Imaging structure color conversion

Information

  • Patent Grant
  • 9726887
  • Patent Number
    9,726,887
  • Date Filed
    Wednesday, February 15, 2012
    12 years ago
  • Date Issued
    Tuesday, August 8, 2017
    7 years ago
Abstract
In embodiments of imaging structure color conversion, an imaging structure includes a silicon backplane with a driver pad array. An embedded light source is formed on the driver pad array in an emitter material layer, and the embedded light source emits light in a first color. A conductive material layer over the embedded light source forms a p-n junction between the emitter material layer and the conductive material layer. A color conversion layer can then convert a portion of the first color to at least a second color. Further, micro lens optics can be implemented to direct the light that is emitted through the color conversion layer.
Description
BACKGROUND

Virtual reality can be viewed as a computer-generated simulated environment in which a user has an apparent physical presence. A virtual reality experience can be generated in 3D and viewed with a head-mounted display (HMD), such as glasses or other wearable display device that has near-eye display panels as lenses to display a virtual reality environment, which replaces the actual environment. Augmented reality, however, provides that a user can still see through the display lenses of the glasses or other wearable display device to view the surrounding environment, yet also see images of virtual objects that are generated for display and appear as a part of the environment. Augmented reality can include any type of input such as audio and haptic inputs, as well as virtual images, graphics, and video that enhances or augments the environment that a user experiences. As an emerging technology, there are many challenges and design constraints with augmented reality, from generation of the virtual objects and images so that they appear realistic in a real environment, to developing the optics small and precise enough for implementation with a wearable display device. There are also challenges to developing illumination sources for implementation as micro projectors and/or imaging units for wearable display devices.


Conventional LCOS (liquid crystal on silicon) projection technologies use an LED (light emitting diode) or laser source to generate light that is reflected off of a silicon transistor array covered by an LCD (liquid crystal display) material to either reflect and/or change the polarization of the light. The LCOS reflective technology uses liquid crystals instead of individual DLP (digital light processing) mirrors. The liquid crystals are applied to a reflective mirror substrate and, as the liquid crystals open and close, the light is either reflected from the mirror below or blocked to modulate the emitted light. LCOS-based projectors typically use three LCOS chips, one each to modulate the red, green, and blue (RGB) components of the light. Similar to an LCD projector which uses three LCD panels, both LCOS and LCD projectors simultaneously project the red, green, and blue components of the light, such as for display on a display screen. A conventional display technology utilizes OLEDs (organic light emitting diodes) that generate light when current is applied through layers of the organic material. Although OLED cells can be individually controlled for illumination, unlike the LCOS material, the OLEDs are not viable for projection illumination because they do not emit enough light.


Some conventional LED array scanning systems for display technologies that have large optical systems are typically too large and complex to be implemented in imaging units for wearable display devices. Limitations of the current technology include the ability to modulate emitters in sequence in a scanning system, which can result in a slow refresh rate, a blurred image quality, and/or limited color depth. Another limitation of conventional LED array scanning systems is the relatively larger pitch between the LED emitters, which results in a larger optical system with size and weight barriers to implementation in a consumer HMD product. The light that is emitted for LED array scanning is moved across a surface, such as via a MEMS (micro-electro-mechanical systems) mirror, LC scanner, or by moving optics. However, the light efficiency of each emitter can vary based on production and material variances, bonding issues, connectivity issues, driver variance, micro-optics, color conversion variance, temperature, and/or optic differences across the surface.


SUMMARY

This Summary introduces simplified concepts of imaging structure color conversion, and the concepts are further described below in the Detailed Description and/or shown in the Figures. This Summary should not be considered to describe essential features of the claimed subject matter, nor used to determine or limit the scope of the claimed subject matter.


Imaging structure color conversion is described. In embodiments, an imaging structure includes a silicon backplane with a driver pad array. An embedded light source is formed on the driver pad array in an emitter material layer, and the embedded light source emits light in a first color. A conductive material layer over the embedded light source forms a p-n junction between the emitter material layer and the conductive material layer. A color conversion layer can then convert a portion of the first color to at least a second color. Further, micro lens optics can be implemented to direct the light that is emitted through the color conversion layer.


In other embodiments, the color conversion layer can be formed with phosphorus material or quantum dots that are implemented to convert the portion of the first color to the second color. Additionally, the color conversion layer can convert an additional portion of the first color to a third color. In implementations, the first color is UV light or blue light that is emitted by a laser or LED formed in inorganic material for direct light emission. For example, the first color is blue light emitted by the embedded light source, the second color is red light converted from the portion of the blue light, and the third color is green light converted from the additional portion of the blue light. In another example, the first color is blue light emitted by the embedded light source, the color conversion layer has a red stripe that converts the portion of the blue light to red light, and the color conversion layer has a green stripe that converts the additional portion of the blue light to green light.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of imaging structure color conversion are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:



FIG. 1 illustrates examples of imaging structures with embedded light sources in accordance with one or more embodiments.



