The present invention relates to a method for determining stray fibers using imaging techniques.
Frizz and fuzz are common terms in the hair and textile industry, respectively (among others), to describe the presence of stray fibers amongst a substrate. The ability to measure these phenomena under a variety of lighting conditions is desirable, such as allowing a person to use a device, such as a smartphone or tablet as an evaluation tool. Such a tool could be used to help recommend a product, styling technique, or laundry machine settings (among others). In an environment where the lighting conditions are highly controlled, this can be accomplished using a common technique involving the use of backlighting and applying fundamental edge detection filters. The difficulty lies in extending this capability to a situation in which an object containing stray fibers is imaged against a contrasted background with little to no control over the surrounding illumination. In the example of imaging the frizz on a person, backlighting alone followed by fundamental edge detection algorithms can yield satisfactory results (an image in which only the fibers directly contrasted against the background are emphasized), however if any part of the face is illuminated from the front, contrasting regions of the face will be detected by the edge detection technique and create unwanted artifacts in the stray fiber image. The methodology described herein allows for the creation of a foundational stray fiber image taken under a variety of lighting conditions that can be subsequently analyzed for the detection, quantification, and virtual alteration of stray fibers when the starting image is one containing stray fibers emanating from an object/substrate and contrasted against a background.
In an embodiment, the present invention is directed to a method of detecting stray fibers emanating from a substrate comprising: a) Taking an image or a series of consecutive images of stray fibers in front of a contrasted background, that is created using one or more light sources, using a digital device; b) Segmenting of stray fibers and background from objects not directly contrasted against the background resulting in a binary image mask; c) Applying an edge detection technique to the image or modification of original image to enhance contrast of stray fibers against the background; and Applying the binary image mask from step b) to an image created in step c) to create an image in which only the stray fibers and/or outline of any other object contrasted against the background are present.
All measurements are understood to be made at ambient conditions, where “ambient conditions” means conditions at about 25° C., under about one atmosphere of pressure, and at about 50% relative humidity, unless otherwise designated. All numeric ranges are inclusive of narrower ranges; delineated upper and lower range limits are combinable to create further ranges not explicitly delineated.
Segmenting—The process employed by which pixels are assigned to a class. Pixels with the same class share similar characteristics. The shared characteristics dependent upon the process employed. In a non limiting example, an image may be segmented into two classes; stray fiber and non-stray fiber pixels.
Thresholding—A segmentation technique in which each pixel intensity is compared to one or more reference intensity levels and subsequently placed into classes; in a non-limiting example, an image in which the pixel is classified as stray fiber or background if the pixel intensity of the hue color channel is between X1 and X2, otherwise the pixel is classified as a non-hair and non-background pixel.
Stray Fiber—Fibers that extend from a substrate against a contrasted background. The fibers may intentionally extend beyond the substrate by design (such as to enhance the texture of a surface) or be unintentional or undesired (as is mostly the case for frizz and fuzz examples).
Edge Detection Technique—An image analysis technique used to find or enhance spatial intensity differences that change rapidly.
The present invention can comprise, consist essentially of, or consist of, the essential components as well as optional components, features or elements described herein. As used herein, “consisting essentially of” means that the component may include additional features or steps, but only if the additional components or steps do not materially alter the basic and novel characteristics of the claimed methods.
The detection and quantification of stray hair fibers amongst a hair tress assembly using a contrasting backlit background is a routine method within the hair industry as a means to assess product performance.
