The present invention relates to an imaging lens unit.
Recently, due to the advancement in technology, mobile terminals such as mobile phones and personal digital assistants (PDAs) are currently used for not only making simple phone calls but to also perform functions for multi-convergence such as playing music or movies, watching TV, and playing games. One of the leading factors for such multi-convergence is a camera module.
In general, a compact camera module (CCM) has a compact size and is applied to portable mobile communication devices such as camera phones, PDAs, and smartphones and various information technology (IT) devices such as toy cameras. Presently, CCMs are being installed in various devices in order to meet demands of consumers having specific preferences
As the CCMs have to perform various functions using a compact optical system, various techniques are used to make the modules slim. In addition to the slim size, demands for image quality of the compact optical system are also increasing, and thus development of slim optical system providing a high image quality is required.
Thus, recently, an imaging lens unit constituting a high resolution imaging lens by using five lenses having positive (+) refractive power and negative (−) refractive power has been developed.
However, the imaging lens unit having five lenses described above cannot provide normal optical characteristics or aberration characteristics as desired by users according to predetermined conditions.
The present invention has been made in an effort to provide an imaging lens unit having five lenses and satisfying conditions of optical characteristics desired by users and showing excellent aberration characteristics.
According to a first preferred embodiment of the present invention, there is provided an imaging lens unit, including: a first lens having a positive (+) power; a second lens having a negative (−) power; a third lens selectively having one of a positive (+) and negative (−) power; a fourth lens having a negative (−) power; and a fifth lens having a negative (−) power, wherein the first lens, the second lens, the third lens, the fourth lens, and fifth lens are arranged in order from an object to be formed as an image, and the fourth lens is concave toward an image side.
The fourth lens may be a meniscus-shaped lens.
An Abbe number v4 of the fourth lens may satisfy the following conditional expression:
0<v4<30.
The second lens and the fourth lens may be formed of a high dispersion material.
An Abbe number v1 of the first lens may satisfy the following conditional expression:
50<v1.
An Abbe number v2 of the second lens may satisfy the following conditional expression:
0<v2<30.
The first lens may have a convex form toward an object side.
The second lens may have a concave form toward the image side.
The fifth lens may have an inflection point toward the image side.
The third lens may have negative (−) power.
The third lens may have positive (+) power.
The imaging lens unit may further include an aperture stop disposed in front of the first lens to adjust a light amount.
The imaging lens unit may further include an aperture stop disposed between the first lens and the second lens to adjust a light amount.
The first lens, the second lens, the third lens, and the fourth lens may all be made of a plastic material.
A total focal length f of the imaging lens unit, a curvature radius r7 of the fourth lens on the object side, and a curvature radius r8 of the fourth lens on the image side may satisfy the following conditional expression:
0<(r7+r8)/(r7−r8)<−2.5.
A total focal length f of the imaging lens unit and a distance tt from a vertex of the first lens on the object side to the image side may satisfy the following conditional expression:
0<tt/f<1.3.
An Abbe number v1 of the first lens, an Abbe number v2 of the second lens, an Abbe number v3 of the third lens, and an Abbe number v4 of the fourth lens may satisfy the following conditional expression:
0.7<(v1+v2)/(v3+v4)<1.0.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the U.S. Patent and Trademark Office upon request and payment of the necessary fee.
The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings. In the specification, in adding reference numerals to components throughout the drawings, it is to be noted that like reference numerals designate like components even though components are shown in different drawings. In the description, the terms “first”, “second”, “one surface”, “the other surface” and so on are used to distinguish one element from another element, and the elements are not defined by the above terms. In describing the present invention, a detailed description of related known functions or configurations will be omitted so as not to obscure the gist of the present invention.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Also, an aperture stop S that adjusts a light amount of incident light that is incident from the object to be formed as an image and a focal depth may be disposed toward the object side to be separated a predetermined distance from the first lens 10.