FIG. 2 illustrates examples of the imaging structures implemented with a micro lens optic in accordance with one or more embodiments.



FIG. 3 illustrates examples of the imaging structures implemented with a color conversion layer in accordance with one or more embodiments.



FIG. 4 illustrates examples of the imaging structures implemented with a color conversion layer and micro lens optic in accordance with one or more embodiments.



FIG. 5 illustrates an example system in which embodiments of imaging structure color conversion can be implemented.



FIG. 6 illustrates an example system that includes an example of a wearable display device in which embodiments of imaging structure color conversion can be implemented.



FIG. 7 illustrates example method(s) of imaging structure color conversion in accordance with one or more embodiments.



FIG. 8 illustrates various components of an example device that can implement embodiments of imaging structure color conversion.





DETAILED DESCRIPTION

Embodiments of imaging structure color conversion are described. An imaging structure can be formed in inorganic material and implemented for individual cell control (e.g., individual pixel control), where each cell is a direct emitter designed to emit a bright output of light that can be used for a number of optical solutions, such as with light guides, free form optics, and/or direct projection. For example, light in a first color (e.g., blue light) that is emitted from an embedded light source (e.g., an iLED or laser) can be converted to a second color (e.g., red light) and/or converted to a third color (e.g., green light). The emitted and converted light can then be reflected through a micro lens optic and directed in an imaging system of a wearable display device (e.g., glasses or a head-mounted display), such as reflected off of a MEMS mirror and then directed into a waveguide or otherwise projected.


In embodiments, implementations of the imaging structure emits light that can be utilized for waveguide, projection, and/or free form optics solutions. In embodiments, an imaging structure with embedded light sources provides several benefits over conventional techniques, such as reduced power consumption, which may be as little as one-sixth of conventional solutions due in part to independent pixel control. Other benefits include the smaller size of the imaging structure because the imager and light source are implemented as one structure, and improved quality of image due to a strong reduction of stray light, such as may be seen with traditional LCOS solutions.


While features and concepts of imaging structure color conversion can be implemented in any number of different devices, systems, environments, and/or configurations, embodiments of imaging structure color conversion are described in the context of the following example devices, systems, and methods.



FIG. 1 illustrates examples 100 of an imaging structure with embedded light sources in accordance with one or more embodiments. An imaging structure 102, similar to a transistor array, has material layers that form the embedded light sources 104 of the imaging structure to directly emit light. For example, inorganic LED (iLED) material can be utilized that produces greater luminescence than typical OLED micro-display solutions which are principally limited to low light scenarios. In this example, the imaging structure 102 is constructed with a silicon backplane layer 106, a driver pad array 108, an emitter material layer 110, and a conductive material layer 112 that may be implemented as a common layer or pixel specific layer that is transparent, a ground plane, a metal layer, a power conductive layer, and/or as another type of material or configuration of materials.


The embedded light sources 104 are formed as individual emitters on the driver pad array in the emitter material layer, and the embedded light sources can be individually controlled at the driver pad array. The emitter material layer 110 can include a reflective structure 114, such as formed in a reflective array that is embedded or etched, for LED pixel isolation and reflective collection of photons (e.g., pseudo parabolic collection) towards an ideal light exit plane. The emitter material layer includes the reflective structure 114 to reflect the light to exit the individual direct emitters. Alternatively or in addition to the reflective structure 114, the imaging structure 102 can include other techniques, such as pyramid and/or cylindrical structures, to improve the optical extraction of the light. Implementations of color conversion may also be applied to the surfaces of the reflective, pyramid, and/or cylindrical structures.


The conductive material layer 112 can be formed with a rough surface 116 that is designed to allow more light emission out from the emitter material layer rather than be reflected or dispersed. Additionally, the material used to form the conductive material layer 112 can be formed around the sides of the individual LED zones. In embodiments, a p-n junction 118 is formed between the emitter material layer 110 and the conductive material layer, where one of the emitter material layer or the conductive material layer is a p-type semiconductor and the other is an n-type semiconductor. The conductive material layer 112 can be implemented as a transparent, common ground plane at the top of the imaging structure for electron flow through the p-n junction 118 as a transparent conductor. Alternatively, two separate layers with an insulation layer can be implemented to allow reflection on a lower layer with no connectivity, and allow reflection on an upper layer with connectivity.


