In Table 1 B, k represents the conic coefficient of the equation of the aspheric surface profiles. A4-A30 represent the aspheric coefficients ranging from the 4th order to the 30th order. The tables presented below for each embodiment are the corresponding schematic parameter and aberration curves, and the definitions of the tables are the same as Table 1A and Table 1B of the 1st embodiment. Therefore, an explanation in this regard will not be provided again.


2nd Embodiment


FIG. 3 is a schematic view of an image capturing unit according to the 2nd embodiment of the present disclosure. FIG. 4 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 2nd embodiment. In FIG. 3, the image capturing unit 2 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, an aperture stop ST, a first lens element E1, a second lens element E2, a third lens element E3, a stop S1, a fourth lens element E4, a stop S2, a fifth lens element E5, a sixth lens element E6, a stop E3, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of glass material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of glass material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has one critical point in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has two critical points in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 2nd embodiment are shown in Table 2A and the aspheric surface data are shown in Table 2B below.









TABLE 2A







2nd Embodiment


f = 6.83 mm, Fno = 1.38, HFOV = 41.6 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Ape. Stop
Plano
−1.158















2
Lens 1
3.2451
(ASP)
0.960
Glass
1.619
63.8
10.20


3

5.9266
(ASP)
0.041


4
Lens 2
5.5522
(ASP)
0.300
Plastic
1.686
18.4
−22.86


5

4.0102
(ASP)
0.354


6
Lens 3
4.8771
(ASP)
0.473
Plastic
1.544
56.0
23.40


7

7.6364
(ASP)
0.211














8
Stop
Plano
0.243



















9
Lens 4
12.2940
(ASP)
0.320
Plastic
1.686
18.4
−18.68


10

6.2088
(ASP)
−0.035














11
Stop
Plano
0.092



















12
Lens 5
9.5378
(ASP)
0.827
Glass
1.619
63.8
10.08


13

−17.4041
(ASP)
0.891


14
Lens 6
18.9659
(ASP)
0.493
Plastic
1.587
28.3
−7.92


15

3.6992
(ASP)
−0.824














16
Stop
Plano
0.935



















17
Lens 7
2.3578
(ASP)
0.661
Plastic
1.566
37.4
4.70


18

18.6388
(ASP)
1.078


19
Lens 8
25.8049
(ASP)
0.520
Plastic
1.534
56.0
−5.68


20

2.6980
(ASP)
0.500














21
Filter
Plano
0.210
Glass
1.517
64.2



22

Plano
0.438


23
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 8) is 2.032 mm.


An effective radius of the stop S2 (Surface 11) is 2.327 mm.


An effective radius of the stop S3 (Surface 16) is 3.082 mm.













TABLE 2B





Aspheric Coefficients



















Surface #
2
3
4
5





k=
    4.03591E−02
  −6.40736E−01
  −6.33815E+00
    0.00000E+00


A4=
−2.299737178E−04
−2.386284436E−02 
−3.512375178E−02
−2.396895840E−02


A6=
 1.568039313E−03
3.393214791E−02
 4.812749493E−02
 2.349034982E−02


A8=
−1.756996041E−03
−2.059949481E−02 
−3.135297015E−02
−1.655592983E−02


A10=
 1.254400788E−03
5.534119830E−03
 1.123199652E−02
 8.163878313E−03


A12=
−5.648246843E−04
8.005604821E−05
−1.866823894E−03
−2.640435807E−03


A14=
 1.588685326E−04
−4.493963491E−04 
−2.826909727E−05
 5.788371338E−04


A16=
−2.698191385E−05
1.178085223E−04
 6.245914807E−05
−8.833647739E−05


A18=
 2.527026311E−06
−1.312300553E−05 
−9.124584770E−06
 9.037237709E−06


A20=
−1.003516363E−07
5.564183135E−07
 4.362816723E−07
−4.708006840E−07





Surface #
6
7
9
10





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
  −1.23871E+00


A4=
−1.528216764E−02
−1.255964356E−02
−2.830294534E−02
−5.013974996E−02


A6=
 1.060481737E−03
 2.968107078E−03
 1.729441113E−02
 3.014354992E−02


A8=
 4.097450122E−03
−4.254306377E−03
−1.619002225E−02
−8.369695399E−03


A10=
−6.986949316E−03
 3.580202748E−03
 9.413700043E−03
−1.243935711E−02


A12=
 5.662192529E−03
−1.970144854E−03
−3.738697198E−03
 1.843250829E−02


A14=
−2.713930602E−03
 7.235592605E−04
 1.015171096E−03
−1.343925672E−02


A16=
 8.160425791E−04
−1.631950395E−04
−1.798163079E−04
 6.411678421E−03


A18=
−1.514481053E−04
 2.029385706E−05
 1.831965308E−05
−2.072532920E−03


A20=
 1.592604583E−05
−1.050412600E−06
−7.969608847E−07
 4.451588888E−04


A22=
−7.276914412E−07


−6.049073295E−05


A24=



 4.693733287E−06


A26=



−1.582670802E−07





Surface #
12
13
14
15





k=
  0.00000E+00
    0.00000E+00
    0.00000E+00
  −9.71650E−01


A4=
−3.298259136E−02 
−8.193138372E−03
−3.503317499E−02
−1.366015522E−01


A6=
6.216555455E−03
−3.366485286E−03
 3.389058419E−02
 1.038618553E−01


A8=
2.463413287E−02
 3.429013367E−03
−3.468285880E−02
−8.614918265E−02


A10=
−4.593404011E−02 
−1.201081629E−03
 2.717785721E−02
 5.780545764E−02


A12=
4.478090080E−02
−9.678420898E−04
−1.591074486E−02
−2.859083012E−02


A14=
−2.951739785E−02 
 1.389241816E−03
 6.792549757E−03
 1.019582920E−02


A16=
1.389190260E−02
−8.094264129E−04
−2.105211581E−03
−2.615510815E−03


A18=
−4.664046671E−03 
 2.848905205E−04
 4.711785242E−04
 4.806845850E−04


A20=
1.096289348E−03
−6.549118355E−05
−7.520226755E−05
−6.247015978E−05


A22=
−1.750229902E−04 
 9.907480182E−06
 8.344835193E−06
 5.586609176E−06


A24=
1.801273181E−05
−9.514693070E−07
−6.124586089E−07
−3.262662860E−07


A26=
−1.075592512E−06 
 5.256747906E−08
 2.676704673E−08
 1.118397829E−08


A28=
2.827489353E−08
−1.270591242E−09
−5.277543714E−10
−1.704522544E−10





Surface #
17
18
19
20





k=
  −1.02936E+00
  0.00000E+00
  0.00000E+00
  −1.05915E+01


A4=
−8.515660233E−02
2.578648033E−02
−8.454012349E−02 
−3.704992658E−02


A6=
 7.032305463E−02
2.545261581E−03
3.030625875E−02
 1.136781358E−02


A8=
−5.780198067E−02
−9.922580759E−03 
−9.396543513E−03 
−2.900046189E−03


A10=
 3.416340060E−02
5.469986540E−03
2.302927012E−03
 5.331133163E−04


A12=
−1.457884955E−02
−1.749599519E−03 
−3.758795794E−04 
−6.028958265E−05


A14=
 4.501114794E−03
3.753100278E−04
3.863111849E−05
 2.345426127E−06


A16=
−1.006900623E−03
−5.637746240E−05 
−2.354281702E−06 
 4.221785130E−07


A18=
 1.622325981E−04
6.007169079E−06
6.332550812E−08
−8.544343433E−08


A20=
−1.852764622E−05
−4.518000876E−07 
1.708900049E−09
 7.919037470E−09


A22=
 1.455922482E−06
2.343150328E−08
−2.154678041E−10 
−4.544635426E−10


A24=
−7.461359446E−08
−7.964025765E−10 
8.172742881E−12
 1.693869222E−11


A26=
 2.241048810E−09
1.594306965E−11
−1.503984786E−13 
−4.004181798E−13


A28=
−2.990629344E−11
−1.422855888E−13 
1.130837431E−15
 5.467098115E−15


A30=



−3.287622849E−17









In the 2nd embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 2C are the same as those stated in the 1st embodiment with corresponding values for the 2nd embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 2A and Table 2B as the following values and satisfy the following conditions:









TABLE 2C





Schematic Parameters


















f [mm]
6.83
f/R12 + f/R13
4.75


Fno
1.38
f/R16
2.53


HFOV [deg.]
41.6
f5/f1
0.99


(V1 + V3 + V5)/(V2 + V4)
4.99
f6/f8
1.39


CT1/T12 + CT5/T45
37.92
f7/f8
−0.83


(CT2 + CT3 + CT4)/(T23 +
1.35
(f × TL)/(EPD ×
1.92


T34)

ImgH)


(CT7 + CT8)/T78
1.10
1/|1 − tan(HFOV)|
8.93


T56/T67
8.03
Yc42/Y42
0.59


TL/ImgH
1.39
Yc62/Y62
0.33


R2/R1
1.83
Yc71/Y71
0.58


(R3 + R4)/|f2|
0.42
Yc72/Y72
0.59


R12/R13
1.57
Yc82/Y82
0.34


|f/f2| + |f/f3| + |f/f4|
0.96











3rd Embodiment


FIG. 5 is a schematic view of an image capturing unit according to the 3rd embodiment of the present disclosure. FIG. 6 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 3rd embodiment. In FIG. 5, the image capturing unit 3 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, a stop S1, an aperture stop ST, a first lens element E1, a second lens element E2, a third lens element E3, a stop S2, a fourth lens element E4, a stop S3, a fifth lens element E5, a sixth lens element E6, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of glass material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of glass material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has two critical points in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has two critical points in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 3rd embodiment are shown in Table 3A and the aspheric surface data are shown in Table 3B below.









TABLE 3A







3rd Embodiment


f = 6.89 mm, Fno = 1.38, HFOV = 41.4 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Stop
Plano
1.047


2
Ape. Stop
Plano
−1.166















3
Lens 1
3.2545
(ASP)
0.965
Glass
1.619
63.4
9.63


4

6.3587
(ASP)
0.046


5
Lens 2
5.6441
(ASP)
0.300
Plastic
1.686
18.4
−21.72


6

4.0052
(ASP)
0.265


7
Lens 3
4.9932
(ASP)
0.545
Plastic
1.544
56.0
20.53


8

8.6829
(ASP)
0.220














9
Stop
Plano
0.301



















10
Lens 4
17.3510
(ASP)
0.320
Plastic
1.686
18.4
−17.46


11

7.0341
(ASP)
0.052














12
Stop
Plano
−0.009



















13
Lens 5
9.2015
(ASP)
0.735
Glass
1.619
63.4
11.67


14

−32.4758
(ASP)
0.768


15
Lens 6
15.7686
(ASP)
0.448
Plastic
1.587
28.3
−7.96


16

3.5667
(ASP)
0.151


17
Lens 7
2.5397
(ASP)
0.944
Plastic
1.566
37.4
4.62


18

75.6314
(ASP)
0.942


19
Lens 8
16.1274
(ASP)
0.520
Plastic
1.534
56.0
−5.71


20

2.5365
(ASP)
0.500














21
Filter
Plano
0.210
Glass
1.517
64.2



22

Plano
0.464


23
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 1) is 3.000 mm.


An effective radius of the stop S2 (Surface 9) is 2.040 mm.


An effective radius of the stop S3 (Surface 12) is 2.340 mm.