Accordingly, the light amount of the object to be imaged passes through each of the first lens 10, the second lens 20, the third lens 30, the fourth lens 40, and the fifth lens 50 to be incident on the image sensor 70.
Also, the filter 60 may be formed of an ultraviolet ray blocking filter (IR cut filter), that prevents ultraviolet rays emitted from the incident light that is incident therethrough from being transmitted to the image sensor 70 disposed on an image side.
In detail, the first lens 10 has positive (+) power, and the second lens 20 has negative (−) power, the third lens 30 has negative (−) power, the fourth lens 40 has negative (−) power, and the fifth lens 50 has negative (−) power.
Also, the first lens 10 is convex toward the object side, and an Abbe number v1 of the first lens 10 satisfies the following conditional expression:
50<v1. Conditional expression (1):
Also, the second lens 20 is concave toward the image side, and an Abbe number v2 of the second lens 20 satisfies the following conditional expression:
0<v2<30. Conditional expression (2):
Also, the fourth lens 40 is concave toward the image side and has a meniscus shape, and an Abbe number v4 of the fourth lens 40 satisfies the following conditional expression:
0<v4<30. Conditional expression (3):
Also, the fifth lens 50 has an inflection point toward the image side.
In addition, the second lens 20 and the fourth lens 40 are made of a high dispersion material.
The imaging lens unit according to the first embodiment of the present invention illustrated in
0<(r7+r8)/(r7−r8)<−2.5 Conditional expression (4):
0<tt/f<1.3 Conditional expression (5):
0.7<(v1+v2)/(v3+v4)<1.0 Conditional expression (6):
Here, the symbols denote the following:
f: total focal length of the imaging lens unit
r7: curvature radius of the fourth lens 40 at the object side
r8: curvature radius of the fourth lens 40 at the image side
tt: distance between a vertex of the first lens 10 at the object side and the image side
v1: Abbe number of the first lens 10
v2: Abbe number of the second lens 20
v3: Abbe number of the third lens 30
v4: Abbe number of the fourth lens 40
Also, aspheric constants of the imaging lens unit according to the first embodiment of the present invention may be obtained using Equation 1 below.
Here, the alphabet E used with a conic constant K or with an aspheric constant A, B, C, D, E, or F and a number connected to the alphabet E by a hyphen “-” denote the involution of 10.
For example, “E+01” denotes 101, and “E−01” denotes 10−1.
Table 1 below shows design data of the lenses of the imaging lens unit according to the first embodiment of the present invention.
As shown in Table 1, an Abbe number v1 of the first lens 10 according to the first embodiment of the present invention is 56.200, thus satisfying Conditional expression (1).
Also, an Abbe number v2 of the second lens 20 is 25.600, thus satisfying Conditional expression (2).
Also, an Abbe number v4 of the fourth lens 40 is 25.600, thus satisfying Conditional expression (3).
In addition, it can be seen from a curvature radius of the fourth lens 40 that Conditional expression (4) is satisfied.
In addition, it can be seen from Abbe numbers of the first lens 10, the second lens 20, and the fourth lens 40 that Conditional expression (6) is satisfied.
Table 2 below shows aspheric constants of the lenses of the imaging lens unit according to the first embodiment of the present invention.
Below, Table 3 shows focal lengths (Focal Length Tolerance, EFL) of the lenses of the imaging lens unit according to the first embodiment of the present invention, and according to the above conditional expressions.
As shown in Table 3, it can be seen from the focal length of the first lens 10 according to the first embodiment of the present invention that Conditional expression (5) is satisfied.
As illustrated in
A Y-axis of the graph of
Also, with regard to interpretation of the graph of
Accordingly, the imaging lens unit according to the first embodiment of the present invention has excellent characteristics regarding spherical aberration, astigmatism, and distortion.
With regard to interpretation of the graph of coma aberration, it may be interpreted that the closer the curves of the graph are to the X-axis on a positive axis and a negative axis, the better is the function of correcting coma aberration. Referring to the graph of
Thus, the imaging lens unit according to the first embodiment of the present invention provides an excellent coma aberration correction function.