In the imaging structure 102, multiple points between the p-type and the n-type semiconductor materials can be connected (e.g., strapped) for overall efficiency and to improve conductance. The imaging structure is unique for LEDs in that light is not emitted over the whole surface of the imaging structure. For micro-lens efficiency, point source emission can be implemented, and the emitting area can be well under 50% (e.g., such as 10%). Accordingly, the conductive material layer 112 may not be implemented as transparent conductor material, but rather as metal around the emitting area to strap down the p-type material to ground. Alternatively or in addition, TSV-like channels can be utilized to the top of the p-type material for either a pixel driver or for ground. When the structures are implemented as diodes, and depending on which way the p-n junction is layered and how the ground and active are wired, various configurations can be implemented.


In embodiments, the imaging structure 102 can be implemented as inorganic LEDs (iLEDs) on the silicon backplane layer 106 to drive line-scanned or pico-projection devices without using an additional LCOS imager. The imaging structure is also implemented for per-pixel color illumination (rather than full-display) for illumination efficiency and minimal light loss. The imaging structure 102 can be implemented with red, green, and/or blue (RGB) embedded light sources, such as lasers or LEDs, in various one-dimensional (1D), two-dimensional (2D), or n-dimensional arrays, structures, and configurations.


For example, a 1D array imaging structure 120 is formed with red 122, green 124, and blue 126 embedded light sources (e.g., iLEDs or lasers) that are formed with different materials for each different color. In another example, a 2D array imaging structure 128 is formed with two each RGB embedded light sources, and as indicated, may include additional embedded light sources along an X and/or Y axis of the 2D array. In implementations, a 2D array of embedded light sources can include a blue array from blue LED material, a red array from red LED material, and a green array from green LED material. In other embodiments, the imaging structure 102 can be formed as base structure with one material in a single color, such as blue, and then a color conversion layer can be utilized over the imaging structure to convert green and red from the blue base. Embodiments of color conversion are described below with reference to FIGS. 3 and 4.


The silicon backplane layer 106 of the imaging structure 102 receives serial or parallel data which is used to drive associated pixels, such as for example, at speeds of 30 Hz to 60 Hz, or at faster frame rates. In alternate configurations, the imaging structure 102 may be implemented without the silicon backplane layer 106, in which case the embedded light sources can be initiate passively with data and select lines, such as driver by line driver chips (similar to those used in display devices, for example). In a 1D configuration (e.g., the 1D array imaging structure 120), an image is generated over time by driving a line of pixels an x-number of times per frame. Alternatively, sets of lines can be driven to generate a frame of an image, or entire frames of the image, at one time. Any of the various arrays and configurations can be selected based on intended light levels, timing to scan lines, and illumination efficiency.


Each of the embedded light sources can be individually controlled by the driver pad array 108 (also referred to as the control plane), and can be illuminated in a variety of patterns based on analog, current modulation, pulse-width modulation (PWM), and/or based on specific time and power parameters. The iLED or laser arrays then generate either multiple colors (1D×RGB or 2D×RGB) or single color (UV or blue) with additional color conversion layers, which may include a layer of Quantum Dots (QDs). An additional, optional layer or set of layers can be implemented to leverage LC (liquid crystal) materials to direct, redirect, and/or focus the light that is emitted from the imaging structure array. In embodiments, the embedded light sources are implemented as lasers with a surface emitting laser array or a VCSEL (vertical-cavity surface-emitting laser). An example implementation may include LED material in the center of multiple Bragg reflective layers at one-quarter wavelength apart, and the LEDs create the initial photons that lase in a chamber formed by the Bragg layers.


The driver pad array 108 is implemented for current-based modulation (rather than a voltage-based LCOS) to drive the individual embedded light sources, such as iLEDs or lasers (rather than previously utilized LC material). The driver pad array 108 can have exposed metal pads to directly drive the LED array electrically (e.g., a current-based LED drive) and optically (e.g., an exposed metal pad utilized as a reflector). The connections from the driver pad array 108 to the emitter material layer 110 can be implemented by various techniques, such as TSV (through-silicon via), as deposited material, or layered 1D or 2D iLED structures on top of the control plane (e.g., the driver pad array 108), where the pixels are the rows or grids of the iLEDs. These connections allow control of voltage and/or current for controlling light illumination from the imaging structure array.


An example imaging structure 130 can be implemented as a fault tolerant array used to avoid yield loss of illumination when single pixel zones fail. The imaging structure 130 is formed as an array of nine embedded light sources (e.g., iLEDs) in three sections, with three red 132, three green 134, and three blue 136 embedded light sources. After production, a test can be used to determine weak or faulty light source sectors, which can then be marked for non-use in a final LED scan controller. Additionally, if one embedded light source of a section fails, the illumination intensity of the other two embedded light sources in the section can be increased, such as with gamma correction for non-linear illumination, to calibrate for the failed light source.