TABLE 3B





Aspheric Coefficients



















Surface #
3
4
5
6





k=
  2.13968E−02
  −2.02248E−01
  −6.46312E+00
    0.00000E+00


A4=
2.811200630E−04
−4.055583448E−03
−9.339223623E−03
−1.417944360E−02


A6=
3.145724440E−04
 1.365701775E−02
 2.055516422E−02
 9.682332360E−03


A8=
−2.147444784E−04 
−1.595321864E−02
−2.246888071E−02
−7.401683546E−03


A10=
7.990815758E−05
 9.490709630E−03
 1.390608712E−02
 3.220644441E−03


A12=
−2.198148086E−05 
−3.384422152E−03
−5.275213795E−03
−3.324349795E−04


A14=
7.135666275E−06
 7.456865642E−04
 1.259778961E−03
−2.921202986E−04


A16=
−2.185465086E−06 
−9.686170276E−05
−1.811608224E−04
 1.373288777E−04


A18=
3.581383104E−07
 6.656905418E−06
 1.410496128E−05
−2.374225560E−05


A20=
−2.196220081E−08 
−1.840940971E−07
−4.529315812E−07
 1.474191982E−06














Surface #
7
8
10
11





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
  −5.46930E−02


A4=
−1.068109264E−02
−6.761555954E−03
−2.468793650E−02
−6.297482860E−02


A6=
 1.457611190E−03
−1.783973425E−04
 1.698023890E−02
 7.743257147E−02


A8=
−3.489359850E−04
−4.104187251E−04
−2.359509780E−02
−9.097461233E−02


A10=
−1.589784303E−03
−2.985623452E−04
 1.932397542E−02
 7.638467965E−02


A12=
 1.798354793E−03
 4.868499404E−04
−1.050426169E−02
−4.716333296E−02


A14=
−9.320547793E−04
−2.637336483E−04
 3.695989365E−03
 2.138300216E−02


A16=
 2.741737438E−04
 8.105829043E−05
−7.948025399E−04
−7.046474064E−03


A18=
−4.427853583E−05
−1.321166109E−05
 9.401758550E−05
 1.666712498E−03


A20=
 3.465492793E−06
 8.751160843E−07
−4.661305047E−06
−2.765318002E−04


A22=
−9.282396893E−08


 3.062238427E−05


A24=



−2.030000727E−06


A26=



 6.065963385E−08














Surface #
13
14
15
16





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
  −1.03938E+00


A4=
−5.399419673E−02
−1.054444373E−02
−3.734210017E−02
−1.093769903E−01 


A6=
 7.402755626E−02
 4.388333689E−03
 2.733509309E−02
5.520701907E−02


A8=
−8.774823426E−02
−5.919331158E−03
−1.942486678E−02
−2.860073825E−02 


A10=
 7.826793985E−02
 6.520972392E−03
 1.069323972E−02
1.202115509E−02


A12=
−5.273855508E−02
−5.617505311E−03
−4.810191607E−03
−3.749247550E−03 


A14=
 2.667631254E−02
 3.578170109E−03
 1.724225898E−03
7.841430386E−04


A16=
−1.002178687E−02
−1.633251229E−03
−4.905234611E−04
−9.066509908E−05 


A18=
 2.767401819E−03
 5.274731950E−04
 1.103793347E−04
7.924900409E−08


A20=
−5.531885438E−04
−1.191056142E−04
−1.928567658E−05
1.767549452E−06


A22=
 7.777216255E−05
 1.836236408E−05
 2.501575816E−06
−2.865375298E−07 


A24=
−7.280199837E−06
−1.840801386E−06
−2.228974688E−07
2.251327334E−08


A26=
 4.066184911E−07
 1.081557549E−07
 1.197041325E−08
−9.124232104E−10 


A28=
−1.023765680E−08
−2.826361854E−09
−2.882904498E−10
1.521652840E−11














Surface #
17
18
19
20





k=
  −9.82995E−01
    0.00000E+00
  0.00000E+00
  −7.88350E+00


A4=
−5.844931550E−02 
 2.260677611E−02
−8.080235252E−02 
−4.333124289E−02


A6=
2.143028817E−02
−3.804903048E−03
2.728645601E−02
 1.512437356E−02


A8=
−8.657790375E−03 
−2.482998658E−03
−7.886700258E−03 
−4.439626735E−03


A10=
1.330009732E−03
 1.721824837E−03
1.839183905E−03
 1.019653826E−03


A12=
8.111017151E−04
−5.769680054E−04
−2.965579930E−04 
−1.793569626E−04


A14=
−6.674257534E−04 
 1.265322741E−04
3.164691550E−05
 2.402860998E−05


A16=
2.465921736E−04
−1.939740537E−05
−2.220629539E−06 
−2.442556050E−06


A18=
−5.668795327E−05 
 2.111621782E−06
1.001437014E−07
 1.864558158E−07


A20=
8.634155226E−06
−1.622582922E−07
−2.652711413E−09 
−1.050824067E−08


A22=
−8.719570144E−07 
 8.583856813E−09
2.662083606E−11
 4.270450316E−10


A24=
5.607489440E−08
−2.967324629E−10
5.473933285E−13
−1.209198694E−11


A26=
−2.074778485E−09 
 6.018672058E−12
−1.920351591E−14 
 2.254179525E−13


A28=
3.353985810E−11
−5.419284966E−14
1.694148456E−16
−2.479962323E−15


A30=



 1.217679741E−17









In the 3rd embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 3C are the same as those stated in the 1st embodiment with corresponding values for the 3rd embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 3A and Table 3B as the following values and satisfy the following conditions:









TABLE 3C





Schematic Parameters


















f [mm]
6.89
f/R12 + f/R13
4.65


Fno
1.38
f/R16
2.72


HFOV [deg.]
41.4
f5/f1
1.21


(V1 + V3 + V5)/(V2 + V4)
4.97
f6/f8
1.39


CT1/T12 + CT5/T45
38.07
f7/f8
−0.81


(CT2 + CT3 + CT4)/(T23 +
1.48
(f × TL)/(EPD ×
1.92


T34)

ImgH)


(CT7 + CT8)/T78
1.55
1/|1 − tan(HFOV)|
8.44


T56/T67
5.09
Yc42/Y42
0.55


TL/ImgH
1.39
Yc62/Y62
0.37


R2/R1
1.95
Yc71/Y71
0.58


(R3 + R4)/|f2|
0.44
Yc72/Y72
0.57


R12/R13
1.40
Yc82/Y82
0.36


|f/f2| + |f/f3| + |f/f4|
1.05











4th Embodiment


FIG. 7 is a schematic view of an image capturing unit according to the 4th embodiment of the present disclosure. FIG. 8 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 4th embodiment. In FIG. 7, the image capturing unit 4 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, a stop S1, an aperture stop ST, a first lens element E1, a second lens element E2, a third lens element E3, a stop S2, a fourth lens element E4, a stop S3, a fifth lens element E5, a sixth lens element E6, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of glass material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of glass material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has two critical points in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has two critical points in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has three critical points in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 4th embodiment are shown in Table 4A and the aspheric surface data are shown in Table 4B below.









TABLE 4A







4th Embodiment


f = 6.89 mm, Fno = 1.38, HFOV = 41.5 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Stop
Plano
1.055


2
Ape. Stop
Plano
−1.164















3
Lens 1
3.2569
(ASP)
0.946
Glass
1.619
63.4
10.45


4

5.8313
(ASP)
0.036


5
Lens 2
4.9285
(ASP)
0.300
Plastic
1.686
18.4
−29.47


6

3.8644
(ASP)
0.287


7
Lens 3
5.2742
(ASP)
0.547
Plastic
1.544
56.0
21.99


8

9.0865
(ASP)
0.208














9
Stop
Plano
0.303



















10
Lens 4
16.0105
(ASP)
0.320
Plastic
1.686
18.4
−19.90


11

7.3099
(ASP)
0.060














12
Stop
Plano
−0.014



















13
Lens 5
10.4691
(ASP)
0.739
Glass
1.619
63.4
12.71


14

−30.7984
(ASP)
0.790


15
Lens 6
12.7115
(ASP)
0.466
Plastic
1.587
28.3
−8.50


16

3.5352
(ASP)
0.143


17
Lens 7
2.7054
(ASP)
0.948
Plastic
1.566
37.4
4.74


18

−253.5521
(ASP)
0.878


19
Lens 8
10.7480
(ASP)
0.520
Plastic
1.534
56.0
−5.69


20

2.3302
(ASP)
0.500














21
Filter
Plano
0.210
Glass
1.517
64.2



22

Plano
0.500


23
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 1) is 3.000 mm.


An effective radius of the stop S2 (Surface 9) is 2.040 mm.


An effective radius of the stop S3 (Surface 12) is 2.340 mm.