Another standard technique that can be successful with objects that are only backlit is the use of a threshold range. wherein is to apply a global threshold range across the entire image using the Level color channel of the HSL color space (Hue Saturation Level). It could be expected that the stray hair fibers should have a pixel intensity that is lower in value than the contrasting background. In localized areas of the image, the stray fibers can be successfully segmented from the background, however not possible across the entire image (see
It has become clear that a novel approach is needed. In attempting these different techniques, it has been noticed that the intensities of the pixels representing the stray fibers are very similar in color to the background pixels. As the background is changed, so does the pixel intensities of the stray fiber pixels. In every case, the stray fiber pixel intensities are influenced by the background color and intensity. It is also noticed that other elements of the image not directly contrasted against the background, the face and bulk hair color for example, are only minimally influenced, if at all, by the background color and intensity. By taking advantage of this observation, it has been realized that a contrasting background can be used to drive the pixel intensities of the stray fibers far enough away from the pixel intensities of the other objects in the image (face and bulk hair, for example), that a segmentation technique, thresholding being a non-limiting example, can be used to segment the image into two classes: one class being the background and stray hair fibers over the background and the other class being the face and bulk hair (See
There are numerous examples where the detection and quantification of stray fibers amongst a substrate against a contrasting background under a variety of illumination conditions is desired. In an embodiment of the present invention, the method includes the following: 1) Taking an image or series of consecutive images of stray fibers in front of a contrasted background that is either created using one or more light sources and captured using a digital device of which a camera and video camera are two non-limiting examples; 2) Segmenting of stray fibers and background together from objects of non-interest resulting in a binary image mask; 3) Applying edge detection technique to the original image or modification of original image to enhance contrast of stray fibers against the background; 4) Applying binary mask from step 2 to the resulting image from step 3 yielding a stray fiber image in which only the stray fibers directly contrasted against the background are accentuated and the other object in the image not directly contrasted against the background are removed from the stray fiber image. The resulting stray fiber image can then be subsequently analyzed to quantify the presence of, enhance visibility of, or foundation to creating virtual alterations of (among others) stray fibers in front of a contrasted background
Some alternative components to the present invention have been identified. More optimized results may be obtained under the following circumstances:
The present invention may be useful for quantifying frizz and flyaway for hair, fuzz for fabrics, pilling on fabric. In an embodiment of the present invention, it may be used in marketing and advertising to demonstrate product benefits. In an embodiment of the present invention, it may be used for in-store consultation/demonstrations. In a further embodiment of the present invention, it may be used as a foundation image to create virtual representations of hair with various degrees of frizz and/or flyaway fibers. In an embodiment of the present invention, it may be used for cellulose fiber analyses of, for example, paper products, non limiting examples such as paper towels or toilet tissue or feminine hygiene products.
A further embodiment involves a photograph of a hair switch, non-limiting examples including a straight hair switch, a braid, twisted, curled or other hair switch configurations. A further embodiment of this method may include hair on skin, or hair as part of an eyelash. Yet another embodiment of this method involves detecting the fuzz of a textile material contrasted against a background in which the textile material is comprised of one or a blend of multiple fiber types and/or colors. Yet another embodiment would be to utilize a mobile phone app as a means of self-diagnosis for level of stray fibers or frizz or other related attributes. An embodiment in which, with sufficient computer power, be able to create stray fiber images and/or quantification in real time (on “live” video) allowing for the creation of a virtual mirror. Another embodiment would be to look at efficacy of hair removal on the body or face. In an embodiment of the present invention the stray fiber may have a diameter of 0.25 inches or less. In a further embodiment, the stray fiber may have a diameter of 0.10 inches of less. In a further embodiment, the stray fiber may have a diameter of 0.05 inches of less. In an embodiment, if the stray fiber is a fabric fiber, the fabric fiber may have a diameter of less than 50 microns; in an embodiment, the fabric fiber may have a diameter less than 25 microns; in a further embodiment, the fabric fiber may have a diameter less than 10 microns.
Method
Image Capture
In an embodiment of the present invention, a potential fiber in the image that is not connected to the stray fibers, or within a specified distance of another stray fiber, may be considered as noise and excluded from the final image. In a further embodiment, a potential fiber in the image that is not fiber shaped, such as a round object instead of a line-like object, may be considered as noise and excluded from the final image. In yet a further embodiment, a potential fiber in the image that does not exceed a minimum allowable area, for example and object only 2 pixels in size, may be considered as noise and excluded from the final image.