Other imaging structure configurations can also be utilized as a fault tolerant array, such as with two pixels per sub-pixel (e.g., an array of six embedded light sources with two red, two green, and two blue embedded light sources), or an array of embedded light sources with more than three pixels per color. Other imaging structure configurations can be implemented with multiple sets of LED arrays that are positioned, or otherwise fit, extremely close to one another to avoid having multiple LEDs per pixel. Any number of configuration patterns are also possible, such as a 2D array, four square blocks, a 2×4 configuration, or any other n×m configuration that allows for smaller array yields.



FIG. 2 illustrates examples 200 of the imaging structures described with reference to FIG. 1, and implemented with a micro lens optic that collects and redirects the light emitted from the embedded light sources. In an example 202, the imaging structure 120, which is an example of the imaging structure 102, has micro lens optics 204 positioned over the embedded light sources, such as shown at 206. For example, the micro lens optics are positioned above the LED emitters and/or the conductive material layer 112 to reduce light loss. Optionally, a DBEF (dual brightness enhancement film) material can be utilized between the imaging structure and the micro lens optics to extract polarized light. The light 208 that is emitted from the RGB light sources (e.g., iLEDs or lasers) is reflected through the micro lens optics and can then be directed in an imaging system, such as reflected off of a MEMS mirror and then directed into a waveguide or otherwise projected. In embodiments, the micro lens optics 204 may be formed as parabolic optics as shown at 210 for more efficient redirection (e.g., focus or concentration) of the light 208 that is emitted from the embedded light sources.


In embodiments, the walls of the LED emitters that are formed as the embedded light sources in an imaging structure, such as the imaging structure 120, can be formed to approximate parabolic reflection in the emitter material layer 110 to direct reflected light from within the emitter material. For example, as shown at 212, an individual LED 214 can be formed in the emitter material layer with the walls of the LED emitter designed to approximate a parabolic structure 216 to direct as much of the reflected light 218 as possible back to the micro lens optic 204. Alternatively, the parabolic reflector material may be formed at the top of the LED material (e.g., the emitter material layer 110) if the p-n junction is also in the top section of the LED material. Any method allowing implantation of a reflective and/or conductive material below the p-n junction would have far higher efficiencies. The pseudo parabolic collectors can be formed using the driver metal as a bottom, etched, pressed, or other techniques with metal or other reflective material in the side walls of the LED material. These structures are formed deeper than the p-n material junction, but do not have to run completely through the LED material.



FIG. 3 illustrates examples 300 of the imaging structures described with reference to FIGS. 1 and 2, and implemented with a color conversion layer that converts green and red from a UV or blue base imaging structure formed from one material. In an example 302, the imaging structure 102 has a color conversion layer 304 formed over the UV or blue embedded material source, such as shown at 306. The color conversion layer includes a red stripe 308 and a green stripe 310 to convert blue emitted light to respective red or green emitted light. For example, the color conversion layer 304 can pass through the blue emitted light 312, convert the blue emitted light to red emitted light 314 with the red stripe 308, and/or convert the blue emitted light to green emitted light 316 with the green stripe 310.


The color conversion layer can be implemented with traditional color filters, such as if the blue or UV emitted light is previously converted to white light using phosphorous. In other implementations, the color conversion layer can be implemented with color conversion configurations other than the stripes that are shown. For example, the color conversion layer can be implemented with photolithographic processes or contact printing mechanisms which include square RGBG, RGBW (white derived from multiple QDs in a sub pixel), or RGB/IR, which can be implemented as square or even hexagon structures.


In another example shown at 318, a 2D array imaging structure 320 has a multi-array color conversion layer 322 formed over the UV or blue embedded material source. The color conversion layer includes red stripes 324 to convert the blue emitted light to red emitted light, and includes green stripes 326 to convert the blue emitted light to green emitted light. In alternate implementations, the imaging structure 320 has the color conversion layer formed over a green or red embedded material source to convert the green or red emitted light to red light or infra-red light (e.g., convert any lower wavelength light to an equal or higher wavelength light).


In an implementation, a color selective reflector, such as a dichroic mirror, can be positioned between the emitter structure and a quantum dot (QD) conversion layer for the collection of photons opposite to the desired light exit. Alternatively or in addition, a dichroic mirror, can be positioned over the color conversion layer to recycle light that does not get converted for optical extraction efficiency. A parabolic light structure may also be included to drive the light in a desired direction.