TABLE 4B





Aspheric Coefficients



















Surface #
3
4
5
6





k=
  2.61538E−02
  −1.16033E+00
  −7.25688E+00
    0.00000E+00


A4=
4.255364174E−04
−1.850555031E−02
−2.253137827E−02
−1.691130637E−02


A6=
−1.089089419E−04 
 3.215457117E−02
 3.922044210E−02
 1.296271627E−02


A8=
2.911170992E−04
−3.253824964E−02
−3.963091165E−02
−1.062777137E−02


A10=
−2.777194712E−04 
 1.958593189E−02
 2.455016114E−02
 5.408994697E−03


A12=
1.366005211E−04
−7.327529235E−03
−9.545220325E−03
−1.327754155E−03


A14=
−3.654580044E−05 
 1.710893790E−03
 2.340933736E−03
−6.162445916E−06


A16=
4.952204439E−06
−2.397058768E−04
−3.474020012E−04
 8.907058420E−05


A18=
−2.672137443E−07 
 1.835352357E−05
 2.827640131E−05
−1.946219098E−05


A20=
4.637534692E−10
−5.921118028E−07
−9.677113967E−07
 1.322618053E−06














Surface #
7
8
10
11





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
    1.11475E+00


A4=
−1.004664900E−02
−7.577637855E−03
−2.541606721E−02
−5.632391442E−02


A6=
 1.019385910E−03
 5.459544967E−04
 1.603443163E−02
 6.147561468E−02


A8=
 6.727558441E−04
−8.643046583E−04
−2.258371410E−02
−6.378355581E−02


A10=
−2.695480033E−03
−6.522962314E−05
 1.885579553E−02
 4.392873322E−02


A12=
 2.514610659E−03
 4.398014570E−04
−1.036214845E−02
−2.065000268E−02


A14=
−1.233366642E−03
−2.781093143E−04
 3.663958618E−03
 6.600414957E−03


A16=
 3.578985607E−04
 9.145226539E−05
−7.910154825E−04
−1.379468201E−03


A18=
−5.884449515E−05
−1.543343906E−05
 9.405310683E−05
 1.711663897E−04


A20=
 4.874805655E−06
 1.041571439E−06
−4.693413069E−06
−9.119119956E−06


A22=
−1.499851207E−07


−3.519592872E−07


A24=



 6.802591597E−08


A26=



−2.450010148E−09





Surface #
13
14
15
16





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
  −1.02470E+00


A4=
−4.489786035E−02
−1.133497282E−02
−3.900929296E−02
−1.014384832E−01


A6=
 5.422391206E−02
 5.234215327E−03
 2.394613093E−02
 4.208686694E−02


A8=
−5.112503463E−02
−6.457020062E−03
−1.210698862E−02
−1.656450197E−02


A10=
 3.259113546E−02
 7.365117063E−03
 3.531516863E−03
 4.936082118E−03


A12=
−1.445419060E−02
−6.689881811E−03
−4.824012493E−05
−7.174054817E−04


A14=
 4.688156668E−03
 4.384914149E−03
−5.370091629E−04
−1.924711590E−04


A16=
−1.208505969E−03
−2.020572420E−03
 2.787043817E−04
 1.434938598E−04


A18=
 2.802266255E−04
 6.526764452E−04
−7.638265463E−05
−4.076724327E−05


A20=
−6.136913977E−05
−1.468575897E−04
 1.273478204E−05
 6.821362052E−06


A22=
 1.117248277E−05
 2.253347237E−05
−1.282747344E−06
−7.158376846E−07


A24=
−1.411126912E−06
−2.247340508E−06
 7.038176625E−08
 4.626071657E−08


A26=
 1.043425834E−07
 1.313226483E−07
−1.437944495E−09
−1.682973254E−09


A28=
−3.361692586E−09
−3.411604659E−09
−1.444122848E−11
 2.636976324E−11














Surface #
17
18
19
20





k=
  −8.81908E−01
    0.00000E+00
  0.00000E+00
  −6.50111E+00


A4=
−4.783812304E−02
 2.688388585E−02
−8.359429083E−02 
−4.853576459E−02


A6=
 1.211620902E−02
−2.871608766E−03
3.016732141E−02
 1.934448768E−02


A8=
−3.242115109E−03
−3.845179928E−03
−9.304505214E−03 
−6.416347534E−03


A10=
−5.571090508E−04
 2.368468069E−03
2.213732933E−03
 1.624377061E−03


A12=
 1.072756718E−03
−7.731161619E−04
−3.583435388E−04 
−3.084049649E−04


A14=
−5.812388023E−04
 1.676316418E−04
3.848257927E−05
 4.372605387E−05


A16=
 1.869902115E−04
−2.542137687E−05
−2.747044012E−06 
−4.614719008E−06


A18=
−3.971414887E−05
 2.730028482E−06
1.288292741E−07
 3.601876856E−07


A20=
 5.724580617E−06
−2.063933363E−07
−3.757432605E−09 
−2.056278025E−08


A22=
−5.547891590E−07
 1.072623931E−08
5.605571826E−11
 8.432711693E−10


A24=
 3.454459949E−08
−3.641694759E−10
3.169186081E−14
−2.409844277E−11


A26=
−1.244142515E−09
 7.260730711E−12
−1.387738169E−14 
 4.545472812E−13


A28=
 1.962609598E−11
−6.436717228E−14
1.450091327E−16
−5.079335291E−15


A30=



 2.544611902E−17









In the 4th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 4C are the same as those stated in the 1st embodiment with corresponding values for the 4th embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 4A and Table 4B as the following values and satisfy the following conditions:









TABLE 4C





Schematic Parameters


















f [mm]
6.89
f/R12 + f/R13
4.50


Fno
1.38
f/R16
2.96


HFOV [deg.]
41.5
f5/f1
1.22


(V1 + V3 + V5)/(V2 + V4)
4.97
f6/f8
1.49


CT1/T12 + CT5/T45
42.34
f7/f8
−0.83


(CT2 + CT3 + CT4)/(T23 +
1.46
(f × TL)/(EPD ×
1.92


T34)

ImgH)


(CT7 + CT8)/T78
1.67
1/|1 − tan(HFOV)|
8.65


T56/T67
5.52
Yc42/Y42
0.55


TL/ImgH
1.39
Yc62/Y62
0.37


R2/R1
1.79
Yc71/Y71
0.58


(R3 + R4)/|f2|
0.30
Yc72/Y72
0.58


R12/R13
1.31
Yc82/Y82
0.37


|f/f2| + |f/f3| + |f/f4|
0.89











5th Embodiment


FIG. 9 is a schematic view of an image capturing unit according to the 5th embodiment of the present disclosure. FIG. 10 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 5th embodiment. In FIG. 9, the image capturing unit 5 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, an aperture stop ST, a first lens lens element E4, a fifth lens element E5, a sixth lens element E6, a stop S2, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being concave in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being concave in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 5th embodiment are shown in Table 5A and the aspheric surface data are shown in Table 5B below.









TABLE 5A







5th Embodiment


f = 6.93 mm, Fno = 1.40, HFOV = 41.3 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Ape. Stop
Plano
−1.196















2
Lens 1
3.1587
(ASP)
1.068
Plastic
1.545
56.1
10.18


3

6.4607
(ASP)
0.035


4
Lens 2
5.3525
(ASP)
0.300
Plastic
1.686
18.4
−21.59


5

3.8423
(ASP)
0.361


6
Lens 3
5.3487
(ASP)
0.472
Plastic
1.544
56.0
22.56


7

9.1843
(ASP)
0.155














8
Stop
Plano
0.200



















9
Lens 4
6.5124
(ASP)
0.317
Plastic
1.713
12.4
392.27


10

6.5325
(ASP)
0.167


11
Lens 5
−191.3471
(ASP)
0.912
Plastic
1.544
56.0
17.43


12

−9.0508
(ASP)
0.877


13
Lens 6
23.6073
(ASP)
0.439
Plastic
1.686
18.4
−6.49


14

3.7197
(ASP)
−0.784














15
Stop
Plano
0.889



















16
Lens 7
2.3264
(ASP)
0.595
Plastic
1.639
23.5
4.32


17

13.3815
(ASP)
1.136


18
Lens 8
−168.7915
(ASP)
0.480
Plastic
1.639
23.5
−4.81


19

3.1341
(ASP)
0.500














20
Filter
Plano
0.210
Glass
1.517
64.2



21

Plano
0.369


22
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 8) is 2.050 mm.


An effective radius of the stop S2 (Surface 15) is 3.250 mm.













TABLE 5B





Aspheric Coefficients



















Surface #
2
3
4
5





k=
  4.18790E−02
  −6.55176E−01
  −7.85494E+00
    0.00000E+00


A4=
2.539963270E−04
−1.157554739E−02
−1.697246253E−02
−1.706554243E−02


A6=
3.089865515E−04
 1.941585722E−02
 2.149743885E−02
 9.404642197E−03


A8=
−3.098752679E−04 
−1.377947511E−02
−1.329449037E−02
−4.412912057E−03


A10=
2.552948816E−04
 6.661544332E−03
 5.678395594E−03
 2.046693031E−03


A12=
−1.265718028E−04 
−2.380107715E−03
−1.827638008E−03
−9.490237344E−04


A14=
3.876735213E−05
 5.758374132E−04
 4.176897380E−04
 3.630907729E−04


A16=
−7.210902895E−06 
−8.478760197E−05
−5.987229250E−05
−8.935460632E−05


A18=
7.496912886E−07
 6.727507472E−06
 4.680728689E−06
 1.212913777E−05


A20=
−3.383725240E−08 
−2.195767834E−07
−1.506578439E−07
−6.913447593E−07














Surface #
6
7
9
10





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
  −5.02152E−01


A4=
−8.860056221E−03
−1.134175450E−02
−1.923003151E−02
−9.145528019E−03


A6=
−6.362573922E−05
 3.185885795E−03
−1.218929859E−03
−1.481944614E−02


A8=
 1.633711209E−03
−5.502074990E−03
−1.964989396E−03
 2.169348492E−02


A10=
−2.098636434E−03
 5.649241742E−03
 2.081192319E−03
−2.571974935E−02


A12=
 1.552851497E−03
−3.412162487E−03
−1.103463410E−03
 2.084286970E−02


A14=
−7.542845586E−04
 1.257841411E−03
 3.868377725E−04
−1.176190412E−02


A16=
 2.442516600E−04
−2.759841568E−04
−9.116470188E−05
 4.714081227E−03


A18=
−5.036347407E−05
 3.306344122E−05
 1.247359376E−05
−1.339594161E−03


A20=
 5.972237189E−06
−1.641562884E−06
−7.269446178E−07
 2.630717396E−04


A22=
−3.078199896E−07


−3.376300009E−05


A24=



 2.532327822E−06


A26=



−8.369474100E−08





Surface #
11
12
13
14





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
  −8.25761E−01


A4=
−3.056923536E−03
−9.968845972E−03
−3.468119936E−02
−1.536001384E−01


A6=
−1.705987781E−03
 3.244154302E−03
 2.578738863E−02
 1.215242005E−01


A8=
−3.274078685E−04
−8.603855814E−03
−1.829672355E−02
−8.996887259E−02


A10=
−6.285154535E−04
 1.213648360E−02
 8.585040495E−03
 5.158031524E−02


A12=
 2.678540574E−03
−1.120438851E−02
−2.819846769E−03
−2.201783872E−02


A14=
−3.898689910E−03
 6.985117472E−03
 6.387747537E−04
 6.895205392E−03


A16=
 3.058877999E−03
−3.007366683E−03
−1.006930617E−04
−1.575845512E−03


A18=
−1.456518288E−03
 9.049413643E−04
 1.190069828E−05
 2.608958478E−04


A20=
 4.415135195E−04
−1.898269696E−04
−1.280195167E−06
−3.079080577E−05


A22=
−8.573008104E−05
 2.718869042E−05
 1.476022259E−07
 2.513954384E−06


A24=
 1.032091885E−05
−2.532978587E−06
−1.499542087E−08
−1.344726810E−07


A26=
−7.010014220E−07
 1.382051234E−07
 9.576405559E−10
 4.229052928E−09


A28=
 2.051642721E−08
−3.346902311E−09
−2.640828842E−11
−5.917459223E−11





Surface #
16
17
18
19





k=
  −9.47240E−01
    0.00000E+00
    0.00000E+00
  −1.84580E+01


A4=
−1.073152161E−01
 2.149418430E−02
−9.035351087E−02
−3.707246433E−02


A6=
 8.981196118E−02
−1.846341612E−03
 3.580010060E−02
 8.450524373E−03


A8=
−6.842129582E−02
−4.163795575E−03
−9.777251121E−03
 2.974525485E−04


A10=
 3.832747061E−02
 2.508554350E−03
 1.658183119E−03
−9.297008450E−04


A12=
−1.571303661E−02
−8.239114183E−04
−9.640272638E−05
 3.360856924E−04


A14=
 4.690156745E−03
 1.785846343E−04
−1.983188965E−05
−6.909810965E−05


A16=
−1.017406852E−03
−2.665372412E−05
 5.186442415E−06
 9.433829525E−06


A18=
 1.592933328E−04
 2.770768301E−06
−5.809241728E−07
−8.988454706E−07


A20=
−1.771712762E−05
−1.997185620E−07
 3.889568458E−08
 6.073781193E−08


A22=
 1.359060116E−06
 9.765872434E−09
−1.650245773E−09
−2.900229546E−09


A24=
−6.811780816E−08
−3.084968399E−10
 4.361471661E−11
 9.565701548E−11


A26=
 2.002433368E−09
 5.670817933E−12
−6.568925602E−13
−2.072155602E−12


A28=
−2.612980938E−11
−4.601791840E−14
 4.313230017E−15
 2.650999084E−14


A30=



−1.516887162E−16









In the 5th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 5C are the same as those stated in the 1st embodiment with corresponding values for the 5th embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 5A and Table 5B as the following values and satisfy the following conditions:









TABLE 5C





Schematic Parameters


















f [mm]
6.93
f/R12 + f/R13
4.84


Fno
1.40
f/R16
2.21


HFOV [deg.]
41.3
f5/f1
1.71


(V1 + V3 + V5)/(V2 + V4)
5.47
f6/f8
1.35


CT1/T12 + CT5/T45
35.98
f7/f8
−0.90


(CT2 + CT3 + CT4)/(T23 +
1.52
(f × TL)/(EPD ×
1.95


T34)

ImgH)


(CT7 + CT8)/T78
0.95
1/|1 − tan(HFOV)|
8.21


T56/T67
8.35
Yc42/Y42
0.61


TL/ImgH
1.39
Yc62/Y62
0.31


R2/R1
2.05
Yc71/Y71
0.56


(R3 + R4)/|f2|
0.43
Yc72/Y72
0.62


R12/R13
1.60
Yc82/Y82
0.30


|f/f2| + |f/f3| + |f/f4|
0.65











6th Embodiment


FIG. 11 is a schematic view of an image capturing unit according to the 6th embodiment of the present disclosure. FIG. 12 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 6th embodiment. In FIG. 11, the image capturing unit 6 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, an aperture stop ST, a first lens lens element E4, a fifth lens element E5, a sixth lens element E6, a stop S2, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with negative refractive power has an object-side surface being concave in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The image-side surface of the third lens element E3 has one critical point in an off-axis region thereof.