In an embodiment of the present invention, the following are non-limiting examples showing different light configuration
A non limiting example of the present invention is as follows. A mannequin head is placed with front lit using 2 fluorescent light source on either side of the face. A purple backlight is used to provide a contrasting background. A Nikon D5200 with VR 18-55 mm f/3.5-5.6 G lens at to a focal length of 26 mm, aperture of f/8, exposure time of 1/25 seconds, and ISO of 100 is used to capture an image of the mannequin head.
In an embodiment of the present invention, this method can be successfully applied to fibers of multiple colors, or even lacking pigment altogether so long as the contrast of the fiber against the background is maintained.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
In addition to the foregoing, the invention includes, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations specifically mentioned above. With respect to aspects of the invention described as a genus, all individual species are individually considered separate aspects of the invention. With respect to aspects of the invention described or claimed with “a” or “an,” it should be understood that these terms mean “one or more” unless context unambiguously requires a more restricted meaning. With respect to elements described as one or more within a set, it should be understood that all combinations within the set are contemplated. If aspects of the invention are described as “comprising” a feature, embodiments also are contemplated “consisting of” or “consisting essentially of” the feature.
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the invention. To the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3709437 | Wright | Jan 1973 | A |
3950532 | Bouillon et al. | Apr 1976 | A |
3959160 | Horsler et al. | May 1976 | A |
4329334 | Su et al. | May 1982 | A |
4839166 | Grollier et al. | Jun 1989 | A |
4867971 | Ryan et al. | Sep 1989 | A |
5294644 | Login et al. | Mar 1994 | A |
5332569 | Wood et al. | Jul 1994 | A |
5364031 | Taniguchi et al. | Nov 1994 | A |
5417965 | Janchitraponvej et al. | May 1995 | A |
5635469 | Fowler et al. | Jun 1997 | A |
5747436 | Patel et al. | May 1998 | A |
5776444 | Birtwistle et al. | Jul 1998 | A |
5816446 | Steindorf et al. | Oct 1998 | A |
5830440 | Sturla et al. | Nov 1998 | A |
5902225 | Monson | May 1999 | A |
6015780 | Llosas Bigorra et al. | Jan 2000 | A |
6020303 | Cripe et al. | Feb 2000 | A |
6039933 | Samain et al. | Mar 2000 | A |
6046152 | Vinson et al. | Apr 2000 | A |
6060443 | Cripe et al. | May 2000 | A |
6087309 | Vinson et al. | Jul 2000 | A |
6110451 | Matz et al. | Aug 2000 | A |
6133222 | Vinson et al. | Oct 2000 | A |
6162834 | Sebillotte-Arnaud et al. | Dec 2000 | A |
6268431 | Snyder et al. | Jul 2001 | B1 |
6329331 | Aronson et al. | Dec 2001 | B1 |
6335312 | Coffindaffer et al. | Jan 2002 | B1 |
6423305 | Cauwet-Martin et al. | Jul 2002 | B1 |
6451300 | Dunlop et al. | Sep 2002 | B1 |
6511669 | Garnier et al. | Jan 2003 | B1 |
6579907 | Sebillotte-Arnaud et al. | Jun 2003 | B1 |
6627585 | Steer | Sep 2003 | B1 |
6649155 | Dunlop et al. | Nov 2003 | B1 |
6743760 | Hardy et al. | Jun 2004 | B1 |
6827795 | Kasturi et al. | Dec 2004 | B1 |
6992054 | Lee et al. | Jan 2006 | B2 |
7217752 | Schmucker-Castner et al. | May 2007 | B2 |
7220408 | Decoster et al. | May 2007 | B2 |
