The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2018-140605 filed on Jul. 26, 2018, and Japanese Patent Application No. 2019-021041 filed on Feb. 7, 2019. The above applications are hereby expressly incorporated by reference, in its entirety, into the present application.
The present disclosure relates to an imaging optical system, a projection display device, and an imaging apparatus.
In recent years, projection display devices, each of which is equipped with a light valve such as a liquid crystal display element or a digital micromirror device (DMD: registered trademark) display element, are widely spread and their performance has been improved. In particular, as the resolution of the light valve has been improved, a high demand has also been made for the resolution performance of the projection optical system.
In addition, there has been an increase in the demand to mount a highly versatile projection optical system on a projection display device. The projection optical system has a higher performance and a wider angle while having a small size in consideration of an increase in degree of freedom in setting the distance to the screen and installability in the indoor space.
In order to meet such demands, an imaging optical system, in which a dioptric system forms an intermediate image at a position conjugate to the reduction side imaging surface and a catoptric system re-forms the intermediate image on the magnification side imaging surface, has been proposed (for example, JP2008-250296A and JP2017-040849A).
The imaging optical system of JP2008-250296A is an optical system using a dioptric system and one aspheric reflective surface as a catoptric system. However, in the imaging optical system, one aspheric reflective surface re-forms an intermediate image. Therefore, in order to achieve wide angle, it is necessary to make the reflective surface larger. Further, in the imaging optical system of JP2008-250296A, in order to reduce the size of the reflective surface, the load on the dioptric system increases and the number of lenses increases. That is, the imaging optical system of JP2008-250296A has a problem that reduction in size is difficult.
Further, the imaging optical system of JP2017-040849A is an optical system using a dioptric system and three aspheric reflective surfaces as a catoptric system, reducing the load on the dioptric system, and reducing the number of lenses. However, there is a problem that reduction in size is difficult since the reflective surface on the magnification side is large.
The present disclosure has been made in view of the above-mentioned circumstances, and its object is to provide an imaging optical system having a small size, a wide angle, and a high optical performance in which various aberrations are satisfactorily corrected, a projection display device comprising the imaging optical system, and an imaging apparatus comprising the imaging optical system. In the imaging optical system, an intermediate image is formed at a position conjugate to the reduction side imaging surface by the dioptric system, and the intermediate image is re-formed on the magnification side imaging surface by the catoptric system.
The specific means for achieving the object includes the following aspects.
<1> An imaging optical system consists of, in order from a magnification side: a catoptric system; and a dioptric system that includes a plurality of lenses. The dioptric system forms a first intermediate image between the dioptric system and the catoptric system on an optical path and at a position conjugate to a reduction side imaging surface, and the catoptric system re-forms the first intermediate image on a magnification side imaging surface. In addition, the catoptric system consists of, in order from the magnification side along the optical path, a first reflective surface having a positive power, a second reflective surface having a curved surface shape, and a third reflective surface having a positive power.
<2> The imaging optical system according to <1>, where a second intermediate image is formed between the first reflective surface and the second reflective surface on the optical path and at a position conjugate to the first intermediate image.
<3> The imaging optical system according to <1> or <2>, where rays traveling from the first reflective surface to the magnification side intersect rays traveling from the reduction side imaging surface to the magnification side imaging surface twice in the catoptric system.
<4> The imaging optical system according to any one of <1> to <3>, where the second reflective surface has a negative power.
<5> The imaging optical system according to any one of <1> to <4>, where all optical surfaces of the catoptric system are composed of rotationally symmetric surfaces centered on an optical axis of the catoptric system, and all optical surfaces of the dioptric system are composed of rotationally symmetric surfaces centered on an optical axis of the dioptric system.
<6> The imaging optical system according to <5>, where the optical axis of the catoptric system and the optical axis of the dioptric system are a common optical axis.
<7> The imaging optical system according to any one of <1> to <6>, where assuming that a focal length of the first reflective surface is f1, and a focal length of the third reflective surface is f3,
Conditional Expression (1) is satisfied, which is represented by
|f1|<|f3| (1).