The fourth lens element E4 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fifth lens element E5 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has one critical point in an off-axis region thereof. The image-side surface of the fifth lens element E5 has one critical point in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being planar in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 6th embodiment are shown in Table 6A and the aspheric surface data are shown in Table 6B below.









TABLE 6A







6th Embodiment


f = 8.64 mm, Fno = 1.44, HFOV = 42.7 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Ape. Stop
Plano
−1.235















2
Lens 1
4.4271
(ASP)
1.379
Plastic
1.545
56.1
10.41


3

17.9479
(ASP)
0.035


4
Lens 2
9.0692
(ASP)
0.300
Plastic
1.686
18.4
−34.24


5

6.4550
(ASP)
0.792


6
Lens 3
−321.5434
(ASP)
0.300
Plastic
1.544
56.0
−901.42


7

−934.1143
(ASP)
−0.151














8
Stop
Plano
0.388



















9
Lens 4
15.5974
(ASP)
0.395
Plastic
1.686
18.4
−21.87


10

7.5696
(ASP)
0.062


11
Lens 5
9.0720
(ASP)
1.158
Plastic
1.544
56.0
16.96


12

523.5602
(ASP)
1.070


13
Lens 6
12.5728
(ASP)
0.960
Plastic
1.562
44.6
−18.54


14

5.5405
(ASP)
−1.123














15
Stop
Plano
1.382



















16
Lens 7
2.6547
(ASP)
0.821
Plastic
1.544
56.0
6.08


17

11.9792
(ASP)
1.571


18
Lens 8

(ASP)
0.563
Plastic
1.534
56.0
−6.49


19

3.4650
(ASP)
0.600














20
Filter
Plano
0.300
Glass
1.517
64.2



21

Plano
0.592


22
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 8) is 2.660 mm.


An effective radius of the stop S2 (Surface 15) is 4.130 mm.













TABLE 6B





Aspheric Coefficients



















Surface #
2
3
4
5





k=
    1.02401E−01
  7.34618E−01
  −1.12803E+01
    0.00000E+00


A4=
−8.716300743E−05
1.214866623E−03
1.224828297E−04
−2.612804431E−03


A6=
 3.590224988E−04
−2.878586515E−03 
−3.268449216E−03 
−7.695198304E−04


A8=
−2.106616823E−04
1.920802950E−03
2.287935668E−03
 5.507225229E−04


A10=
 8.566568927E−05
−6.740077152E−04 
−8.305454476E−04 
−1.502357615E−04


A12=
−2.291035246E−05
1.491943035E−04
1.985047254E−04
 2.608387896E−05


A14=
 4.081614312E−06
−2.184803851E−05 
−3.257491156E−05 
−3.317567882E−06


A16=
−4.605091500E−07
2.073128664E−06
3.536475756E−06
 2.989302825E−07


A18=
 2.951233202E−08
−1.151218390E−07 
−2.249030990E−07 
−1.132882362E−08


A20=
−8.148941370E−10
2.806004989E−09
6.230917000E−09
−2.055015467E−10














Surface #
6
7
9
10





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
    1.75141E−01


A4=
−2.296710802E−03
−1.318827387E−03
−7.223857949E−03
−2.691389060E−02


A6=
−2.998119936E−03
−4.780389358E−03
 3.214475684E−03
 1.471399675E−02


A8=
 1.305628571E−03
 1.317409785E−03
−4.706662413E−03
−4.350457271E−03


A10=
−3.524011526E−04
 7.480541110E−05
 2.624259371E−03
−2.960248075E−03


A12=
 9.344282811E−05
−1.251929481E−04
−8.396547530E−04
 3.624393784E−03


A14=
−2.653090645E−05
 3.269049309E−05
 1.630827235E−04
−1.741225046E−03


A16=
 6.022055088E−06
−4.097213363E−06
−1.898367041E−05
 4.893736433E−04


A18=
−8.619793108E−07
 2.507234994E−07
 1.215383943E−06
−8.754899545E−05


A20=
 6.763952687E−08
−5.699288684E−09
−3.276097377E−08
 1.012347095E−05


A22=
−2.226168194E−09


−7.348454448E−07


A24=



 3.051469480E−08


A26=



−5.538879416E−10














Surface #
11
12
13
14





k=
  0.00000E+00
    0.00000E+00
    0.00000E+00
  −1.15759E+00


A4=
−3.019264638E−02 
−9.118139300E−03
−1.441650304E−02
−5.972964169E−02


A6=
1.182533856E−02
 4.254641276E−03
 1.018026633E−02
 2.355670168E−02


A8=
3.660202809E−03
−4.333093047E−03
−6.612882048E−03
−8.835741266E−03


A10=
−1.068411431E−02 
 3.095308542E−03
 3.094444042E−03
 2.603031900E−03


A12=
8.294144690E−03
−1.499936919E−03
−1.030783155E−03
−5.576820749E−04


A14=
−3.645603847E−03 
 5.014579647E−04
 2.448422261E−04
 8.378640652E−05


A16=
1.028941789E−03
−1.173416960E−04
−4.175861779E−05
−8.519568726E−06


A18=
−1.951250858E−04 
 1.932572754E−05
 5.119854691E−06
 5.429168731E−07


A20=
2.518351889E−05
−2.226147712E−06
−4.471107671E−07
−1.639806141E−08


A22=
−2.185663000E−06 
 1.753272985E−07
 2.712413327E−08
−3.110103323E−10


A24=
1.221858840E−07
−8.985170663E−09
−1.085684139E−09
 4.731033274E−11


A26=
−3.976586474E−09 
 2.696885990E−10
 2.575987514E−11
−1.637209107E−12


A28=
5.726309189E−11
−3.592870534E−12
−2.741217657E−13
 2.041394256E−14














Surface #
16
17
18
19





k=
  −1.10513E+00
  0.00000E+00
    0.00000E+00
  −1.27604E+01


A4=
−3.514700411E−02 
1.418785572E−02
−4.692268365E−02
−1.849963049E−02


A6=
1.253155962E−02
−2.441431409E−03 
 1.190553426E−02
 3.526868041E−03


A8=
−3.592419536E−03 
4.908254072E−04
−2.038192011E−03
−3.585254692E−04


A10=
4.972400000E−04
−1.816307384E−04 
 2.473411795E−04
 9.549428341E−06


A12=
4.127884317E−05
4.079030578E−05
−2.072755842E−05
 2.187701198E−06


A14=
−3.695365071E−05 
−5.451868705E−06 
 1.207513474E−06
−3.270236882E−07


A16=
8.797417870E−06
4.709522508E−07
−4.966770417E−08
 2.358378273E−08


A18=
−1.212041989E−06 
−2.742327005E−08 
 1.455146984E−09
−1.072542263E−09


A20=
1.070777978E−07
1.088846967E−09
−3.024527866E−11
 3.286900907E−11


A22=
−6.148382063E−09 
−2.908612256E−11 
 4.364447389E−13
−6.899256988E−13


A24=
2.220187653E−10
5.001842070E−13
−4.161819347E−15
 9.797583793E−15


A26=
−4.579943577E−12 
−5.002069219E−15 
 2.359574493E−17
−9.007875124E−17


A28=
4.114681162E−14
2.210645057E−17
−6.024484740E−20
 4.841654601E−19


A30=



−1.155407848E−21









In the 6th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 6C are the same as those stated in the 1st embodiment with corresponding values for the 6th embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 6A and Table 6B as the following values and satisfy the following conditions:









TABLE 6C





Schematic Parameters


















f [mm]
8.64
f/R12 + f/R13
4.81


Fno
1.44
f/R16
2.49


HFOV [deg.]
42.7
f5/f1
1.63


(V1 + V3 + V5)/(V2 + V4)
4.57
f6/f8
2.86


CT1/T12 + CT5/T45
58.08
f7/f8
−0.94


(CT2 + CT3 + CT4)/(T23 +
0.97
(f × TL)/(EPD ×
2.01


T34)

ImgH)


(CT7 + CT8)/T78
0.88
1/|1 − tan(HFOV)|
12.94


T56/T67
4.13
Yc42/Y42
0.60


TL/ImgH
1.40
Yc62/Y62
0.30


R2/R1
4.05
Yc71/Y71
0.60


(R3 + R4)/|f2|
0.45
Yc72/Y72
0.60


R12/R13
2.09
Yc82/Y82
0.34


|f/f2| + |f/f3| + |f/f4|
0.66











7th Embodiment


FIG. 13 is a schematic view of an image capturing unit according to the 7th embodiment of the present disclosure. FIG. 14 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 7th embodiment. In FIG. 13, the image capturing unit 7 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, an aperture stop ST, a first lens element E1, a second lens element E2, a third lens element E3, a stop S1, a fourth lens element E4, a stop S2, a fifth lens element E5, a sixth lens element E6, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with negative refractive power has an object-side surface being concave in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has one critical point in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being concave in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has two critical points in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 7th embodiment are shown in Table 7A and the aspheric surface data are shown in Table 7B below.









TABLE 7A







7th Embodiment


f = 6.68 mm, Fno = 1.57, HFOV = 42.4 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Ape. Stop
Plano
−0.877















2
Lens 1
2.9554
(ASP)
0.911
Plastic
1.545
56.1
11.43


3

5.0109
(ASP)
0.035


4
Lens 2
5.6420
(ASP)
0.242
Plastic
1.686
18.4
217.56


5

5.7613
(ASP)
0.292


6
Lens 3
5.2513
(ASP)
0.334
Plastic
1.544
56.0
57.56


7

6.1679
(ASP)
0.218














8
Stop
Plano
0.320



















9
Lens 4
−195.6947
(ASP)
0.292
Plastic
1.686
18.4
−19.60


10

14.4500
(ASP)
−0.005














11
Stop
Plano
0.040



















12
Lens 5
13.9392
(ASP)
0.788
Plastic
1.544
56.0
11.07


13

−10.3924
(ASP)
0.975


14
Lens 6
−201.2072
(ASP)
0.613
Plastic
1.686
18.4
−5.73


15

4.0116
(ASP)
0.035


16
Lens 7
2.0749
(ASP)
0.645
Plastic
1.639
23.3
3.78


17

12.9369
(ASP)
1.009


18
Lens 8
7.5022
(ASP)
0.487
Plastic
1.639
23.3
−4.93


19

2.1626
(ASP)
0.500














20
Filter
Plano
0.210
Glass
1.517
64.2



21

Plano
0.458


22
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 8) is 1.754 mm.


An effective radius of the stop S2 (Surface 11) is 2.181 mm.