As illustrated in
In detail, the first lens 10b has positive (+) power, and the second lens 20b has negative (−) power, third lens 30b has positive (+) power, the fourth lens 40b has negative (−) power, and the fifth lens 50b has negative (−) power.
Also, the filter 60 and the image sensor 70 are arranged at the back of the fifth lens 50b.
Also, an aperture stop S that adjusts a light amount of incident light incident from an object to be formed as an image and a focal depth may be disposed toward the object side to be separated at a predetermined distance from the first lens 10b.
Table 4 below shows design data of the lenses of the imaging lens unit according to the second embodiment of the present invention.
Table 5 below shows aspheric constants of the lenses of the imaging lens unit according to the second embodiment of the present invention.
Below, Table 6 shows focal lengths (Focal Length Tolerance, EFL) of the lenses of the imaging lens unit according to the second embodiment of the present invention and according to the above conditional expressions.
A Y-axis of the graph of
Also, with regard to interpretation of the graph of
Accordingly, the imaging lens unit according to the second embodiment of the present invention has excellent characteristics regarding spherical aberration, astigmatism, and distortion.
With regard to interpretation of the graph of coma aberration, it may be interpreted that the closer the curves of the graph are to the X-axis on a positive axis and a negative axis, the better is the function of correcting coma aberration.
Referring to the graph of
Thus, the imaging lens unit according to the second embodiment of the present invention provides an excellent coma aberration correction function.
As illustrated in
In detail, the first lens 10c has positive (+) power, and the second lens 20c has negative (−) power, third lens 30c has negative (−) power, the fourth lens 40c has negative (−) power, and the fifth lens 50c has negative (−) power.
Also, an aperture stop S that adjusts a light amount of incident light incident from an object to be formed as an image and a focal depth may be disposed between the first lens 10c and the second lens 20c.
Also, the filter 60 and the image sensor 70 are arranged at the back of the fifth lens 50c.
Table 7 below shows design data of the lenses of the imaging lens unit according to the third embodiment of the present invention.
Table 8 below shows aspheric constants of the lenses of the imaging lens unit according to the third embodiment of the present invention.
Table 9 below shows focal lengths (Focal Length Tolerance, EFL) of the lenses of the imaging lens unit according to the third embodiment of the present invention and according to the above conditional expressions.
A Y-axis of the graph of
Also, with regard to interpretation of the graph of
Accordingly, the imaging lens unit according to the third embodiment of the present invention has excellent characteristics regarding spherical aberration, astigmatism, and distortion.
With regard to interpretation of the graph of coma aberration, it may be interpreted that the closer the curves of the graph are to the X-axis on a positive axis and a negative axis, the better is the function of correcting coma aberration. Referring to the graph of
Thus, the imaging lens unit according to the third embodiment of the present invention provides an excellent coma aberration correction function.
As illustrated in
In detail, the first lens 10d has positive (+) power, and the second lens 20d has negative (−) power, third lens 30d has positive (+) power, the fourth lens 40d has negative (−) power, and the fifth lens 50d has negative (−) power.
Also, an aperture stop S that adjusts a light amount of incident light incident from an object to be formed as an image and a focal depth may be disposed between the first lens 10d and the second lens 20d.
Also, the filter 60 and the image sensor 70 are arranged at the back of the fifth lens 50d.
Table 10 below shows design data of the lenses of the imaging lens unit according to the fourth embodiment of the present invention.
Table 11 below shows aspheric constants of the lenses of the imaging lens unit according to the fourth embodiment of the present invention.
Below, Table 12 shows focal lengths (Focal Length Tolerance, EFL) of the lenses of the imaging lens unit according to the fourth embodiment of the present invention and according to the above conditional expressions.
A Y-axis of the graph of
Also, with regard to interpretation of the graph of
Accordingly, the imaging lens unit according to the fourth embodiment of the present invention has excellent characteristics regarding spherical aberration, astigmatism, and distortion.