<8> The imaging optical system according to any one of <1> to <7>, where assuming that a focal length of the whole system is f, and a focal length of the dioptric system is fL,
Conditional Expression (2) is satisfied, which is represented by
−0.15<|f|/fL<0.3 (2).
<9> The imaging optical system according to any one of <1> to <8>, where assuming that a focal length of the catoptric system is fR, and a focal length of the whole system is f,
Conditional Expression (3) is satisfied, which is represented by
0.8<|fR/f|<1.8 (3).
<10> The imaging optical system according to any one of <1> to <9>, where assuming that a back focal length of the whole system is Bf, and a focal length of the whole system is f,
Conditional Expression (4) is satisfied, which is represented by
2<Bf/|f| (4).
<11> The imaging optical system according to any one of <1> to <10>, where during focusing, a reflective surface closest to the dioptric system among the first reflective surface, the second reflective surface, and the third reflective surface is moved, and a part of the dioptric system is moved.
<12> The imaging optical system according to <8>, where Conditional Expression (2-1) is satisfied, which is represented by
−0.1<|f|/fL<0.2 (2-1).
<13> The imaging optical system according to <9>, where Conditional Expression (3-1) is satisfied, which is represented by
1<|fR/f|<1.5 (3-1).
<14> The imaging optical system according to <10>, where Conditional Expression (4-1) is satisfied, which is represented by
4<Bf/|f|<15 (4-1).
<15> A projection display device comprising: a light valve that outputs an optical image based on image data; and the imaging optical system according to any one of <1> to <14>. The imaging optical system projects the optical image, which is output from the light valve, on a screen.
<16> An imaging apparatus comprising the imaging optical system according to any one of <1> to <14>.
It should be noted that the above-mentioned “catoptric system” means an optical system that may include not only a reflective surface but also optical elements, such as a stop, a filter, and a cover glass, other than lenses.
The above-mentioned “dioptric system” means an optical system that may include a lens which does not have a refractive power substantially, and optical elements, such as a stop, a filter, a cover glass, a mirror, and a prism, other than lenses.
In the present specification, the terms “consisting of ˜” and “consists of ˜” means that each of the catoptric system and the dioptric system may include not only the above-mentioned elements but also members including mechanism parts such as a lens flange, a lens barrel, an imaging element, a focusing mechanism, and a camera shake correction mechanism.
The “focal length” used in a conditional expression is a paraxial focal length. The “back focal length” used in a conditional expression is a value in a case where the reduction side is the back side. The values used in Conditional Expressions are values on the d line basis. The sign of the power (including the refractive power) and the surface shape of an aspheric surface are considered in terms of the paraxial region unless otherwise noted. The “d line”, “C line” and “F line” described in the present specification are emission lines. The wavelength of the d line is 587.56 nm (nanometers), the wavelength of the C line is 656.27 nm (nanometers), the wavelength of the F line is 486.13 nm (nanometers), and the wavelength of the g line is 435.84 nm (nanometers).
According to the present disclosure, it is possible to provide an imaging optical system, a projection display device comprising the imaging optical system, and an imaging apparatus comprising the imaging optical system. The imaging optical system has a small size, a wide angle, and a high optical performance in which various aberrations are satisfactorily corrected.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawing.
This imaging optical system is, for example, mounted on a projection display device, and can be used to project image information displayed on the light valve onto the screen (magnification side imaging surface). In
As shown in
As described above, in the imaging optical system that forms the intermediate image M1, the size of each reflective surface in the catoptric system GR can be reduced. In addition, by shortening the focal length of the whole system, it is possible to adopt a configuration suitable for wide angle.
The catoptric system GR consists of, in order from the magnification side along the optical path, a first reflective surface R1 having a positive power, a second reflective surface R2 having a curved surface shape, and a third reflective surface R3 having a positive power.
As described above, by reflecting light a plurality of times by the three reflective surfaces and lengthening a substantial optical path length, it is possible to minimize the power of each reflective surface to a low level while achieving reduction in size. As a result, the load on the dioptric system GL is reduced, and the number of lenses in the dioptric system GL can be reduced. Thus, the size of the entire imaging optical system can be reduced.
Further, by providing three reflective surfaces free from occurrence of chromatic aberration, it becomes possible to reduce occurrence of chromatic aberration in the entire optical system.