7223385 | Gawtrey et al. | May 2007 | B2 |
7485289 | Gawtrey et al. | Feb 2009 | B2 |
7504094 | Decoster et al. | Mar 2009 | B2 |
7531497 | Midha et al. | May 2009 | B2 |
7541320 | Dabkowski et al. | Jun 2009 | B2 |
7659233 | Hurley et al. | Feb 2010 | B2 |
7666825 | Wagner et al. | Feb 2010 | B2 |
7820609 | Soffin et al. | Oct 2010 | B2 |
7829514 | Paul et al. | Nov 2010 | B2 |
7928053 | Hecht et al. | Apr 2011 | B2 |
7977288 | SenGupta | Jul 2011 | B2 |
8084407 | Soffin et al. | Dec 2011 | B2 |
8088721 | Soffin et al. | Jan 2012 | B2 |
8124063 | Harichian et al. | Feb 2012 | B2 |
8300949 | Xu | Oct 2012 | B2 |
8401304 | Cavallaro et al. | Mar 2013 | B2 |
8435501 | Peffly et al. | May 2013 | B2 |
8437556 | Saisan | May 2013 | B1 |
8580725 | Kuhlman et al. | Nov 2013 | B2 |
8609600 | Warr et al. | Dec 2013 | B2 |
8628760 | Carter et al. | Jan 2014 | B2 |
8675919 | Maladen | Mar 2014 | B2 |
8680035 | Kuhlman et al. | Mar 2014 | B2 |
8699751 | Maladen | Apr 2014 | B2 |
8741363 | Albrecht et al. | Jun 2014 | B2 |
8771765 | Fernandez | Jul 2014 | B1 |
8795635 | Tamarkin et al. | Aug 2014 | B2 |
8883698 | Scheibel et al. | Nov 2014 | B2 |
9006162 | Rizk | Apr 2015 | B1 |
9186642 | Dihora et al. | Nov 2015 | B2 |
9258550 | Sieracki | Feb 2016 | B1 |
9308398 | Hutton et al. | Apr 2016 | B2 |
9682021 | Tamarkin et al. | Jun 2017 | B2 |
9949901 | Zhao et al. | Apr 2018 | B2 |
20010000467 | Murray | Apr 2001 | A1 |
20010006621 | Coupe et al. | Jul 2001 | A1 |
20010016565 | Bodet et al. | Aug 2001 | A1 |
20020037299 | Turowski-Wanke et al. | Mar 2002 | A1 |
20020172648 | Hehner et al. | Nov 2002 | A1 |
20020193265 | Perron et al. | Dec 2002 | A1 |
20020197213 | Schmenger et al. | Dec 2002 | A1 |
20030022799 | Alvarado et al. | Jan 2003 | A1 |
20030049292 | Turowski-Wanke et al. | Mar 2003 | A1 |
20030147842 | Restle et al. | Aug 2003 | A1 |
20030180246 | Frantz et al. | Sep 2003 | A1 |
20030185867 | Kerschner et al. | Oct 2003 | A1 |
20030223951 | Geary et al. | Dec 2003 | A1 |
20030228272 | Amjad et al. | Dec 2003 | A1 |
20040014879 | Denzer et al. | Jan 2004 | A1 |
20040184667 | Raskar | Sep 2004 | A1 |
20040235689 | Sakai et al. | Nov 2004 | A1 |
20050020468 | Frantz et al. | Jan 2005 | A1 |
20060002880 | Peffly | Jan 2006 | A1 |
20060057075 | Arkin et al. | Mar 2006 | A1 |
20060079418 | Wagner et al. | Apr 2006 | A1 |
20060079419 | Wagner et al. | Apr 2006 | A1 |
20060079420 | Wagner et al. | Apr 2006 | A1 |
20060079421 | Wagner et al. | Apr 2006 | A1 |
20060090777 | Hecht et al. | May 2006 | A1 |
20060120982 | Derici et al. | Jun 2006 | A1 |
20060120988 | Bailey et al. | Jun 2006 | A1 |
20060183662 | Crotty et al. | Aug 2006 | A1 |
20060276357 | Smith, III et al. | Dec 2006 | A1 |
20070072781 | Soffin et al. | Mar 2007 | A1 |
20070154402 | Trumbore et al. | Jul 2007 | A1 |
20070155637 | Smith, III et al. | Jul 2007 | A1 |
20070179207 | Fernandez de Castro et al. | Aug 2007 | A1 |
20070292380 | Staudigel et al. | Dec 2007 | A1 |
20080008668 | Harichian et al. | Jan 2008 | A1 |
20080144895 | Hunter | Jun 2008 | A1 |
20080206179 | Peffly et al. | Aug 2008 | A1 |
20080247649 | Cheng | Oct 2008 | A1 |
20080260655 | Tamarkin et al. | Oct 2008 | A1 |
20080261844 | Ruppert et al. | Oct 2008 | A1 |
20080317698 | Wells et al. | Dec 2008 | A1 |
20090029900 | Cetti et al. | Jan 2009 | A1 |
20090062406 | Loeffler | Mar 2009 | A1 |