With regard to interpretation of the graph of coma aberration, it may be interpreted that the closer the curves of the graph are to the X-axis on a positive axis and a negative axis, the better is the function of correcting coma aberration. Referring to the graph of
Thus, the imaging lens unit according to the fourth embodiment of the present invention provides an excellent coma aberration correction function.
According to the preferred embodiments of the present invention, as the imaging lens unit including five lenses is provided, a compact optical system that is suitable for portable terminals, a compact camera module, and a high resolving power may be provided.
Although the embodiment of the present invention has been disclosed for illustrative purposes, it will be appreciated that the imaging lens unit according to the invention is not limited thereto, and those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention.
Accordingly, any and all modifications, variations or equivalent arrangements should be considered to be within the scope of the invention, and the detailed scope of the invention will be disclosed by the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2011-0103101 | Oct 2011 | KR | national |
This application is a continuation application of U.S. Pat. No. 9,851,539 issued on Dec. 26, 2017 (U.S. application Ser. No. 15/255,240, filed on Sep. 2, 20161, which is a Continuation of U.S. Pat. No. 9,523,839 issued on Dec. 20, 2016 (U.S. application Ser. No. 14/473,938, filed on Aug. 29, 20141, which is a continuation of U.S. patent application Ser. No. 14/324,003, filed Jul. 3, 2014, which is a continuation of U.S. Pat. No. 8,810,929, issued on Aug. 19, 2014 (U.S. patent application Ser. No. 14/106,578, filed on Dec. 13, 2013), which is a continuation of U.S. Pat. No. 8,773,780, issued on Jul. 8, 2014 (U.S. patent application Ser. No. 13/434,980, filed on Mar. 30, 2012), which claims the benefit of Korean Patent Application No. 10-2011-0103101, filed Oct. 10, 2011, entitled “Image Lens Unit”, which are hereby incorporated by reference in their entireties into this application for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
7443610 | Lin et al. | Oct 2008 | B1 |
7502181 | Shinohara | Mar 2009 | B2 |
8035723 | Sano et al. | Oct 2011 | B2 |
8072695 | Lee et al. | Dec 2011 | B1 |
8179615 | Tang et al. | Jun 2012 | B1 |
8264784 | You | Sep 2012 | B2 |
8325429 | Tang et al. | Dec 2012 | B2 |
8358474 | Kwon | Jan 2013 | B2 |
8395851 | Tang et al. | Mar 2013 | B2 |
8411374 | Ohtsu | Apr 2013 | B2 |
8411376 | Kubota | Apr 2013 | B2 |
8456758 | Huang et al. | Jun 2013 | B1 |
8498061 | Sano | Jul 2013 | B2 |
8520124 | Ozaki | Aug 2013 | B2 |
8576498 | Huang | Nov 2013 | B2 |
8675288 | Jung et al. | Mar 2014 | B2 |
8736983 | Jo | May 2014 | B2 |
8773768 | Jung et al. | Jul 2014 | B2 |
8773769 | Jung et al. | Jul 2014 | B2 |
8773770 | Jung et al. | Jul 2014 | B2 |
8773780 | You | Jul 2014 | B2 |
8773781 | Jo | Jul 2014 | B2 |
8780465 | Chae | Jul 2014 | B2 |
8786966 | You | Jul 2014 | B2 |
8810929 | You | Aug 2014 | B2 |
8830596 | Jo | Sep 2014 | B2 |