Furthermore, the first reflective surface R1 on the most magnification side is formed as a concave surface having a converging function. Thereby, the size of the first reflective surface R1 can be reduced. As shown in
In the imaging optical system of the present embodiment, it is preferable that a second intermediate image M2 is formed between the first reflective surface R1 and the second reflective surface R2 on the optical path and at a position conjugate to the first intermediate image M1. By adopting such a configuration, the focal length of the first reflective surface R1 can be shortened. Thus, the size of the first reflective surface R1 can be reduced. As a result, there is an advantage in widening the angle.
In a case where an intermediate image is formed between the second reflective surface R2 and the third reflective surface R3, in order to ensure the optical path length, it is necessary to make a distance between the third reflective surface R3 and the dioptric system GL long. Accordingly, the size of the third reflective surface R3 inevitably increases. Thus, this configuration is not preferable in terms of not only reduction in size of the third reflective surface R3 but also reduction in size of the entire imaging optical system. Therefore, in a case where the second intermediate image M2 is formed separately from the first intermediate image M1, it is preferable to form the second intermediate image M2 between the first reflective surface R1 and the second reflective surface R2.
Further, it is preferable that rays traveling from the first reflective surface R1 to the magnification side intersect rays traveling from the reduction side imaging surface to the magnification side imaging surface twice in the catoptric system GR. By adopting such a configuration, it is possible to correct aberrations (in particular, distortion and field curvature), which are caused by achieving the wide angle, while achieving reduction in size of the entire catoptric system GR.
Further, it is preferable that the second reflective surface R2 has a negative power. By adopting such a configuration, it is possible to achieve both wide angle and reduction in size while appropriately maintaining the power of the entire catoptric system GR.
Further, it is preferable that all optical surfaces of the catoptric system GR are composed of rotationally symmetric surfaces centered on an optical axis of the catoptric system GR. In addition, it is preferable that all optical surfaces of the dioptric system GL are composed of rotationally symmetric surfaces centered on an optical axis of the dioptric system GL. By adopting such a configuration, the structures of both the catoptric system GR and the dioptric system GL can be simplified, and there is an advantage in cost reduction. Furthermore, by making the optical axis of the catoptric system GR and the optical axis of the dioptric system GL as a common optical axis, design can be facilitated, and there is an advantage in cost reduction. In the example of the imaging optical system of the present embodiment shown in
Further, assuming that a focal length of the first reflective surface R1 is f1 and a focal length of the third reflective surface R3 is f3, it is preferable to satisfy Conditional Expression (1). Conditional expression (1) is an expression for maintaining the power balance in the catoptric system GR. By satisfying Conditional Expression (1), the power of the third reflective surface R3 becomes weaker than that of the first reflective surface RE Thus, the first reflective surface R1 can be prevented from being enlarged. Accordingly, the second reflective surface R2 can also be prevented from increasing in size. As a result, there is an advantage in reduction in size of the entire catoptric system GR.
|f1|<|f3| (1)
Further, assuming that a focal length of the whole system is f and a focal length of the dioptric system GL is fL, it is preferable to satisfy Conditional Expression (2). By not allowing the result of Conditional Expression (2) to be equal to or less than the lower limit, the negative power of the dioptric system GL is prevented from becoming excessively strong, and the height of rays incident on the catoptric system GR is prevented from becoming excessively low. Therefore, it is possible to prevent the interference between the first reflective surface R1 and the third reflective surface R3 and appropriately arrange the first reflective surface R1 and the third reflective surface R3. By not allowing the result of Conditional Expression (2) to be equal to or greater than the upper limit, it is possible to prevent the positive power of the dioptric system GL from becoming excessively strong. Thus, it becomes easy to correct various aberrations. As a result, there is an advantage in reduction in number of the lenses of the dioptric system GL. In addition, in a case where Conditional Expression (2-1) is satisfied, it is possible to obtain more favorable characteristics.