20090148041 | Piramuthu | Jun 2009 | A1 |
20090155383 | Kitko et al. | Jun 2009 | A1 |
20090178210 | Bistram | Jul 2009 | A1 |
20090221463 | Kitko et al. | Sep 2009 | A1 |
20090312224 | Yang et al. | Dec 2009 | A1 |
20100026717 | Sato | Feb 2010 | A1 |
20100316288 | Ip | Dec 2010 | A1 |
20110008267 | Arkin et al. | Jan 2011 | A1 |
20110075926 | Piramuthu | Mar 2011 | A1 |
20110096183 | Robertson | Apr 2011 | A1 |
20110110992 | Garrison | May 2011 | A1 |
20110165107 | Derks et al. | Jul 2011 | A1 |
20110232668 | Hoffmann et al. | Sep 2011 | A1 |
20110269657 | Dihora et al. | Nov 2011 | A1 |
20110319790 | Kost et al. | Dec 2011 | A1 |
20120014901 | Sunkel et al. | Jan 2012 | A1 |
20120100091 | Hata et al. | Apr 2012 | A1 |
20120250958 | Kang | Oct 2012 | A1 |
20120316095 | Wei et al. | Dec 2012 | A1 |
20130021460 | Burdoucci | Jan 2013 | A1 |
20130053295 | Kinoshita et al. | Feb 2013 | A1 |
20130053300 | Scheibel et al. | Feb 2013 | A1 |
20130115173 | Trumbore et al. | May 2013 | A1 |
20130143784 | Rizk | Jun 2013 | A1 |
20130156712 | Frantz | Jun 2013 | A1 |
20130182962 | Hirakawa | Jul 2013 | A1 |
20130189212 | Jawale et al. | Jul 2013 | A1 |
20130280192 | Carter et al. | Oct 2013 | A1 |
20130280202 | Stella et al. | Oct 2013 | A1 |
20130296289 | Hall et al. | Nov 2013 | A1 |
20140037703 | Dihora et al. | Feb 2014 | A1 |
20140039066 | Grimadell et al. | Feb 2014 | A1 |
20140131395 | Chang | May 2014 | A1 |
20140171471 | Krueger | Jun 2014 | A1 |
20140228268 | Fahl et al. | Aug 2014 | A1 |
20140237732 | Zuedel Fernandes et al. | Aug 2014 | A1 |
20140309154 | Carter et al. | Oct 2014 | A1 |
20140335041 | Peffly et al. | Nov 2014 | A1 |
20140348884 | Hilvert et al. | Nov 2014 | A1 |
20140348886 | Johnson et al. | Nov 2014 | A1 |
20150021496 | Shabbir | Jan 2015 | A1 |
20150098921 | Franzke et al. | Apr 2015 | A1 |
20150218496 | Schmiedel et al. | Aug 2015 | A1 |
20150297489 | Kleinen | Oct 2015 | A1 |
20150313818 | Stagg | Nov 2015 | A1 |
20150359725 | Glenn, Jr. et al. | Dec 2015 | A1 |
20160008257 | Zhou et al. | Jan 2016 | A1 |
20160112616 | Bonifer | Apr 2016 | A1 |
20160113849 | Grimadell et al. | Apr 2016 | A1 |
20160193125 | Jones et al. | Jul 2016 | A1 |
20160279048 | Jayaswal et al. | Sep 2016 | A1 |
20160303043 | Khoury | Oct 2016 | A1 |
20160309871 | Torres Rivera et al. | Oct 2016 | A1 |
20160310369 | Thompson et al. | Oct 2016 | A1 |
20160310370 | Zhao et al. | Oct 2016 | A1 |
20160310386 | Smith, III et al. | Oct 2016 | A1 |
20160310388 | Smith, III et al. | Oct 2016 | A1 |
20160310389 | Thompson et al. | Oct 2016 | A1 |
20160310390 | Smith, III et al. | Oct 2016 | A1 |
20160310391 | Smith, III et al. | Oct 2016 | A1 |
20160310393 | Chang et al. | Oct 2016 | A1 |
20160310402 | Zhao et al. | Oct 2016 | A1 |
20160354300 | Thompson et al. | Dec 2016 | A1 |
20170071837 | Schelges et al. | Mar 2017 | A1 |
20170165164 | Zhao et al. | Jun 2017 | A1 |
20170165165 | Zhao et al. | Jun 2017 | A1 |
20170209359 | Zhao et al. | Jul 2017 | A1 |
20170252273 | Renock et al. | Sep 2017 | A1 |
20170278249 | Stofel et al. | Sep 2017 | A1 |
20170304172 | Chang et al. | Oct 2017 | A1 |
20170304185 | Glenn, Jr. et al. | Oct 2017 | A1 |
20170333321 | Carnali | Nov 2017 | A1 |
20180057451 | Owens et al. | Mar 2018 | A1 |
20180110688 | Torres Rivera et al. | Apr 2018 | A1 |
20180110689 | Torres Rivera et al. | Apr 2018 | A1 |