20070229984 | Chinohara | Oct 2007 | A1 |
20100220229 | Sano | Sep 2010 | A1 |
20100253829 | Shinohara | Oct 2010 | A1 |
20100254029 | Shinohara | Oct 2010 | A1 |
20110013069 | Chen | Jan 2011 | A1 |
20110134305 | Sano et al. | Jun 2011 | A1 |
20110164327 | Sato | Jul 2011 | A1 |
20110188131 | Sano | Aug 2011 | A1 |
20110249346 | Tang et al. | Oct 2011 | A1 |
20110273611 | Matsusaka et al. | Nov 2011 | A1 |
20120087019 | Tang et al. | Apr 2012 | A1 |
20120087020 | Tang et al. | Apr 2012 | A1 |
20120140104 | Ozaki | Jun 2012 | A1 |
20120314301 | Huang et al. | Dec 2012 | A1 |
20130027788 | Yen | Jan 2013 | A1 |
20130050847 | Hsu et al. | Feb 2013 | A1 |
20130070346 | Hsu et al. | Mar 2013 | A1 |
20130088788 | You | Apr 2013 | A1 |
20130093938 | Otsu | Apr 2013 | A1 |
20130094098 | Ko | Apr 2013 | A1 |
20130114151 | Chen et al. | May 2013 | A1 |
20130120858 | Sano | May 2013 | A1 |
20130201568 | Tsai et al. | Aug 2013 | A1 |
20130208174 | Tamura | Aug 2013 | A1 |
20130271642 | Sano | Oct 2013 | A1 |
20130286488 | Chae | Oct 2013 | A1 |
20130301147 | Yamada | Nov 2013 | A1 |
20130314803 | Huang et al. | Nov 2013 | A1 |
20130329307 | Jung et al. | Dec 2013 | A1 |
20130335622 | Kwon | Dec 2013 | A1 |
20130342919 | Tang et al. | Dec 2013 | A1 |
20140015991 | Yamada et al. | Jan 2014 | A1 |
20140104704 | Chae | Apr 2014 | A1 |
20140139935 | Hsieh et al. | May 2014 | A1 |
20140146402 | You | May 2014 | A1 |
20140218812 | Liou et al. | Aug 2014 | A1 |
20140254030 | Hsu et al. | Sep 2014 | A1 |
20140285907 | Tang et al. | Sep 2014 | A1 |
20140307149 | Chen et al. | Oct 2014 | A1 |
20140320986 | You | Oct 2014 | A1 |
20140368928 | Jo | Dec 2014 | A1 |
20140368929 | Chae | Dec 2014 | A1 |
20140368930 | Jung et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
09-211320 | Aug 1997 | JP |
2007-298572 | Nov 2007 | JP |
2009-294528 | Dec 2009 | JP |
2010-258608 | Nov 2010 | JP |
2011-39091 | Feb 2011 | JP |
2011-85733 | Apr 2011 | JP |
2011-138175 | Jul 2011 | JP |
2011-141396 | Jul 2011 | JP |
2011-158508 | Aug 2011 | JP |
2011-209554 | Oct 2011 | JP |
10-2011-0140040 | Dec 2011 | JP |
2011-257448 | Dec 2011 | JP |
2012-8164 | Jan 2012 | JP |
2012-73642 | Apr 2012 | JP |
2013-11710 | Jan 2013 | JP |
2013-54099 | Mar 2013 | JP |
10-2007-0097369 | Oct 2007 | KR |
10-2010-0001525 | Jan 2010 | KR |
10-2010-0043667 | Apr 2010 | KR |
10-2011-0042382 | Apr 2011 | KR |
10-2011-0057625 | Jun 2011 | KR |
10-2011-0071554 | Jun 2011 | KR |
10-2011-0018573 | Mar 2012 | KR |
10-2012-0033866 | Apr 2012 | KR |
201248187 | Dec 2012 | TW |
201326884 | Jul 2013 | TW |
201333517 | Aug 2013 | TW |
201341840 | Oct 2013 | TW |
201348732 | Dec 2013 | TW |
WO 2010024198 | Mar 2010 | WO |
WO 2011021271 | Feb 2011 | WO |
WO 2011027960 | Mar 2011 | WO |
Entry |
---|
Non-Final Office Action dated Jan. 29, 2014 for related U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780). |
Final Office Action dated Sep. 3, 2013 for related U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780). |
Non-Final Office Action dated Feb. 8, 2013 for related U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780). |