In embodiments, a first conversion technique utilizes phosphorous, such as commonly used in LEDs, and a second conversion technique utilizes time multiplexed quantum dots (QDs). The color conversion layers of phosphorous materials or QDs can be deposited in rows above the embedded light source (e.g., iLED base material or LED optics). In implementations, QDs may be deposited directly on an LED material surface of the imaging structure to pick up photons before they TIR due to the high index of the LED material. Active control allows color sequencing of electrically polarized QDs and active control surfaces over LED emitters. This reduces the number of embedded light sources (e.g., reduces the number of LEDs) by sequencing the color conversion.


In an example, negative QD-red and positive QD-green can be sequenced via three control planes (where two are out of view of the LED emitter), which allows both QDs at the sides, and the blue emitted light is passed through the color conversion layer. The negative charge on the viewable plane for the red emitted light is followed by a positive charge on the viewable plane for the green emitted light. For the color conversion, a sequence of voltages allow either no blue, red, or green QDs to enter into the light path above the blue LED (e.g., the imaging structure 102). In this system, the entire line or array has transparent ITO (or ITO-like) plates that attract red to green to blue transitions. The LED arrays are then pulsed with the color content on a line or array basis. A control ASIC can also control the voltages for the QD ITO plates, or separate signals from an external source are possible.



FIG. 4 illustrates examples 400 of the imaging structures described with reference to FIGS. 1-3, and implemented with a color conversion layer and micro lens optics that collect and redirect the light emitted from the embedded light sources. In an example 402, the imaging structure 102 has a color conversion layer 304 formed over the UV or blue embedded material source (e.g., as described with reference to FIG. 3), and has micro lens optics 204 positioned over the color conversion layer (e.g., as described with reference to FIG. 2), such as shown at 404. The color conversion layer 304 can pass through the blue emitted light 406 to the micro lens optics, convert the blue emitted light to red emitted light 408 with the red stripe, and/or convert the blue emitted light to green emitted light 410 with the green stripe. In another example shown at 412, a micro lens structure 414 is integrated with a color conversion red stripe 416 and green stripe 418.



FIG. 5 illustrates an example system 500 in which various embodiments of imaging structure color conversion can be implemented. An example wearable display device 502 includes left and right display lens systems, such as display lens systems 504 that are viewed from a perspective 506 of the wearable display device, as if viewing the display lens systems from the top of the device. In embodiments, the display lens systems 504 can be implemented as left and right display lens systems of the wearable display device described with reference to FIG. 6. A wearable display device can be implemented as any type of glasses or head-mounted display (HMD) that includes implementations of the display lens systems 504 (e.g., left and right display lens systems) through which a user can view the surrounding environment, yet also see virtual images that are generated for display and appear as a part of the environment. References to a left imaging system and a right imaging system, as described herein, correlate to a user's left and right eyes (e.g., from the perspective of wearing and looking through the wearable display device). Alternatively, the left and right imaging systems may be described from the perspective of looking at the wearable display device.


The display lens systems 504 include a display optic 508, such as a see-through and reflecting waveguide, through which light 510 of an image (e.g., an image of the environment as viewed through the wearable display device) is projected for viewing. In this example, the display lens systems 504 also include an imaging unit 512, which can be implemented with any number of micro display panels, imaging structures with direct emitters, lenses, and reflecting elements to display and project a virtual image into a see-through and reflecting waveguide. The see-through, reflecting waveguide (i.e., the display optic 508) is implemented for internal reflection and conducts visible light of a virtual image that is generated by the imaging unit 512 for viewing by a user, and also passes through the light 510 from the surrounding environment for viewing by the user. A display lens system 504 with an imaging unit can also be implemented with components of the display lens system described with reference to FIG. 6 to implement embodiments of imaging structure color conversion.


In embodiments, the imaging units 512 of the display lens systems 504 each include a printed circuit board 514 that incorporates an embodiment of an imaging structure 516. The imaging structures 516 can be implemented as any of the example imaging structures described with reference to FIGS. 1-4, such as the imaging structure 102 with the color conversion layer 304, such as shown at 306, or the imaging structure 102 with the micro lens optics 204 and the color conversion layer 304 positioned over the imaging structure, such as shown at 404.


An imaging structure 516 includes the embedded light source that emits light in a first color (e.g., UV or blue light) and converts portions of the first light to a second color (e.g., red light) and/or to a third color (e.g., green light), which is reflected by a reflecting mirror 518 onto a MEMS scanning mirror 520 that is also incorporated with the printed circuit board 514. The imaged light is then directed by the scanning mirror through an imaging optic 522 that directs the light into the see-through, reflecting waveguide (i.e., the display optic 508). The MEMS scanning mirror (e.g., or other electrically alterable mirror), or an LC steering solution, can be implemented with line scanning techniques or full X,Y LED array light source configurations, which can be used to avoid long and/or narrow arrays of LED material, allow larger resolutions, and can be used with eye-tracking projection solutions.