20180110690 | Torres Rivera et al. | Apr 2018 | A1 |
20180110691 | Torres Rivera et al. | Apr 2018 | A1 |
20180110692 | Torres Rivera et al. | Apr 2018 | A1 |
20180110693 | Renock et al. | Apr 2018 | A1 |
20180110694 | Renock et al. | Apr 2018 | A1 |
20180110695 | Thompson et al. | Apr 2018 | A1 |
20180110704 | Zhao et al. | Apr 2018 | A1 |
20180110707 | Zhao et al. | Apr 2018 | A1 |
20180110710 | Zhao et al. | Apr 2018 | A1 |
20180110714 | Glenn, Jr. et al. | Apr 2018 | A1 |
20180116937 | Park et al. | May 2018 | A1 |
20180116941 | Wang | May 2018 | A1 |
20180221266 | Zhao et al. | Aug 2018 | A1 |
20180318194 | Hoffmann et al. | Nov 2018 | A1 |
20180344611 | Zhao et al. | Dec 2018 | A1 |
20180344612 | Zhao et al. | Dec 2018 | A1 |
20180344613 | Zhao et al. | Dec 2018 | A1 |
20180344614 | Zhao et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2078375 | Mar 1994 | CA |
102697668 | Aug 2013 | CN |
102697670 | Jul 2014 | CN |
105769617 | Jul 2016 | CN |
4315396 | Nov 1994 | DE |
202005009618 | Sep 2005 | DE |
0574086 | Dec 1993 | EP |
1340485 | Feb 2003 | EP |
1346720 | Sep 2003 | EP |
1714678 | Oct 2006 | EP |
2042216 | Sep 2015 | EP |
H08310924 | Nov 1996 | JP |
2964226 | Oct 1999 | JP |
3069802 | Jul 2000 | JP |
2002226889 | Aug 2002 | JP |
3634988 | Mar 2005 | JP |
3634991 | Mar 2005 | JP |
3634996 | Mar 2005 | JP |
2005187359 | Jul 2005 | JP |
5667790 | Feb 2015 | JP |
20140060882 | May 2014 | KR |
WO9325650 | Dec 1993 | WO |
WO9502389 | Jan 1995 | WO |
WO9726854 | Jul 1997 | WO |
WO9823258 | Jun 1998 | WO |
WO9918928 | Apr 1999 | WO |
WO9924004 | May 1999 | WO |
WO0142409 | Jun 2001 | WO |
WO0148021 | Jul 2001 | WO |
WO2005023975 | Mar 2005 | WO |
WO2009016555 | Feb 2009 | WO |
WO2010052147 | May 2010 | WO |
WO2012055587 | May 2012 | WO |
WO2012084970 | Jun 2012 | WO |
WO2013010706 | Jan 2013 | WO |
WO2014148245 | Sep 2014 | WO |
WO2016147196 | Sep 2016 | WO |
WO2018023180 | Feb 2018 | WO |
Entry |
---|
Hu Liwen & Ma, Chongyang & Luo, Linjie & Wei, Li-Yi & Li, Hao. (2014). Capturing Braided Hairstyles. ACM Transactions on Graphics. 33. 10.1145/2661229.2661254. (Year: 2014). |
Wikipedia contributors. (Oct. 23, 2018). Hair's breadth. In Wikipedia, The Free Encyclopedia. Retrieved 22:02, Nov. 9, 2018, from https://en.wikipedia.org/w/index.php?title=Hair%27s_breadth&oldid=865354610 (Year: 2018). |
“Natural Detangling Shampoo”, Mintel Database, Sep. 13, 2017. |
“Soda Shampoo”, Mintel Database, Apr. 2015. |
“Treatment Foam for Recurrent Scaling Conditions”, Mintel Database, Aug. 2007. |
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,045. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,657. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,663. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,677. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,701. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/135,998. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/145,696. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/2788,938. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/299,860. |
All final and non-final office actions for U.S. Appl. No. 15/379,660. |
All final and non-final office actions for U.S. Appl. No. 15/379,674. |
All final and non-final office actions for U.S. Appl. No. 15/448,911. |