−0.15<|f|/fL<0.3 (2)
−0.1<|f|/fL<0.2 (2-1)
Further, assuming that a focal length of the catoptric system GR is fR and a focal length of the whole system is f, it is preferable to satisfy Conditional Expression (3). By not allowing the result of Conditional Expression (3) to be equal to or less than the lower limit, the catoptric system GR is compatible with a lens having a large F number. As a result, there is an advantage in correction of spherical aberration and astigmatism caused by achieving wide angle. By not allowing the result of Conditional Expression (3) to be equal to or greater than the upper limit, it is possible to prevent the size of the intermediate image M1 from becoming excessively large. Therefore, there are advantages in reduction in size of the catoptric system GR and correction of distortion and field curvature in the catoptric system GR. In addition, in a case where Conditional Expression (3-1) is satisfied, it is possible to obtain more favorable characteristics.
0.8<|fR/f|<1.8 (3)
1<|fR/f|<1.5 (3-1)
Further, assuming that a back focal length of the whole system is Bf and a focal length of the whole system is f, it is preferable to satisfy Conditional Expression (4). By not allowing the result of Conditional Expression (4) to be equal to or less than the lower limit, it is possible to prevent the back focal length from becoming excessively short. Thus, it becomes easy to arrange the optical member PP such as a color synthesizing prism. In addition, in a case where Conditional Expression (4-1) is satisfied, it is possible to obtain more favorable characteristics. By not allowing the result of Conditional Expression (4-1) to be equal to or greater than the upper limit, there is an advantage in suppressing an increase in size of the entire lens system including the back focal length.
2<Bf/|f| (4)
4<Bf/|f|<15 (4-1)
Further, it is preferable that during focusing, a reflective surface closest to the dioptric system GL among the first reflective surface R1, the second reflective surface R2, and the third reflective surface R3 is moved, and a part of the dioptric system is moved. A wide-angle lens is characterized in the following points. Due to the depth of field which has a larger value at a position closer to the optical axis, the change in focal length is smaller than the change in projection distance, while the variation in field curvature is larger than the change in projection distance in the peripheral part of the projected image. Therefore, by moving the reflective surface closest to the dioptric system GL together with a part of the dioptric system GL, it is possible to suppress the variation in field curvature with respect to the change in projection distance. As a result, it is possible to maintain favorable performance. In addition, by moving the reflective surface closest to the dioptric system GL together with the part of the dioptric system GL, it is possible to collectively arrange mechanisms for moving these members. As a result, this configuration facilitates design and manufacture.
Next, numerical examples of the imaging optical system of the present invention will be described.
The imaging optical system of Example 1 shown in
In the modification example of the imaging optical system of Example 1 shown in
Table 1 shows basic lens data of the imaging optical system of Example 1, Table 2 shows data about specification, Table 3 shows data about variable surface distances, and Table 4 shows data about aspheric surface coefficients thereof. Hereinafter, meanings of the reference signs in the tables are, for example, as described in Example 1, and are basically the same as those in Examples 2 to 7.
In the lens data of Table 1, the column of the surface number shows surface numbers. The surface of the elements closest to the magnification side is the first surface, and the surface numbers sequentially increase toward the reduction side. The column of the radius of curvature shows radii of curvature of the respective surfaces. The column of the on-axis surface distance shows distances on the optical axis Z between the respective surfaces and the subsequent surfaces. Further, the column of n shows a refractive index of each optical element at the d line, and the column of v shows an Abbe number of each optical element at the d line. Furthermore, the sign of the radius of curvature is positive in a case where a surface has a shape convex toward the magnification side, and is negative in a case where a surface has a shape convex toward the reduction side. In the basic lens data, the aperture stop St and the optical member PP are additionally noted. In a place of a surface number of a surface corresponding to the aperture stop St, the surface number and a term of (stop) are noted. Further, in the lens data of Table 1, in each place of the surface distance which is variable during focusing, DD[surface number] is noted. Numerical values each corresponding to the DD[surface number] are shown in Table 3.
In the data about the specification of Table 2, absolute values of the focal length |f| the back focal length Bf, the F number FNo, and the total angle of view 2ω(°) are noted.