FIG. 6 illustrates an example system 600 that includes an example wearable display device 602 in which embodiments of imaging structure color conversion can be implemented. The wearable display device can be implemented as any type of glasses or head-mounted display (HMD) that includes display lens systems 604 (e.g., left and right display lens systems) through which a user can view the surrounding environment, yet also see virtual images (e.g., any type of object, video, text, graphic, and the like) that are generated for display and appear as a part of the environment.


The wearable display device 602 can be implemented as an independent, portable system that includes memory, software, a processor, and/or a power source. Alternatively or in addition, the wearable display device may be communicatively linked to a controller 606 that includes any one or combination of the memory, software, processor, and/or power source, such as a battery unit. The controller can be implemented for wired or wireless communication with the wearable display device. The controller and/or the wearable display device can also be implemented with any number and combination of differing components as further described with reference to the example device shown in FIG. 8. For example, the controller and/or the wearable display device includes an imaging application implemented as computer-executable instructions, such as a software application, and executed by a processor to implement embodiments of imaging structure color conversion as described herein.


In embodiments, the controller may be implemented as a dedicated device (e.g., the wired controller 606), as a mobile phone 608, a tablet or other portable computer device, a gaming system 610, or as any other type of electronic device that can be implemented to process and generate virtual images for display as part of the environment that is viewed through the display lens system of the wearable display device. The controller may communicate with the wearable display device wirelessly via WiFi™, Bluetooth™, infrared (IR), RFID transmission, wireless Universal Serial Bus (WUSB), cellular, or via other wireless communication techniques.


The example system 600 also includes a data server 612, or data service, that communicates, or otherwise distributes, virtual image data 614 to the wearable display device 602 via a communication network 616. For example, the data server may be part of a network-based gaming system that generates virtual images for augmented reality display at the wearable display device. Alternatively, the data server may be part of a navigation system that communicates navigation directions and information for display in the display lens systems 604 of the wearable display device. In another example, the data server may be part of a messaging service, such as an e-mail or text messaging system, that communicates e-mail and/or text messages to the wearable display device for display in the display lens systems, where a user can read a message as an augmented reality image that is displayed over the environment viewed through the wearable display device.


Any of the devices, servers, and/or services can communicate via the communication network 616, which may be implemented to include wired and/or wireless networks. The communication network can also be implemented using any type of network topology and/or communication protocol, and can be represented or otherwise implemented as a combination of two or more networks, to include IP-based networks and/or the Internet. The communication network may also include mobile operator networks that are managed by mobile operators, such as a communication service provider, cell-phone provider, and/or Internet service provider.


The wearable display device 602 includes a frame 618, such as in the form of glasses, goggles, or any other structure, that supports and incorporates the various components of the device, as well as serves as a conduit for electrical and other component connections. A components module 620 (or components modules on the left, right, and/or both sides of the device frame) incorporates any of the various components, such as processing and control circuitry, memory, software, a processor, GPS transceiver, and/or power source. The wearable display device may also include a microphone 622 to record audio data from the surrounding environment, as well as ear phones for audio feedback as part of an augmented reality experience.


The wearable display device 602 also includes various cameras 624 that capture video and still images of the surrounding environment. The image and video data can be processed on the device and/or by a controller device (e.g., controller 606), and used to create a mapping field to orient and track a user in the environment space. The wearable display device can also include eye tracking cameras used to determine a user's eyeball location and track eye movements. The wearable display device may also include a temperature sensor, as well as inertial sensors and/or attitude sensors, including MEMS gyros, magnetic sensors (e.g., a compass), and acceleration sensors for sensing position, orientation, and acceleration of the wearable display device.


An example of one display lens system 604 is shown from a viewer perspective 626 of the wearable display device 602, as if viewing the display lens system from the top of the device. The display lens system includes an imaging system 628, which can be implemented with any number of micro display panels, lenses, and reflecting elements to display and project a virtual image into a see-through and reflecting waveguide 630. A display lens system 604 can also be implemented as the imaging units described with reference to FIG. 5 to implement embodiments of imaging structure color conversion. The see-through, reflecting waveguide 630 is implemented for internal reflection and conducts the visible light 632 of a virtual image that is generated by the imaging unit for viewing by a user, and also passes through the light 634 from the surrounding environment for viewing by the user.