All final and Non-Final Office Actions for U.S. Appl. No. 15/481,777. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/788,895. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/788,949. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/788,998. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,010. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,020. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,030. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,038. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,044. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,081. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,172. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,188. |
All Final and Non-Final Office Actions for U.S. Appl. No. 15/789,208. |
All Final and Non-final Office Actions for U.S. Appl. No. 15/923,499. |
All final and non-final office actions for U.S. Appl. No. 15/962,327. |
All final and non-final office actions for U.S. Appl. No. 15/962,351. |
All final and non-final office actions for U.S. Appl. No. 16/001,045. |
All final and non-final office actions for U.S. Appl. No. 16/001,053. |
All final and non-final office actions for U.S. Appl. No. 16/001,058. |
All final and non-final office actions for U.S. Appl. No. 16/001,064. |
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,015. |
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,038. |
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,053. |
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,066. |
All Final and Non-Final Office Actions for U.S. Appl. No. 16/156,072. |
All final and non-final office actions for U.S. Appl. No. 16/165,016. |
All final and non-final office actions for U.S. Appl. No. 16/165,033. |
All final and non-final office actions for U.S. Appl. No. 16/165,044. |
All final and non-final office actions for U.S. Appl. No. 16/170,498. |
All final and non-final office actions for U.S. Appl. No. 16/170,516. |
All final and non-final office actions for U.S. Appl. No. 16/170,711. |
All final and non-final office actions for U.S. Appl. No. 16/226,914. |
All final and non-final office actions for U.S. Appl. No. 16/226,927. |
All final and non-final office actions for U.S. Appl. No. 16/248,900. |
Anonymous: “MERQUAT Polyquaternium 47 Series, Water Soluble Polymers for Personal Care”, Jul. 30, 2017, URL: https://www.in-cosmetics.com/_novadocuments/2729, retrieved on Dec. 21, 2018. |
Dehyquart Guar: Published Nov. 2010. |
Hair Care/Conditioning Polymers Differentiation, Anonymous, Feb. 1, 2017, URL: http://www.biochim.it./assets/site/media/allegati/cosmetica/hair-care/tab-merquat-hair-care.pdf, retrieved Dec. 20, 2018, p. 1. |
PCT International Search Report and Written Opinion for PCT/US2016/028728 dated Aug. 5, 2016. |
PCT International Search Report and Written Opinion for PCT/US2016/028729 dated Jun. 15, 2016. |
PCT International Search Report and Written Opinion for PCT/US2016/028730 dated Aug. 5, 2016. |
PCT International Search Report and Written Opinion for PCT/US2016/028735 dated Jul. 25, 2016. |
PCT International Search Report and Written Opinion for PCT/US2016/028736 dated Jul. 25, 2016. |
PCT International Search Report and Written Opinion for PCT/US2016/028742 dated Jul. 18, 2016. |
PCT International Search Report and Written Opinion for PCT/US2016/058123 dated Dec. 21, 2016. |
PCT International Search Report and Written Opinion for PCT/US2016/066752 dated Feb. 22, 2017. |