TABLE 7B





Aspheric Coefficients



















Surface #
2
3
4
5





k=
  −7.72464E−02
  −1.49707E+01
  −3.31921E+00
    0.00000E+00


A4=
 7.448914076E−05
−5.889001557E−02
−6.838830973E−02
−1.804076475E−02


A6=
−1.170164409E−04
 9.369204911E−02
 1.074110823E−01
 4.167103928E−02


A8=
 9.042719167E−04
−8.413953899E−02
−9.452796450E−02
−4.253129813E−02


A10=
−1.003944631E−03
 4.735943257E−02
 5.289952439E−02
 3.073434742E−02


A12=
 5.695296672E−04
−1.736860920E−02
−1.901069898E−02
−1.675683900E−02


A14=
−1.857972519E−04
 4.173361449E−03
 4.267817066E−03
 7.134106414E−03


A16=
 3.349224748E−05
−6.321662314E−04
−5.251044645E−04
−2.304032459E−03


A18=
−2.713897580E−06
 5.428390521E−05
 1.759021605E−05
 5.184291698E−04


A20=
−1.754374993E−08
−1.984360974E−06
 2.875312261E−06
−7.013473300E−05


A22=
 1.218621661E−08

−2.391426582E−07
 4.169113220E−06





Surface #
6
7
9
10





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
    2.15124E−01


A4=
−1.918049752E−02
−1.222649257E−02
−2.298521651E−02
−3.694362763E−02


A6=
 1.406555319E−02
 1.295542020E−03
 6.309991725E−03
 2.832192594E−02


A8=
−2.266941609E−02
−9.515616528E−04
−1.158286213E−02
−3.253213240E−02


A10=
 2.489806485E−02
−2.073073905E−03
 9.634515891E−03
 2.752863909E−02


A12=
−1.915633414E−02
 3.191943882E−03
−5.554493496E−03
−1.606395052E−02


A14=
 1.016302199E−02
−2.019708721E−03
 2.075024474E−03
 5.189271665E−03


A16=
−3.574318564E−03
 7.046112118E−04
−4.558038782E−04
−1.681545729E−05


A18=
 7.930928690E−04
−1.306881247E−04
 5.039931985E−05
−7.585202660E−04


A20=
−9.982059214E−05
 1.015760001E−05
−1.940484275E−06
 3.362597074E−04


A22=
 5.393789894E−06


−7.282903496E−05


A24=



 8.249705095E−06


A26=



−3.909204529E−07














Surface #
12
13
14
15





k=
    0.00000E+00
    0.00000E+00
  0.00000E+00
  −8.60499E−01


A4=
−3.089075298E−02
−6.613757060E−03
1.484501386E−02
−1.286241687E−01


A6=
 3.833303729E−02
−2.947442611E−03
−2.849554175E−02 
 7.830543920E−02


A8=
−4.896106967E−02
−9.894799401E−04
3.218579385E−02
−4.027378421E−02


A10=
 4.792143617E−02
 9.092852315E−03
−2.556646517E−02 
 1.610899994E−02


A12=
−3.188362642E−02
−1.433787016E−02
1.425981699E−02
−4.997995820E−03


A14=
 1.284826997E−02
 1.251989095E−02
−5.708187111E−03 
 1.200775637E−03


A16=
−2.107123845E−03
−7.026733139E−03
1.653971103E−03
−2.214716253E−04


A18=
−6.616097418E−04
 2.663260587E−03
−3.462731958E−04 
 3.082277518E−05


A20=
 4.954373437E−04
−6.907512452E−04
5.168279957E−05
−3.158726067E−06


A22=
−1.390645193E−04
 1.210507583E−04
−5.342870560E−06 
 2.301645183E−07


A24=
 2.144520461E−05
−1.371836012E−05
3.622107594E−07
−1.125455186E−08


A26=
−1.788356666E−06
 9.079347679E−07
−1.443201212E−08 
 3.302739818E−10


A28=
 6.319856194E−08
−2.664602692E−08
2.552635630E−10
−4.384266398E−12














Surface #
16
17
18
19





k=
  −9.89541E−01
  0.00000E+00
    0.00000E+00
  −8.81374E+00


A4=
−1.300637223E−01
2.218079181E−02
−1.233634047E−01
−5.141896394E−02 


A6=
 9.573037426E−02
−6.757302208E−03 
 4.614392529E−02
1.642918924E−02


A8=
−6.003500182E−02
2.097657741E−03
−1.186750618E−02
−3.256982553E−03 


A10=
 2.805632953E−02
−1.431051171E−03 
 2.117810207E−03
3.393063619E−04


A12=
−9.934044019E−03
5.982062975E−04
−2.507475406E−04
4.234735281E−08


A14=
 2.621176793E−03
−1.484763773E−04 
 1.826316024E−05
−5.545268223E−06 


A16=
−5.061695935E−04
2.393770120E−05
−6.131375426E−07
8.766369372E−07


A18=
 7.048211957E−05
−2.624284004E−06 
−1.796994493E−08
−7.501747636E−08 


A20=
−6.957066334E−06
1.980988955E−07
 3.102406273E−09
4.059433805E−09


A22=
 4.734926244E−07
−1.015057443E−08 
−1.611470143E−10
−1.425552798E−10 


A24=
−2.110375759E−08
3.372265758E−10
 4.508768707E−12
3.158338027E−12


A26=
 5.540500012E−10
−6.549170380E−12 
−6.820086347E−14
−4.019590959E−14 


A28=
−6.492744116E−12
5.640570629E−14
 4.397467489E−16
2.243291630E−16









In the 7th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 7C are the same as those stated in the 1st embodiment with corresponding values for the 7th embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 7A and Table 7B as the following values and satisfy the following conditions:









TABLE 7C





Schematic Parameters


















f [mm]
6.68
f/R12 + f/R13
4.88


Fno
1.57
f/R16
3.09


HFOV [deg.]
42.4
f5/f1
0.97


(V1 + V3 + V5)/(V2 + V4)
4.57
f6/f8
1.16


CT1/T12 + CT5/T45
48.54
f7/f8
−0.77


(CT2 + CT3 + CT4)/(T23 +
1.05
(f × TL)/(EPD ×
2.11


T34)

ImgH)


(CT7 + CT8)/T78
1.12
1/|1 − tan(HFOV)|
11.50


T56/T67
27.86
Yc42/Y42
0.43


TL/ImgH
1.34
Yc62/Y62
0.30


R2/R1
1.70
Yc71/Y71
0.53


(R3 + R4)/|f2|
0.05
Yc72/Y72
0.53


R12/R13
1.93
Yc82/Y82
0.34


|f/f2| + |f/f3| + |f/f4|
0.49











8th Embodiment


FIG. 15 is a schematic view of an image capturing unit according to the 8th embodiment of the present disclosure. FIG. 16 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 8th embodiment. In FIG. 15, the image capturing unit 8 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, an aperture stop ST, a first lens element E1, a second lens element E2, a third lens element E3, a stop S1, a fourth lens element E4, a stop S2, a fifth lens element E5, a sixth lens element E6, a stop S3, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of glass material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has two critical points in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has three critical points in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 8th embodiment are shown in Table 8A and the aspheric surface data are shown in Table 8B below.









TABLE 8A







8th Embodiment


f = 6.65 mm, Fno = 1.57, HFOV = 42.4 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Ape. Stop
Plano
−0.900















2
Lens 1
2.9139
(ASP)
0.816
Glass
1.619
63.8
9.14


3

5.3676
(ASP)
0.035


4
Lens 2
6.9551
(ASP)
0.242
Plastic
1.686
18.4
−27.91


5

5.0296
(ASP)
0.273


6
Lens 3
4.2627
(ASP)
0.343
Plastic
1.544
56.0
33.26


7

5.4184
(ASP)
0.258














8
Stop
Plano
0.315



















9
Lens 4
23.2922
(ASP)
0.264
Plastic
1.686
18.4
−18.87


10

8.2827
(ASP)
−0.029














11
Stop
Plano
0.076



















12
Lens 5
14.6379
(ASP)
0.728
Plastic
1.544
56.0
11.03


13

−9.9862
(ASP)
0.957


14
Lens 6
13.1364
(ASP)
0.429
Plastic
1.587
28.3
−6.96


15

3.0799
(ASP)
−0.638














16
Stop
Plano
0.731



















17
Lens 7
2.0123
(ASP)
0.640
Plastic
1.566
37.4
4.41


18

9.2100
(ASP)
1.082


19
Lens 8
8.6962
(ASP)
0.487
Plastic
1.534
56.0
−6.00


20

2.2974
(ASP)
0.500














21
Filter
Plano
0.210
Glass
1.517
64.2



22

Plano
0.470


23
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 8) is 1.756 mm.


An effective radius of the stop S2 (Surface 11) is 2.151 mm.


An effective radius of the stop S3 (Surface 16) is 3.298 mm.













TABLE 8B





Aspheric Coefficients



















Surface #
2
3
4
5





k=
  −5.78314E−02
  −3.97258E+00
    3.26632E+00
    0.00000E+00


A4=
6.779268706E−04
−2.297854837E−02 
−3.361843201E−02
−1.716837343E−02


A6=
3.045093951E−04
3.474975414E−02
 5.348991904E−02
 3.207764475E−02


A8=
1.243266142E−04
−2.004512690E−02 
−3.382612884E−02
−2.528272286E−02


A10=
−2.745888927E−04 
3.308047866E−03
 7.084633509E−03
 1.118173086E−02


A12=
9.114642920E−05
1.223427443E−03
 4.187747493E−03
−3.903129498E−04


A14=
4.078891714E−05
−5.734297014E−04 
−3.888122143E−03
−2.315113623E−03


A16=
−3.970108300E−05 
6.888341077E−05
 1.510021680E−03
 1.266645499E−03


A18=
1.217160466E−05
9.820407957E−07
−3.330243465E−04
−3.189104769E−04


A20=
−1.718958326E−06 
−4.821368699E−07 
 4.007200294E−05
 4.023663328E−05


A22=
9.501775302E−08

−2.032092058E−06
−2.076023428E−06














Surface #
6
7
9
10





k=
    0.00000E+00
  0.00000E+00
  0.00000E+00
  −2.16126E+01


A4=
−2.560317303E−02
−1.495377499E−02 
−3.121320973E−02 
−4.494925787E−02


A6=
 8.411554378E−03
2.829525679E−03
8.530226998E−03
 4.287931961E−02


A8=
−4.368612446E−03
−4.329807015E−03 
−8.991183699E−03 
−7.060227122E−02


A10=
−4.132437616E−04
4.627414984E−03
3.643013504E−03
 9.520543621E−02


A12=
 3.068510046E−03
−2.908259212E−03 
5.472748072E−06
−9.870846151E−02


A14=
−2.552208092E−03
1.117446329E−03
−7.612100467E−04 
 7.340889515E−02


A16=
 1.127643309E−03
−2.298259044E−04 
3.640171869E−04
−3.782649181E−02


A18=
−2.889305367E−04
1.983084056E−05
−7.628401021E−05 
 1.327375783E−02


A20=
 4.105341998E−05
4.470287301E−08
6.281071772E−06
−3.102925817E−03


A22=
−2.534303866E−06


 4.615128617E−04


A24=



−3.944323658E−05


A26=



 1.471843803E−06














Surface #
12
13
14
15





k=
    0.00000E+00
    0.00000E+00
    0.00000E+00
  −1.00000E+00


A4=
−3.631756265E−02
−8.891861668E−03
−3.777526056E−02
−1.729032987E−01


A6=
 4.710953768E−02
−1.292894114E−02
 3.518754662E−02
 1.295139189E−01


A8=
−8.806394099E−02
 2.841677946E−02
−2.468578740E−02
−8.360220207E−02


A10=
 1.337923287E−01
−3.720118178E−02
 1.031943191E−02
 4.160932467E−02


A12=
−1.484215457E−01
 3.186076855E−02
−1.399761009E−03
−1.522389372E−02


A14=
 1.159465937E−01
−1.854618014E−02
−1.096932923E−03
 4.023162248E−03


A16=
−6.318531025E−02
 7.453530492E−03
 7.879998807E−04
−7.644893678E−04


A18=
 2.399414802E−02
−2.058933268E−03
−2.623027954E−04
 1.038228575E−04


A20=
−6.310591371E−03
 3.802196537E−04
 5.364404742E−05
−9.933707245E−06


A22=
 1.125783346E−03
−4.388371938E−05
−7.060245010E−06
 6.510841381E−07


A24=
−1.298776857E−04
 2.658901864E−06
 5.840608138E−07
−2.772918891E−08


A26=
 8.734318569E−06
−3.220328869E−08
−2.765304428E−08
 6.895021033E−10


A28=
−2.598395975E−07
−3.141917083E−09
 5.711795012E−10
−7.582474195E−12














Surface #
17
18
19
20





k=
  −1.00000E+00
    0.00000E+00
  0.00000E+00
  −7.67834E+00


A4=
−1.106385366E−01
 3.634629841E−02
−9.666643448E−02 
−4.615193597E−02


A6=
 8.204132451E−02
−8.445424853E−03
3.365065791E−02
 1.478012492E−02


A8=
−5.471847763E−02
−5.118110790E−03
−9.245163622E−03 
−3.639650033E−03


A10=
 2.527390767E−02
 3.673811895E−03
1.875818412E−03
 6.219397365E−04


A12=
−8.311188609E−03
−1.175107181E−03
−2.556286880E−04 
−7.015008779E−05


A14=
 1.985171687E−03
 2.368833487E−04
2.187109831E−05
 4.661271051E−06


A16=
−3.472675613E−04
−3.268489528E−05
−1.008379386E−06 
−9.332816617E−08


A18=
 4.429511487E−05
 3.166973118E−06
3.240586509E−09
−1.270271507E−08


A20=
−4.048121876E−06
−2.154546336E−07
2.604794587E−09
 1.345888767E−09


A22=
 2.565035240E−07
 1.007699961E−08
−1.666829996E−10 
−6.416677223E−11


A24=
−1.064183214E−08
−3.084564072E−10
5.170635086E−12
 1.734584104E−12


A26=
 2.588745424E−10
 5.562344860E−12
−8.419146209E−14 
−2.572060420E−14


A28=
−2.790535149E−12
−4.479559150E−14
5.771315447E−16
 1.633707293E−16









In the 8th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 8C are the same as those stated in the 1st embodiment with corresponding values for the 8th embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 8A and Table 8B as the following values and satisfy the following conditions:









TABLE 8C





Schematic Parameters


















f [mm]
6.65
f/R12 + f/R13
5.47


Fno
1.57
f/R16
2.90


HFOV [deg.]
42.4
f5/f1
1.21


(V1 + V3 + V5)/(V2 + V4)
4.78
f6/f8
1.16


CT1/T12 + CT5/T45
38.80
f7/f8
−0.73


(CT2 + CT3 + CT4)/(T23 +
1.00
(f × TL)/(EPD ×
2.06


T34)

ImgH)


(CT7 + CT8)/T78
1.04
1/|1 − tan(HFOV)|
11.56


T56/T67
10.29
Yc42/Y42
0.49


TL/ImgH
1.31
Yc62/Y62
0.34


R2/R1
1.84
Yc71/Y71
0.55


(R3 + R4)/|f2|
0.43
Yc72/Y72
0.56


R12/R13
1.53
Yc82/Y82
0.35


|f/f2| + |f/f3| + |f/f4|
0.79











9th Embodiment


FIG. 17 is a schematic view of an image capturing unit according to the 9th embodiment of the present disclosure. FIG. 18 shows, in order from left to right, spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing unit according to the 9th embodiment. In FIG. 17, the image capturing unit 9 includes the imaging lens assembly (its reference numeral is omitted) of the present disclosure and an image sensor IS. The imaging lens assembly includes, in order from an object side to an image side along an optical axis, an aperture stop ST, a first lens element E1, a second lens element E2, a third lens element E3, a stop S1, a fourth lens element E4, a fifth lens element E5, a sixth lens element E6, a stop S2, a seventh lens element E7, an eighth lens element E8, a filter E9 and an image surface IMG. The imaging lens assembly includes eight lens elements (E1, E2, E3, E4, E5, E6, E7 and E8) with no additional lens element disposed between each of the adjacent eight lens elements.


The first lens element E1 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The first lens element E1 is made of glass material and has the object-side surface and the image-side surface being both aspheric.


The second lens element E2 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The second lens element E2 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The third lens element E3 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The third lens element E3 is made of plastic material and has the object-side surface and the image-side surface being both aspheric.


The fourth lens element E4 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The fourth lens element E4 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof. The image-side surface of the fourth lens element E4 has one critical point in an off-axis region thereof.


The fifth lens element E5 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The fifth lens element E5 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the fifth lens element E5 has one critical point in an off-axis region thereof.


The sixth lens element E6 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The sixth lens element E6 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof. The image-side surface of the sixth lens element E6 has one critical point in an off-axis region thereof.


The seventh lens element E7 with positive refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The seventh lens element E7 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof. The image-side surface of the seventh lens element E7 has one critical point in an off-axis region thereof.


The eighth lens element E8 with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof. The eighth lens element E8 is made of plastic material and has the object-side surface and the image-side surface being both aspheric. The object-side surface of the eighth lens element E8 has two critical points in an off-axis region thereof. The image-side surface of the eighth lens element E8 has one critical point in an off-axis region thereof.


The filter E9 is made of glass material and located between the eighth lens element E8 and the image surface IMG, and will not affect the focal length of the imaging lens assembly. The image sensor IS is disposed on or near the image surface IMG of the imaging lens assembly.


The detailed optical data of the 9th embodiment are shown in Table 9A and the aspheric surface data are shown in Table 9B below.









TABLE 9A







9th Embodiment


f = 6.65 mm, Fno = 1.56, HFOV = 42.6 deg.














Surface #

Curvature Radius
Thickness
Material
Index
Abbe #
Focal Length














0
Object
Plano
Infinity



1
Ape. Stop
Plano
−0.600















2
Lens 1
2.9245
(ASP)
0.848
Glass
1.619
63.8
8.76


3

5.6415
(ASP)
0.033


4
Lens 2
5.4708
(ASP)
0.250
Plastic
1.686
18.4
−25.45


5

4.0882
(ASP)
0.239


6
Lens 3
4.8903
(ASP)
0.416
Plastic
1.544
56.0
28.99


7

6.8760
(ASP)
0.233














8
Stop
Plano
0.309



















9
Lens 4
19.8981
(ASP)
0.278
Plastic
1.686
18.4
−31.57


10

10.3112
(ASP)
0.059


11
Lens 5
535.0139
(ASP)
0.887
Plastic
1.544
56.0
16.01


12

−8.8497
(ASP)
0.657


13
Lens 6
9.5722
(ASP)
0.320
Plastic
1.587
28.3
−18.70


14

5.0514
(ASP)
−0.500














15
Stop
Plano
0.734



















16
Lens 7
2.9683
(ASP)
0.587
Plastic
1.566
37.4
7.07


17

10.6807
(ASP)
1.088


18
Lens 8
20.5511
(ASP)
0.580
Plastic
1.534
56.0
−5.76


19

2.6506
(ASP)
0.500














20
Filter
Plano
0.210
Glass
1.517
64.2



21

Plano
0.459


22
Image
Plano






Note:


Reference wavelength is 587.6 nm (d-line).


An effective radius of the stop S1 (Surface 8) is 1.720 mm.


An effective radius of the stop S2 (Surface 15) is 3.395 mm.













TABLE 9B





Aspheric Coefficients



















Surface #
2
3
4
5





k=
  −8.10718E−02
  −4.48184E+00
    3.32109E+00
    2.02361E+00


A4=
 3.714552233E−04
−1.002783441E−02 
−2.167792109E−02
−1.628913048E−02


A6=
 1.450693750E−03
9.815476233E−03
 2.115096958E−02
 1.692309940E−02


A8=
−1.974739299E−03
5.314406522E−03
−2.167922241E−03
−1.250921241E−02


A10=
 1.619245613E−03
−1.735433078E−02 
−1.429202752E−02
 8.589694798E−03


A12=
−7.921214155E−04
1.391947116E−02
 1.340278373E−02
−6.497638589E−03


A14=
 2.029459528E−04
−5.619909211E−03 
−5.696648399E−03
 4.248147328E−03


A16=
−1.199752069E−05
1.254349632E−03
 1.307538093E−03
−1.848839837E−03


A18=
−6.952427937E−06
−1.476714214E−04 
−1.574114803E−04
 4.851544581E−04


A20=
 1.718577552E−06
7.154339224E−06
 7.800043670E−06
−6.954789528E−05


A22=
−1.240793137E−07


 4.157894275E−06














Surface #
6
7
9
10





k=
  −9.38005E+00
  −1.65487E+01
    0.00000E+00
  −2.28814E+01


A4=
−5.729630684E−03
−2.698086756E−03
−3.101496010E−02
−2.553448183E−02


A6=
 3.135220276E−03
 1.103181118E−03
 3.135821002E−03
 3.670777451E−03


A8=
−1.488534520E−03
−3.348527571E−03
−6.931853012E−03
−9.360168775E−03


A10=
−1.727512782E−04
 4.308827854E−03
 5.556699556E−03
 1.236190581E−02


A12=
 6.399909301E−04
−3.074931988E−03
−3.207343624E−03
−1.427703116E−02


A14=
−3.093778403E−04
 1.295405557E−03
 1.178026739E−03
 1.220514860E−02


A16=
 7.851931673E−05
−2.843010400E−04
−2.415198763E−04
−6.751040895E−03


A18=
−8.034319792E−06
 2.607309500E−05
 2.114317156E−05
 2.327868744E−03


A20=



−4.845028987E−04


A22=



 5.582344912E−05


A24=



−2.734548003E−06





Surface #
11
12
13
14





k=
    0.00000E+00
  −2.90983E+01
  −2.21320E+01
  −2.02520E+01


A4=
−8.244841094E−03
−1.549826511E−02
−3.244934484E−02
−5.780104594E−02


A6=
−2.036766891E−03
−2.156214759E−03
 1.590165583E−02
 2.188837968E−02


A8=
 6.187153817E−03
 1.619470563E−03
−2.443896948E−03
−2.222395955E−03


A10=
−1.136637143E−02
 3.175009312E−03
−3.427036619E−03
−2.915047384E−03


A12=
 8.807918702E−03
−7.857297287E−03
 2.749138075E−03
 1.937616823E−03


A14=
−1.958144060E−03
 8.188180543E−03
−1.067149426E−03
−6.541500395E−04


A16=
−1.266777737E−03
−5.180302804E−03
 2.512869972E−04
 1.390935696E−04


A18=
 1.045687107E−03
 2.188000735E−03
−3.712349540E−05
−1.933911931E−05


A20=
−3.370119361E−04
−6.382815144E−04
 3.345379804E−06
 1.752693355E−06


A22=
 5.799103063E−05
 1.291569101E−04
−1.669857691E−07
−9.991364075E−08


A24=
−5.235528707E−06
−1.778524992E−05
 3.512142795E−09
 3.260095521E−09


A26=
 1.945278062E−07
 1.586991250E−06

−4.655044968E−11


A28=

−8.251847430E−08




A30=

 1.891992122E−09







Surface #
16
17
18
19





k=
  −4.37064E+00
    0.00000E+00
    0.00000E+00
  −7.90453E+00


A4=
−9.058554294E−03
 2.679839514E−02
−7.370710685E−02
−3.843953966E−02


A6=
−4.843832039E−04
−9.556702537E−03
 2.334285632E−02
 1.134063342E−02


A8=
−8.919484562E−04
−8.948018276E−04
−6.202250077E−03
−2.496361477E−03


A10=
 7.605537946E−04
 1.518939052E−03
 1.302225937E−03
 3.447863321E−04


A12=
−4.363027639E−04
−6.175406076E−04
−2.097718021E−04
−2.006619283E−05


A14=
 1.778919468E−04
 1.593484553E−04
 2.612761134E−05
−2.281301570E−06


A16=
−4.957067735E−05
−2.952314815E−05
−2.495769322E−06
 6.538844670E−07


A18=
 9.340894955E−06
 4.026591865E−06
 1.795079082E−07
−7.473743407E−08


A20=
−1.188709050E−06
−4.020840971E−07
−9.532204491E−09
 5.236547876E−09


A22=
 1.013784956E−07
 2.884148419E−08
 3.654902648E−10
−2.429970944E−10


A24=
−5.656902736E−09
−1.438917811E−09
−9.798795431E−12
 7.520675984E−12


A26=
 1.957756756E−10
 4.722901107E−11
 1.738245707E−13
−1.497573503E−13


A28=
−3.745743386E−12
−9.146052608E−13
−1.829623009E−15
 1.739344437E−15


A30=
 2.936217488E−14
 7.903715628E−15
 8.636537512E−18
−8.967851320E−18









In the 9th embodiment, the equation of the aspheric surface profiles of the aforementioned lens elements is the same as the equation of the 1st embodiment. Also, the definitions of these parameters shown in Table 9C are the same as those stated in the 1st embodiment with corresponding values for the 9th embodiment, so an explanation in this regard will not be provided again.