In the lens data of Table 1, the reference sign * is attached to surface numbers of aspheric surfaces, and radii of curvature of the aspheric surfaces are represented by numerical values of paraxial radii of curvature. The data about aspheric surface coefficients of Table 4 shows the surface numbers of the aspheric surfaces and aspheric surface coefficients of the aspheric surfaces. The “E±n” (n: an integer) in numerical values of the aspheric surface coefficients of Table 4 indicates “×10±n”. The aspheric surface coefficients are values of the coefficients KA and Am in aspheric surface expression represented as the following expression.
Zd=C·h2/{1+(1−KA·C2·h2)1/2}+ΣAm·hm
Here, Zd is an aspheric surface depth (a length of a perpendicular from a point on an aspheric surface at height h to a plane that is perpendicular to the optical axis and contacts with the vertex of the aspheric surface),
h is a height (a distance from the optical axis),
C is an inverse of a paraxial radius of curvature, and
KA and Am are aspheric surface coefficients, and
Σ at the aspheric surface depth Zd means the sum with respect to m.
In the basic lens data and data about specification, “°” is used as a unit of angle, and “mm” (millimeter) is used as a unit of length, but appropriate different units may be used since the optical system can be used even in a case where the system is enlarged or reduced in proportion.
Next, an imaging optical system of Example 2 will be described.
The imaging optical system of Example 4 shown in
In Modification Example 1 of the imaging optical system of Example 2 shown in
In Modification Example 2 of the imaging optical system of Example 2 shown in
In Modification Example 3 of the imaging optical system of Example 2 shown in
Table 5 shows basic lens data of the imaging optical system of Example 2, Table 6 shows data about specification, Table 7 shows data about variable surface distances, and Table 8 shows data about aspheric surface coefficients thereof.
Next, an imaging optical system of Example 3 will be described.
Next, an imaging optical system of Example 4 will be described.
Next, an imaging optical system of Example 5 will be described.
Next, an imaging optical system of Example 6 will be described.
Next, an imaging optical system of Example 7 will be described.
Table 29 shows values corresponding to Conditional Expressions (1) to (4) of the imaging optical systems of Examples 1 to 7. It should be noted that, in the above-mentioned examples, the d line is set as the reference wavelength, and the values shown in Table 29 are values at the reference wavelength.
As can be seen from the above data, since all the imaging optical systems of Examples 1 to 7 satisfy Conditional Expressions (1) to (4), each imaging optical system has a high optical performance, in which various aberrations are satisfactorily corrected, while having a small size and a wide angle as a total angle of 130° or more.
Next, a projection display device according to an embodiment of the present invention will be described.
White light originated from the light source 15 is separated into rays with three colors (G light, B light, R light) through the dichroic mirrors 12 and 13. Thereafter, the rays respectively pass through the condenser lenses 16a to 16c, are incident into and optically modulated through the transmissive display elements 11a to 11c respectively corresponding to the rays with the respective colors, are subjected to color synthesis through the cross dichroic prism 14, and are subsequently incident into the imaging optical system 10. The imaging optical system 10 projects an optical image, which is formed by the light optically modulated through the transmissive display elements 11a to 11c, onto a screen 105.
White light originated from the light source 215 is reflected on a reflective surface inside the polarization separating prism 25, and is separated into rays with three colors (G light, B light, R light) through the TIR prisms 24a to 24c. The separated rays with the respective colors are respectively incident into and optically modulated through the corresponding DMD elements 21a to 21c, travel through the TIR prisms 24a to 24c again in a reverse direction, are subjected to color synthesis, are subsequently transmitted through the polarization separating prism 25, and are incident into the imaging optical system 210. The imaging optical system 210 projects an optical image, which is formed by the light optically modulated through the DMD elements 21a to 21c, onto a screen 205.
White light originated from the light source 315 is separated into rays with three colors (G light, B light, R light) through the dichroic mirrors 32 and 33. The separated rays with the respective colors respectively pass through the polarization separating prisms 35a to 35c, are incident into and optically modulated through the reflective display elements 31a to 31c respectively corresponding to the rays with the respective colors, are subjected to color synthesis through the cross dichroic prism 34, and are subsequently incident into the imaging optical system 310. The imaging optical system 310 projects an optical image, which is formed by the light optically modulated through the reflective display elements 31a to 31c, onto a screen 305.