Notice of Allowance dated Jun. 26, 2014 for related U.S. Appl. No. 14/106,578 (now U.S. Pat. No. 8,810,929). |
Non-Final Office Action dated Jan. 29, 2014 for related U.S. Appl. No. 14/106,578 (now U.S. Pat. No. 8,810,929). |
Notice of Allowance dated Jun. 10, 2014 for related U.S. Appl. No. 14/106,598 (now U.S. Pat. No. 8,786,966). |
Non-Final Office Action dated Apr. 2, 2014 for related U.S. Appl. No. 14/106,598 (now U.S. Pat. No. 8,786,966). |
Office Action dated Sep. 2, 2014 for corresponding U.S. Appl. No. 14/324,003. |
Office Action issued for related Korean Patent Application No. 10-2011-0103101, dated Jan. 21, 2013, and its English summary provided by the Applicant's foreign counsel. |
Notice of Allowance dated May 22, 2014 for related U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780). |
Final Office Action dated Mar. 25, 2014 for related U.S. Appl. No. 13/434,980 (now U.S. Pat. No. 8,773,780). |
Office Action dated Feb. 26, 2014 and Prior Art Search Report for Korean Patent Appl. No. 10-2014-0003271 and its English translation provided by the Applicant's foreign counsel. |
Office Action dated Jul. 1, 2013 for Korean Patent Appl. No. 10-2012-0045609 and its English translation provided by the Applicant's foreign counsel. |
Office Action dated Aug. 26, 2014 for Korean Patent Appl. No. 10-2014-0097555 and its English translation provided by the Applicant's foreign counsel. |
Office Action dated Aug. 27, 2014 for Korean Patent Appl. No. 10-2013-0065734 and its English summary provided by the Applicant's foreign counsel. |
Office Action dated Aug. 29, 2014 for Korean Patent Appl. No. 10-2014-0097556 and its English summary provided by the Applicant's foreign counsel. |
Office Action dated Sep. 25, 2013 for Japanese Patent Appl. No. 2012-181553 and its English summary provided by the Applicant's foreign counsel. |
Office Action dated Jan. 28, 2014 and Prior Art Search Report for Korean Patent Appl. No. 10-2013-0150984 and its English translation provided by the Applicant's foreign counsel. |
Office Action dated Jan. 28, 2013 for Korean Patent Appl. No. 10-2011-0108128 and its English summary provided by Applicant's foreign counsel. |
Office Action dated Nov. 26, 2014 for Taiwanese Patent Appl. No. 102144927 and its English summary provided by Applicant's foreign counsel. |
Notice of Allowance dated Mar. 27, 2014 for U.S. Appl. No. 13/533,769 (now U.S. Pat. No. 8,736,983). |
Non-Final Office Action dated Sep. 5, 2013 for U.S. Appl. No. 13/533,769 (now U.S. Pat. No. 8,736,983). |
Notice of Allowance dated May 30, 2014 for U.S. Appl. No. 14/135,152 (now U.S. Pat. No. 8,773,781). |
Non-Final Office Action dated Apr. 3, 2014 for U.S. Appl. No. 14/135,152 (now U.S. Pat. No. 8,773,781). |
Non-Final Office Action dated May 23, 2014 for related U.S. Appl. No. 14/169,121 (now published as U.S. 2014/0146402). |
Non-Final Office Action dated Mar. 18, 2014 for U.S. Appl. No. 14/137,795 (now published as US. 2014/0104704). |
Notice of Allowance dated Jan. 23, 2015 for U.S. Appl. No. 14/473,904 (now published as US. 2014/0368928). |