PCT International Search Report and Written Opinion for PCT/US2016/066757 dated Feb. 22, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/020604 dated May 11, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/022737 dated Jun. 22, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/057486 dated Jan. 9, 2018. |
PCT International Search Report and Written Opinion for PCT/US2017/057487 dated Dec. 19, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/057488 dated Dec. 12, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/057497 dated Jan. 8, 2018. |
PCT International Search Report and Written Opinion for PCT/US2017/057503 dated Dec. 13, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/057507 dated Dec. 13, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/057510 dated Jan. 11, 2018. |
PCT International Search Report and Written Opinion for PCT/US2017/057511 dated Feb. 2, 2018. |
PCT International Search Report and Written Opinion for PCT/US2017/057514 dated Jan. 10, 2018. |
PCT International Search Report and Written Opinion for PCT/US2017/057515 dated Dec. 11, 2017. |
PCT International Search Report and Written Opinion for PCT/US2017/057522 dated Feb. 2, 2018. |
PCT International Search Report and Written Opinion for PCT/US2017/057533 dated Jan. 8, 2018. |
PCT International Search Report and Written Opinion for PCT/US2017/057541 dated Dec. 22, 2017. |
PCT International Search Report and Written Opinion for PCT/US2018/029313 dated Jul. 11, 2018. |
PCT International Search Report and Written Opinion for PCT/US2018/029315 dated Jun. 27, 2018. |
PCT International Search Report and Written Opinion for PCT/US2018/036181 dated Aug. 3, 2018. |
PCT International Search Report and Written Opinion for PCT/US2018/036185 dated Aug. 3, 2018. |
PCT International Search Report and Written Opinion for PCT/US2018/055102 dated Jan. 9, 2019. |
PCT International Search Report and Written Opinion for PCT/US2018/055103 dated Jan. 9, 2019. |
PCT International Search Report and Written Opinion for PCT/US2018/055104 dated Jan. 18, 2019. |
PCT International Search Report and Written Opinion for PCT/US2018/055105 dated Jan. 8, 2019. |
PCT International Search Report and Written Opinion for PCT/US2018/055106 dated Jan. 16, 2019. |
PCT International Search Report and Written Opinion for PCT/US2018/055107 dated Jan. 28, 2019. |
PCT International Search Report and Written Opinion for PCT/US2018/056669 dated Jan. 31, 2019. |
PCT International Search Report and Written Opinion for PCT/US2018/057476 dated Jan. 18, 2019. |
Polyquaternium: “Final Report on the Safety Assessment of the Polyguatemium-10”, Journal of the American College of Toxicology, Jan. 1, 1988, URL: http://www.beauty-review.nl/wp-content/uploads/2015/02/Final-Report-on-theSafety-Assessment-of-Polyquaternium-10.pdf, retrieved on Dec. 20, 2018. |
Practical Modem Hair Science, Published 2012. |
S. Herrwerth et al.: “Highly Concentrated Cocamidopropyl Betaine—The Latest Developments for Improved Sustainability and Enhanced Skin Care”, Tenside, Surfactants, Detergents, vol. 45, No. 6, Nov. 1, 2008, pp. 304-308, p. 305—left-hand column. |
“Deep Image Matting”, Ning Xu et al, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Adobe Research, Mar. 10, 2017. |
Number | Date | Country | |
---|---|---|---|
20170278249 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62312234 | Mar 2016 | US |