The camera 400 comprises a camera body 41, and a shutter button 42 and a power button 43 are provided on an upper surface of the camera body 41. Further, operation sections 44 and 45 and a display section 46 are provided on a rear surface of the camera body 41. The display section 46 is for displaying a captured image and/or an image within an angle of view before imaging.
An imaging aperture, through which light from an imaging target is incident, is provided at the center on the front surface of the camera body 41. A mount 47 is provided at a position corresponding to the imaging aperture. The interchangeable lens 48 is mounted on the camera body 41 with the mount 47 interposed therebetween.
In the camera body 41, there are provided an imaging element, a signal processing circuit, a storage medium, and the like. The imaging element (not shown in the drawing) such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) outputs a captured image signal based on a subject image which is formed through the interchangeable lens 48. The signal processing circuit generates an image through processing of the captured image signal which is output from the imaging element. The storage medium stores the generated image. The camera 400 is able to capture a still image or a moving image by pressing the shutter button 42, and is able to store image data, which is obtained through imaging, in the storage medium.
The present invention has been hitherto described through embodiments and examples, but the imaging optical system of the present invention is not limited to the above-mentioned embodiments and examples, and may be modified into various forms. For example, the radius of curvature, the surface distance, the refractive index, and the Abbe number of each lens may be appropriately changed.
Further, the projection display device of the present invention is not limited to that of the above-mentioned configuration. For example, the used light valve and the optical member used in separation or synthesis of rays are not limited to those of the above-mentioned configuration, and may be modified into various forms. The light valve is not limited to a configuration in which light from a light source is spatially modulated by an image display element and output as an optical image based on image data, and may be configured to output light itself, which is output from a self-luminous image display element, as an optical image based on image data. Examples of the self-luminous image display element include an image display element in which light-emitting elements such as light emitting diodes (LED) or organic light emitting diodes (OLED) are two-dimensionally arranged.
Further, the imaging apparatus of the present invention is also not limited to the above-mentioned configurations. For example, the present invention may be applied to a single-lens reflex camera, a film camera, a video camera, and the like.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-140605 | Jul 2018 | JP | national |
JP2019-021041 | Feb 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6984044 | Kurioka | Jan 2006 | B2 |
6989936 | Hatakeyama | Jan 2006 | B2 |
7048388 | Takaura | May 2006 | B2 |
7957078 | Minefuji | Jun 2011 | B2 |
8071965 | Nishikawa | Dec 2011 | B2 |
8164838 | Minefuji | Apr 2012 | B2 |
8992025 | Piehler | Mar 2015 | B2 |
9581888 | Piehler | Feb 2017 | B2 |
10466452 | Minefuji | Nov 2019 | B2 |
20030133082 | Sunaga | Jul 2003 | A1 |
20040027662 | Kurioka | Feb 2004 | A1 |
20040156117 | Takaura | Aug 2004 | A1 |
20040174611 | Hatakeyama | Sep 2004 | A1 |
20040223126 | Hatakeyama | Nov 2004 | A1 |
20040264005 | Sunaga | Dec 2004 | A1 |
20050013021 | Takahashi | Jan 2005 | A1 |
20060088320 | Katashiba | Apr 2006 | A1 |
20060164605 | Kuwa | Jul 2006 | A1 |
20060198018 | Shafer | Sep 2006 | A1 |
20060227303 | Matsubara | Oct 2006 | A1 |
20070195289 | Ohzawa | Aug 2007 | A1 |
20100020367 | Abe | Jan 2010 | A1 |
20100097582 | Nagase | Apr 2010 | A1 |
20100103387 | Piehler | Apr 2010 | A1 |
20150160544 | Piehler | Jun 2015 | A1 |
20150293434 | Matsuo | Oct 2015 | A1 |
20170184843 | Kuzuhara | Jun 2017 | A1 |
20180246302 | Minefuji | Aug 2018 | A1 |
20190107696 | Kano | Apr 2019 | A1 |
20190222728 | Aoki | Jul 2019 | A1 |
20200142291 | Nishikawa | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2008-250296 | Oct 2008 | JP |
2017-040849 | Feb 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20200033570 A1 | Jan 2020 | US |