Office Action dated Oct. 10, 2014 for U.S. Appl. No. 14/473,904 (now published 2014/0368928). |
Office Action dated Nov. 25, 2014 for U.S. Appl. No. 14/473,985 (now published as US 2014/0368930). |
Final Office Action dated Jan. 12, 2015 for U.S. Appl. No. 14/473,956 (now published as US 2014/0368929). |
Non-Final Office Action dated Oct. 10, 2014 for U.S. Appl. No. 14/473,956 (now published as US 2014/0368929). |
Notice of Allowance dated Nov. 6, 2013 for U.S. Appl. No. 13/588,208 (now U.S. Pat. No. 8,675,288). |
Notice of Allowance dated May 14, 2014 for U.S. Appl. No. 14/105,096 (now U.S. Pat. No. 8,773,768). |
Non-Final Office Action dated Mar. 4, 2014 for U.S. Appl. No. 14/105,096 (now U.S. Pat. No. 8,773,768). |
Notice of Allowance dated May 28, 2014 for U.S. Appl. No. 14/105,105 (now U.S. Pat. No. 8,773,769). |
Final Office Action dated May 12, 2014 for U.S. Appl. No. 14/105,105 (now U.S. Pat. No. 8,773,769). |
Non-Final Office Action dated Feb. 7, 2014 for U.S. Appl. No. 14/105,105 (now U.S. Pat. No. 8,773,769). |
Notice of Allowance dated May 22, 2014 for U.S. Appl. No. 14/105,122 (now U.S. Pat. No. 8,773,770). |
Final Office Action dated May 12, 2014 for U.S. Appl. No. 14/105,122 (now U.S. Pat. No. 8,773,770). |
Non-Final Office Action dated Feb. 4, 2014 for U.S. Appl. No. 14/105,122 (now U.S. Pat. No. 8,773,770). |
Notice of Allowance dated Jul. 21, 2014 for U.S. Appl. No. 14/135,203 (now U.S. Pat. No. 8,830,596). |
Non-Final Office Action dated Jun. 5, 2014 for U.S. Appl. No. 14/135,203 (now U.S. Pat. No. 8,830,596). |
Non-Final Office Action dated Feb. 26, 2014 for U.S. Appl. No. 14/135,203 (now U.S. Pat. No. 8,830,596). |
Notice of Allowance dated May 12, 2014 for U.S. Appl. No. 14/137,683 (now U.S. Pat. No. 8,780,465). |
Non-Final Office Action dated Feb. 27, 2014 for U.S. Appl. No. 14/137,683 (now U.S. Pat. No. 8,780,465). |
Non-Final Office Action dated Jul. 30, 2014 for U.S. Appl. No. 13/802,247 (now published as U.S. 2013/0286488). |
Non-Final Office Action dated May 9, 2014 for U.S. Appl. No. 13/802,247 (now published as U.S. 2013/0286488). |
Non-Final Office Action dated Mar. 11, 2014 for U.S. Appl. No. 13/802,247 (now published as U.S. 2013/0286488). |
Final Office Action dated Aug. 20, 2014 for U.S. Appl. No. 14/137,795 (now published as U.S. 2014/0104704). |
Non-Final Office Action dated Jun. 3, 2014 for U.S. Appl. No. 14/137,795 (now published as U.S. 2014/0104704). |
Final Office Action dated May 8, 2014 for U.S. Appl. No. 14/137,795 (now published as U.S. 2014/0104704). |
U.S. Office Action dated Jul. 7, 2015 in related U.S. Appl. No. 14/169,121 (4 pages, in English). |
U.S. Office Action dated Feb. 3, 2016 in counterpart U.S. Appl. No. 14/169,121 (6 pages in English). |
Number | Date | Country | |
---|---|---|---|
20180095250 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15255240 | Sep 2016 | US |
Child | 15819910 | US | |
Parent | 14473938 | Aug 2014 | US |
Child | 15255240 | US | |
Parent | 14324003 | Jul 2014 | US |
Child | 14473938 | US | |
Parent | 14106578 | Dec 2013 | US |
Child | 14324003 | US | |
Parent | 13434980 | Mar 2012 | US |
Child | 14106578 | US |