The micro display panels, lenses, and/or reflecting elements of the imaging system 628 can be implemented with various display technologies, such as implemented with a transparent LCD, or using a transmissive projection technology where the light source is modulated by optically active material, backlit with white light. These technologies can be implemented using LCD type displays with powerful backlights and high optical energy densities. Alternatively, a micro display and/or reflecting element can be implemented using a reflective technology, such as digital light processing (DLP) and liquid crystal on silicon (LCOS), that reflects external light, which is reflected and modulated by an optical material.


In embodiments, the imaging system 628 (or other components of a display lens system 604) can be implemented to include an infra-red (IR) laser utilized for system calibrations and/or as an illumination source for an eye-tracking system and camera that tracks the position of a user's eyes. The eye-tracking system includes the eye-tracking illumination source, which is not a visible light, and includes an eye-tracking IR sensor. In implementations that include color conversion, the illumination source can be implemented as UV or blue iLED arrays that emit the IR light, which may be emitted from one or more of the pixels. The IR sensor can be implemented as an IR camera that provides infrared image data of the eye for eye-tracking processing, or an IR sensor that detects eye reflections when the eye is illuminated. Alternatively or in addition, sensors can be implemented in the CMOS driver array to detect the feedback. In implementations, the light reflections (e.g., the IR return) may be directed with SBG or SRB methods. The see-through and reflecting waveguide 630 can also be utilized for the infrared illumination, and for eyeball reflections that the eye-tracking system uses to track the position of the user's eyes.


In this example, the display lens systems 604 include an optional opacity filter 636, and a see-through lens 638 on each side of the waveguide 630. The see-through lenses can be standard eye-glass lenses and made to prescription (or no prescription). The opacity filter selectively blocks natural light, either uniformly or on a per-pixel basis, from passing through the see-through and reflecting waveguide to enhance the contrast of a displayed virtual image.


Example method 700 is described with reference to FIG. 7 in accordance with one or more embodiments of imaging structure color conversion. Generally, any of the services, functions, methods, procedures, components, and modules described herein can be implemented using software, firmware, hardware (e.g., fixed logic circuitry), manual processing, or any combination thereof. A software implementation represents program code that performs specified tasks when executed by a computer processor. The example methods may be described in the general context of computer-executable instructions, which can include software, applications, routines, programs, objects, components, data structures, procedures, modules, functions, and the like. The program code can be stored in one or more computer-readable storage media devices, both local and/or remote to a computer processor. The methods may also be practiced in a distributed computing environment by multiple computer devices. Further, the features described herein are platform-independent and can be implemented on a variety of computing platforms having a variety of processors.



FIG. 7 illustrates example method(s) 700 of imaging structure color conversion. The order in which the method blocks are described are not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement a method, or an alternate method.


At block 702, an imaging structure is formed. For example, the imaging structure 102 (FIG. 1) includes a silicon backplane 106 with a driver pad array 108 that controls an embedded light source 104 formed as a direct emitter on the driver pad array in an emitter material layer 110, and includes a conductive material layer 112 over the embedded light source. The embedded light source is formed in inorganic material as one of a laser or an LED for direct light emission.


At block 704, a color conversion layer is formed over the imaging structure. For example, the color conversion layer 304 (FIG. 3) is formed to include a red stripe 308 that converts emitted light (e.g., the blue light 312) to the red light 314. The color conversion layer 304 is also formed to include a green stripe 310 that converts the emitted light (e.g., the blue light 312) to the green light 316. At block 706, light is emitted from the imaging structure in a first color. For example, the imaging structure 102 emits the blue light 312 from the embedded light source 104 of the imaging structure.


At block 708, a portion of the first color is converted to at least a second color through the color conversion layer. For example, the red stripe 308 of the color conversion layer 304 converts a portion of the blue light to the red light 314. At block 710, an additional portion of the first color is converted to a third color through the color conversion layer. For example, the green stripe 310 of the color conversion layer 304 converts an additional portion of the blue light to the green light 316.


At block 712, the light that is emitted from the imaging structure and through the color conversion layer is directed with micro lens optics. For example, the imaging structure 102 includes the color conversion layer 304 and the micro lens optics 204 as shown at 404 (FIG. 4), and the micro lens optics direct the light that is emitted from the embedded light source 104 of the imaging structure and through the color conversion layer. In an embodiment, the color conversion layer is integrated with the micro lens optics as shown at 412.



FIG. 8 illustrates various components of an example device 800 that can be implemented as any of the devices described with reference to the previous FIGS. 1-7, such as a wearable display device and/or a controller for a wearable display device. In embodiments, the device may be implemented as any one or combination of a fixed or mobile device, in any form of a consumer, computer, portable, communication, phone, navigation, appliance, gaming, media playback, and/or electronic device. The device may also be associated with a user (i.e., a person) and/or an entity that operates the device such that a device describes logical devices that include users, software, firmware, hardware, and/or a combination of devices.