Moreover, these parameters can be calculated from Table 9A and Table 9B as the following values and satisfy the following conditions:









TABLE 9C





Schematic Parameters


















f [mm]
6.65
f/R12 + f/R13
3.55


Fno
1.56
f/R16
2.51


HFOV [deg.]
42.6
f5/f1
1.83


(V1 + V3 + V5)/(V2 + V4)
4.78
f6/f8
3.25


CT1/T12 + CT5/T45
40.73
f7/f8
−1.23


(CT2 + CT3 + CT4)/(T23 +
1.21
(f × TL)/(EPD ×
2.05


T34)

ImgH)


(CT7 + CT8)/T78
1.07
1/|1 − tan(HFOV)|
12.23


T56/T67
2.81
Yc42/Y42
0.47


TL/ImgH
1.31
Yc62/Y62
0.35


R2/R1
1.93
Yc71/Y71
0.56


(R3 + R4)/|f2|
0.38
Yc72/Y72
0.54


R12/R13
1.70
Yc82/Y82
0.36


|f/f2| + |f/f3| + |f/f4|
0.70











10th Embodiment


FIG. 19 is a perspective view of an image capturing unit according to the 10th embodiment of the present disclosure. In this embodiment, an image capturing unit 100 is a camera module including a lens unit 101, a driving device 102, an image sensor 103 and an image stabilizer 104. The lens unit 101 includes the imaging lens assembly disclosed in the 1st embodiment, a barrel and a holder member (their reference numerals are omitted) for holding the imaging lens assembly. However, the lens unit 101 may alternatively be provided with the imaging lens assembly disclosed in other embodiments of the present disclosure, and the present disclosure is not limited thereto. The imaging light converges in the lens unit 101 of the image capturing unit 100 to generate an image with the driving device 102 utilized for image focusing on the image sensor 103, and the generated image is then digitally transmitted to other electronic component for further processing.


The driving device 102 can have auto focusing functionality, and different driving configurations can be obtained through the usages of voice coil motors (VCM), micro electro-mechanical systems (MEMS), piezoelectric systems, or shape memory alloy materials. The driving device 102 is favorable for obtaining a better imaging position of the lens unit 101, so that a clear image of the imaged object can be captured by the lens unit 101 with different object distances. The image sensor 103 (for example, CCD or CMOS), which can feature high photosensitivity and low noise, is disposed on the image surface of the imaging lens assembly to provide higher image quality.


The image stabilizer 104, such as an accelerometer, a gyro sensor and a Hall effect sensor, is configured to work with the driving device 102 to provide optical image stabilization (01S). The driving device 102 working with the image stabilizer 104 is favorable for compensating for pan and tilt of the lens unit 101 to reduce blurring associated with motion during exposure. In some cases, the compensation can be provided by electronic image stabilization (EIS) with image processing software, thereby improving image quality while in motion or low-light conditions.


11th Embodiment


FIG. 20 is one perspective view of an electronic device according to the 11th embodiment of the present disclosure. FIG. 21 is another perspective view of the electronic device in FIG. 20. FIG. 22 is a block diagram of the electronic device in FIG. 20.


In this embodiment, an electronic device 200 is a smartphone including the image capturing unit 100 disclosed in the 10th embodiment, an image capturing unit 100a, an image capturing unit 100b, an image capturing unit 100c, an image capturing unit 100d, a flash module 201, a focus assist module 202, an image signal processor 203, a display module 204 and an image software processor 205. The image capturing unit 100 and the image capturing unit 100a are disposed on the same side of the electronic device 200. The focus assist module 202 can be a laser rangefinder or a ToF (time of flight) module, but the present disclosure is not limited thereto. The image capturing unit 100b, the image capturing unit 100c, the image capturing unit 100d and the display module 204 are disposed on the opposite side of the electronic device 200, and the display module 204 can be a user interface, such that the image capturing units 100b, 100c, 100d can be front-facing cameras of the electronic device 200 for taking selfies, but the present disclosure is not limited thereto. Furthermore, each of the image capturing units 100a, 100b, 100c and 100d can include the imaging lens assembly of the present disclosure and can have a configuration similar to that of the image capturing unit 100. In detail, each of the image capturing units 100a, 100b, 100c and 100d can include a lens unit, a driving device, an image sensor and an image stabilizer, and each of the lens unit can include an imaging lens assembly such as the imaging lens assembly of the present disclosure, a barrel and a holder member for holding the imaging lens assembly.


The image capturing unit 100 is a wide-angle image capturing unit, the image capturing unit 100a is an ultra-wide-angle image capturing unit, the image capturing unit 100b is a wide-angle image capturing unit, the image capturing unit 100c is an ultra-wide-angle image capturing unit, and the image capturing unit 100d is a ToF image capturing unit. In this embodiment, the image capturing units 100 and 100a have different fields of view, such that the electronic device 200 can have various magnification ratios so as to meet the requirement of optical zoom functionality. In addition, the image capturing unit 100d can determine depth information of the imaged object. In this embodiment, the electronic device 200 includes multiple image capturing units 100, 100a, 100b, 100c and 100d, but the present disclosure is not limited to the number and arrangement of image capturing units.


When a user captures images of an object 206, the light rays converge in the image capturing unit 100 or the image capturing unit 100a to generate images, and the flash module 201 is activated for light supplement. The focus assist module 202 detects the object distance of the imaged object 206 to achieve fast auto focusing. The image signal processor 203 is configured to optimize the captured image to improve image quality. The light beam emitted from the focus assist module 202 can be either conventional infrared or laser. In addition, the light rays may converge in the image capturing unit 100b, 100c or 100d to generate images. The display module 204 can include a touch screen, and the user is able to interact with the display module 204 and the image software processor 205 having multiple functions to capture images and complete image processing. Alternatively, the user may capture images via a physical button. The image processed by the image software processor 205 can be displayed on the display module 204.


12th Embodiment


FIG. 23 is one perspective view of an electronic device according to the 12th embodiment of the present disclosure.


In this embodiment, an electronic device 300 is a smartphone including the image capturing unit 100 disclosed in the 10th embodiment, an image capturing unit 100e, an image capturing unit 100f, a flash module 301, a focus assist module, an image signal processor, a display module and an image software processor (not shown). The image capturing unit 100, the image capturing unit 100e and the image capturing unit 100f are disposed on the same side of the electronic device 300, while the display module is disposed on the opposite side of the electronic device 300. Furthermore, each of the image capturing units 100e and 100f can include the imaging lens assembly of the present disclosure and can have a configuration similar to that of the image capturing unit 100, and the details in this regard will not be provided again.


The image capturing unit 100 is a wide-angle image capturing unit, the image capturing unit 100e is a telephoto image capturing unit, and the image capturing unit 100f is an ultra-wide-angle image capturing unit. In this embodiment, the image capturing units 100, 100e and 100f have different fields of view, such that the electronic device 300 can have various magnification ratios so as to meet the requirement of optical zoom functionality. Moreover, the image capturing unit 100e can be a telephoto image capturing unit having a light-folding element configuration, such that the total track length of the image capturing unit 100e is not limited by the thickness of the electronic device 300. Moreover, the light-folding element configuration of the image capturing unit 100e can be similar to, for example, one of the structures shown in FIG. 26 to FIG. 28, which can be referred to foregoing descriptions corresponding to FIG. 26 to FIG. 28, and the details in this regard will not be provided again. In this embodiment, the electronic device 300 includes multiple image capturing units 100, 100e and 100f, but the present disclosure is not limited to the number and arrangement of image capturing units. When a user captures images of an object, light rays converge in the image capturing unit 100, 100e or 100f to generate images, and the flash module 301 is activated for light supplement. Further, the subsequent processes are performed in a manner similar to the abovementioned embodiment, so the details in this regard will not be provided again.


13th Embodiment


FIG. 24 is one perspective view of an electronic device according to the 13th embodiment of the present disclosure.


In this embodiment, an electronic device 400 is a smartphone including the image capturing unit 100 disclosed in the 10th embodiment, an image capturing unit 100g, an image capturing unit 100h, an image capturing unit 100i, an image capturing unit 100j, an image capturing unit 100k, an image capturing unit 100m, an image capturing unit 100n, an image capturing unit 100p, a flash module 401, a focus assist module, an image signal processor, a display module and an image software processor (not shown). The image capturing units 100, 100g, 100h, 100i, 100j, 100k, 100m, 100n and 100p are disposed on the same side of the electronic device 400, while the display module is disposed on the opposite side of the electronic device 400. Furthermore, each of the image capturing units 100g, 100h, 100i, 100j, 100k, 100m, 100n and 100p can include the imaging lens assembly of the present disclosure and can have a configuration similar to that of the image capturing unit 100, and the details in this regard will not be provided again.


The image capturing unit 100 is a wide-angle image capturing unit, the image capturing unit 100g is a telephoto image capturing unit, the image capturing unit 100h is a telephoto image capturing unit, the image capturing unit 100i is a wide-angle image capturing unit, the image capturing unit 100j is an ultra-wide-angle image capturing unit, the image capturing unit 100k is an ultra-wide-angle image capturing unit, the image capturing unit 100m is a telephoto image capturing unit, the image capturing unit 100n is a telephoto image capturing unit, and the image capturing unit 100p is a ToF image capturing unit. In this embodiment, the image capturing units 100, 100g, 100h, 100i, 100j, 100k, 100m and 100n have different fields of view, such that the electronic device 400 can have various magnification ratios so as to meet the requirement of optical zoom functionality. Moreover, each of the image capturing units 100g and 100h can be a telephoto image capturing unit having a light-folding element configuration. Moreover, the light-folding element configuration of each of the image capturing unit 100g and 100h can be similar to, for example, one of the structures shown in FIG. 26 to FIG. 28, which can be referred to foregoing descriptions corresponding to FIG. 26 to FIG. 28, and the details in this regard will not be provided again. In addition, the image capturing unit 100p can determine depth information of the imaged object. In this embodiment, the electronic device 400 includes multiple image capturing units 100, 100g, 100h, 100i, 100j, 100k, 100m, 100n and 100p, but the present disclosure is not limited to the number and arrangement of image capturing units. When a user captures images of an object, the light rays converge in the image capturing unit 100, 100g, 100h, 100i, 100j, 100k, 100m, 100n or 100p to generate images, and the flash module 401 is activated for light supplement. Further, the subsequent processes are performed in a manner similar to the abovementioned embodiments, and the details in this regard will not be provided again.


The smartphone in this embodiment is only exemplary for showing the image capturing unit of the present disclosure installed in an electronic device, and the present disclosure is not limited thereto. The image capturing unit can be optionally applied to optical systems with a movable focus. Furthermore, the imaging lens assembly of the image capturing unit features good capability in aberration corrections and high image quality, and can be applied to 3D (three-dimensional) image capturing applications, in products such as digital cameras, mobile devices, digital tablets, smart televisions, network surveillance devices, dashboard cameras, vehicle backup cameras, multi-camera devices, image recognition systems, motion sensing input devices, wearable devices and other electronic imaging devices.


The foregoing description, for the purpose of explanation, has been described with reference to specific embodiments. It is to be noted that TABLES 1A-9C show different data of the different embodiments; however, the data of the different embodiments are obtained from experiments. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated. The embodiments depicted above and the appended drawings are exemplary and are not intended to be exhaustive or to limit the scope of the present disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings.

Claims
  • 1. An imaging lens assembly comprising eight lens elements, the eight lens elements being, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element and an eighth lens element, and each of the eight lens elements having an object-side surface facing toward the object side and an image-side surface facing toward the image side; wherein the first lens element has positive refractive power, the object-side surface of the first lens element is convex in a paraxial region thereof, the image-side surface of the first lens element is concave in a paraxial region thereof, the object-side surface of the second lens element is convex in a paraxial region thereof, the image-side surface of the second lens element is concave in a paraxial region thereof, the fifth lens element has positive refractive power, the sixth lens element has negative refractive power, the image-side surface of the sixth lens element is concave in a paraxial region thereof, the seventh lens element has positive refractive power, the object-side surface of the seventh lens element is convex in a paraxial region thereof, the eighth lens element has negative refractive power, and at least one of the object-side surface and the image-side surface of at least one lens element of the imaging lens assembly has at least one critical point in an off-axis region thereof;wherein an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, an Abbe number of the fifth lens element is V5, a curvature radius of the image-side surface of the sixth lens element is R12, a curvature radius of the object-side surface of the seventh lens element is R13, a focal length of the first lens element is f1, a focal length of the fifth lens element is f5, a focal length of the sixth lens element is f6, a focal length of the seventh lens element is f7, a focal length of the eighth lens element is f8, and the following conditions are satisfied: 2.0<(V1+V3+V5)/(V2+V4)<9.0;0.60<R12/R13<3.3;0.20<f5/f1<4.0;0.10<f6/f8<4.5; and−1.7<f7/f8<−0.20.
  • 2. The imaging lens assembly of claim 1, wherein the focal length of the first lens element is f1, the focal length of the fifth lens element is f5, and the following condition is satisfied: 0.40<f5/f1<3.5.
  • 3. The imaging lens assembly of claim 1, wherein the focal length of the seventh lens element is f7, the focal length of the eighth lens element is f8, and the following condition is satisfied: −1.5<f7/f8<−0.40.
  • 4. The imaging lens assembly of claim 1, wherein a central thickness of the first lens element is CT1, a central thickness of the fifth lens element is CT5, an axial distance between the first lens element and the second lens element is T12, an axial distance between the fourth lens element and the fifth lens element is T45, and the following condition is satisfied: 25.0<CT1/T12+CT5/T45.
  • 5. The imaging lens assembly of claim 1, wherein a curvature radius of the object-side surface of the second lens element is R3, a curvature radius of the image-side surface of the second lens element is R4, a focal length of the second lens element is f2, and the following condition is satisfied: 0≤(R3+R4)/|f2|<0.90.
  • 6. The imaging lens assembly of claim 1, wherein an f-number of the imaging lens assembly is Fno, half of a maximum field of view of the imaging lens assembly is HFOV, and the following conditions are satisfied: 0.90<Fno<2.0; and3.5<1/|1−tan(HFOV)|.
  • 7. The imaging lens assembly of claim 1, wherein the image-side surface of the fourth lens element is concave in a paraxial region thereof, a vertical distance between a convex critical point on the image-side surface of the fourth lens element and an optical axis is Yc42, a maximum effective radius of the image-side surface of the fourth lens element is Y42, and at least one convex critical point on the image-side surface of the fourth lens element in an off-axis region satisfies the following condition: 0.15<Yc42/Y42<0.80.
  • 8. The imaging lens assembly of claim 1, wherein the image-side surface of the eighth lens element is concave in a paraxial region thereof, a vertical distance between a convex critical point on the image-side surface of the eighth lens element and an optical axis is Yc82, a maximum effective radius of the image-side surface of the eighth lens element is Y82, and at least one convex critical point on the image-side surface of the eighth lens element in an off-axis region satisfies the following condition: 0.15<Yc82/Y82<0.55.
  • 9. An image capturing unit, comprising: the imaging lens assembly of claim 1; andan image sensor disposed on an image surface of the imaging lens assembly.
  • 10. An electronic device, comprising: the image capturing unit of claim 9.
  • 11. An imaging lens assembly comprising eight lens elements, the eight lens elements being, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element and an eighth lens element, and each of the eight lens elements having an object-side surface facing toward the object side and an image-side surface facing toward the image side; wherein the first lens element has positive refractive power, the object-side surface of the first lens element is convex in a paraxial region thereof, the image-side surface of the first lens element is concave in a paraxial region thereof, the object-side surface of the second lens element is convex in a paraxial region thereof, the fifth lens element has positive refractive power, the sixth lens element has negative refractive power, the image-side surface of the sixth lens element is concave in a paraxial region thereof, the seventh lens element has positive refractive power, the object-side surface of the seventh lens element is convex in a paraxial region thereof, the eighth lens element has negative refractive power, and at least one of the object-side surface and the image-side surface of at least one lens element of the imaging lens assembly has at least one critical point in an off-axis region thereof;wherein an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, an Abbe number of the fifth lens element is V5, a curvature radius of the image-side surface of the sixth lens element is R12, a curvature radius of the object-side surface of the seventh lens element is R13, a focal length of the first lens element is f1, a focal length of the fifth lens element is f5, a focal length of the sixth lens element is f6, a focal length of the seventh lens element is f7, a focal length of the eighth lens element is f8, and the following conditions are satisfied: 2.5<(V1+V3+V5)/(V2+V4)<8.5;0.60<R12/R13<3.3;0.20<f5/f1<4.0;0.10<f6/f8<4.5; and−1.7<f7/f8<−0.20.
  • 12. The imaging lens assembly of claim 11, wherein the Abbe number of the first lens element is V1, the Abbe number of the second lens element is V2, the Abbe number of the third lens element is V3, the Abbe number of the fourth lens element is V4, the Abbe number of the fifth lens element is V5, and the following condition is satisfied: 3.0<(V1+V3+V5)/(V2+V4)<8.0.
  • 13. The imaging lens assembly of claim 11, wherein the curvature radius of the image-side surface of the sixth lens element is R12, the curvature radius of the object-side surface of the seventh lens element is R13, and the following condition is satisfied: 0.96<R12/R13<2.6.
  • 14. The imaging lens assembly of claim 11, wherein the focal length of the sixth lens element is f6, the focal length of the eighth lens element is f8, and the following condition is satisfied: 0.50<f6/f8<4.0.
  • 15. The imaging lens assembly of claim 11, wherein a focal length of the imaging lens assembly is f, the curvature radius of the image-side surface of the sixth lens element is R12, the curvature radius of the object-side surface of the seventh lens element is R13, and the following condition is satisfied: 3.4<f/R12+f/R13<7.0.
  • 16. The imaging lens assembly of claim 11, wherein a focal length of the imaging lens assembly is f, an axial distance between the object-side surface of the first lens element and an image surface is TL, an entrance pupil diameter of the imaging lens assembly is EPD, a maximum image height of the imaging lens assembly is ImgH, and the following condition is satisfied: 1.2<(f×TL)/(EPD×ImgH)<2.2.
  • 17. The imaging lens assembly of claim 11, wherein a curvature radius of the object-side surface of the first lens element is R1, a curvature radius of the image-side surface of the first lens element is R2, a focal length of the imaging lens assembly is f, a focal length of the second lens element is f2, a focal length of the third lens element is f3, a focal length of the fourth lens element is f4, and the following conditions are satisfied: 1.5<R2/R1<4.5; and|f/f2|+|f/f3|+|f/f4|<1.2.
  • 18. The imaging lens assembly of claim 11, wherein a vertical distance between a convex critical point on the image-side surface of the seventh lens element and an optical axis is Yc72, a maximum effective radius of the image-side surface of the seventh lens element is Y72, and at least one convex critical point on the image-side surface of the seventh lens element in an off-axis region satisfies the following condition: 0.35<Yc72/Y72<0.80.
  • 19. An imaging lens assembly comprising eight lens elements, the eight lens elements being, in order from an object side to an image side along an optical path, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element and an eighth lens element, and each of the eight lens elements having an object-side surface facing toward the object side and an image-side surface facing toward the image side; wherein the first lens element has positive refractive power, the object-side surface of the first lens element is convex in a paraxial region thereof, the image-side surface of the first lens element is concave in a paraxial region thereof, the object-side surface of the second lens element is convex in a paraxial region thereof, the image-side surface of the second lens element is concave in a paraxial region thereof, the fifth lens element has positive refractive power, the sixth lens element has negative refractive power, the image-side surface of the sixth lens element is concave in a paraxial region thereof, the seventh lens element has positive refractive power, the object-side surface of the seventh lens element is convex in a paraxial region thereof, the eighth lens element has negative refractive power, and at least one of the object-side surface and the image-side surface of at least one lens element of the imaging lens assembly has at least one critical point in an off-axis region thereof;wherein an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, an Abbe number of the fourth lens element is V4, an Abbe number of the fifth lens element is V5, a curvature radius of the image-side surface of the sixth lens element is R12, a curvature radius of the object-side surface of the seventh lens element is R13, a focal length of the first lens element is f1, a focal length of the fifth lens element is f5, a focal length of the sixth lens element is f6, a focal length of the eighth lens element is f8, an axial distance between the fifth lens element and the sixth lens element is T56, an axial distance between the sixth lens element and the seventh lens element is T67, and the following conditions are satisfied: 2.0<(V1+V3+V5)/(V2+V4)<9.0;0.60<R12/R13<3.3;0.20<f5/f1<4.0;0.10<f6/f8<4.5; and0.95<T56/T67.
  • 20. The imaging lens assembly of claim 19, wherein the Abbe number of the first lens element is V1, the Abbe number of the second lens element is V2, the Abbe number of the third lens element is V3, the Abbe number of the fourth lens element is V4, the Abbe number of the fifth lens element is V5, the focal length of the first lens element is f1, the focal length of the fifth lens element is f5, and the following conditions are satisfied: 2.5<(V1+V3+V5)/(V2+V4)<8.5; and0.40<f5/f1<3.5.
  • 21. The imaging lens assembly of claim 19, wherein the curvature radius of the image-side surface of the sixth lens element is R12, the curvature radius of the object-side surface of the seventh lens element is R13, the axial distance between the fifth lens element and the sixth lens element is T56, the axial distance between the sixth lens element and the seventh lens element is T67, and the following conditions are satisfied: 0.78<R12/R13<3.0; and1.4<T56/T67<60.
  • 22. The imaging lens assembly of claim 19, wherein the focal length of the sixth lens element is f6, the focal length of the eighth lens element is f8, and the following condition is satisfied: 0.50<f6/f8<4.0.
  • 23. The imaging lens assembly of claim 19, wherein a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, an axial distance between the second lens element and the third lens element is T23, an axial distance between the third lens element and the fourth lens element is T34, and the following condition is satisfied: 0.80<(CT2+CT3+CT4)/(T23+T34)<1.7.
  • 24. The imaging lens assembly of claim 19, wherein a central thickness of the seventh lens element is CT7, a central thickness of the eighth lens element is CT8, an axial distance between the seventh lens element and the eighth lens element is T78, an axial distance between the object-side surface of the first lens element and an image surface is TL, a maximum image height of the imaging lens assembly is ImgH, and the following conditions are satisfied: 0.65<(CT7+CT8)/T78<2.2; and0.80<TL/ImgH<1.5.
  • 25. The imaging lens assembly of claim 19, wherein a focal length of the imaging lens assembly is f, a curvature radius of the image-side surface of the eighth lens element is R16, and the following condition is satisfied: 1.8<f/R16<4.0.
  • 26. The imaging lens assembly of claim 19, wherein a vertical distance between a convex critical point on the image-side surface of the sixth lens element and an optical axis is Yc62, a maximum effective radius of the image-side surface of the sixth lens element is Y62, and at least one convex critical point on the image-side surface of the sixth lens element in an off-axis region satisfies the following condition: 0.15<Yc62/Y62<0.55.
  • 27. The imaging lens assembly of claim 19, wherein a vertical distance between a concave critical point on the object-side surface of the seventh lens element and an optical axis is Yc71, a maximum effective radius of the object-side surface of the seventh lens element is Y71, and at least one concave critical point on the object-side surface of the seventh lens element in an off-axis region satisfies the following condition: 0.35<Yc71/Y71<0.75.
Priority Claims (1)
Number Date Country Kind
111122801 Jun 2022 TW national