The device 800 includes communication devices 802 that enable wired and/or wireless communication of device data 804, such as virtual image data, as well as video and images data, and other media content stored on the device. The media content stored on the device can include any type of audio, video, and/or image data. The device includes one or more data inputs 806 via which any type of data, media content, and/or inputs can be received, such as user-selectable inputs and any other type of audio, video, and/or image data received from any content and/or data source.


The device 800 also includes communication interfaces 808, such as any one or more of a serial, parallel, network, or wireless interface. The communication interfaces provide a connection and/or communication links between the device and a communication network by which other electronic, computing, and communication devices communicate data with the device.


The device 800 includes one or more processors 810 (e.g., any of microprocessors, controllers, and the like) or a processor and memory system (e.g., implemented in an SoC), which process computer-executable instructions to control the operation of the device. Alternatively or in addition, the device can be implemented with any one or combination of software, hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 812. Although not shown, the device can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.


The device 800 also includes one or more memory devices 814 (e.g., computer-readable storage media) that enable data storage, such as random access memory (RAM), non-volatile memory (e.g., read-only memory (ROM), flash memory, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable disc, and the like. The device may also include a mass storage media device. Computer-readable storage media can be any available medium or media that is accessed by a computing device.


A memory device 814 provides data storage mechanisms to store the device data 804, other types of information and/or data, and device applications 816. For example, an operating system 818 can be maintained as a software application with the memory device and executed on the processors. The device applications may also include a device manager or controller, such as any form of a control application, software application, signal processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on. In this example, the device applications also include an imaging application 820 that may implement embodiments of imaging structure color conversion as described herein.


The device 800 may also include an audio and/or video processing system 822 that generates audio data for an audio system 824 and/or generates display data for a display system 826. In implementations, the audio system and/or the display system are external components to the device. Alternatively, the audio system and/or the display system are integrated components of the example device.


Although embodiments of imaging structure color conversion have been described in language specific to features and/or methods, the appended claims are not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations of imaging structure color conversion.

Claims
  • 1. An imaging structure, comprising: a silicon backplane with a driver pad array;an embedded light source formed as an individual emitter on the driver pad array in an emitter material layer, the embedded light source configured to emit light in a first color, the embedded light source formed to approximate a parabolic structure configured to reflect the light through a micro lens optic;a conductive material layer over the embedded light source forms a p-n junction between the emitter material layer and the conductive material layer; anda color conversion layer configured to convert only a portion of the light in the first color that is emitted from the embedded light source to at least a second color.
  • 2. An imaging structure as recited in claim 1, wherein the color conversion layer is formed with one of phosphorus material or quantum dots configured to convert the portion of the first color to the second color.
  • 3. An imaging structure as recited in claim 1, wherein the first color is one of UV light or blue light emitted by the embedded light source.
  • 4. An imaging structure as recited in claim 1, wherein the first color is one of green light or red light emitted by the embedded light source, and wherein the first color is converted to one of red light or infra-red light.
  • 5. An imaging structure as recited in claim 1, wherein the color conversion layer is further configured to convert an additional portion of the first color to a third color.
  • 6. An imaging structure as recited in claim 5, wherein: the first color is blue light emitted by the embedded light source;the second color is red light converted from the portion of the blue light; andthe third color is green light converted from the additional portion of the blue light.
  • 7. An imaging structure as recited in claim 5, wherein: the first color is blue light emitted by the embedded light source;the color conversion layer comprises a red stripe configured to convert the portion of the blue light to red light; andthe color conversion layer further comprises a green stripe configured to convert the additional portion of the blue light to green light.
  • 8. An imaging structure as recited in claim 1, further comprising the micro lens optic configured to direct the light that is emitted through the color conversion layer.
  • 9. An imaging structure as recited in claim 8, wherein the color conversion layer is integrated with micro lens optics.
  • 10. A method, comprising: forming an imaging structure that comprises a silicon backplane with a driver pad array that controls an embedded light source formed as an individual direct emitter on the driver pad array in an emitter material layer, the embedded light source formed to approximate a parabolic structure configured to reflect light through a micro lens optic, and a conductive material layer over the embedded light source;forming a color conversion layer over the imaging structure;emitting the light from the imaging structure in a first color; andconverting only a portion of the light in the first color that is emitted from the embedded light source to at least a second color through the color conversion layer.
  • 11. A method as recited in claim 10, further comprising converting an additional portion of the first color to a third color.
  • 12. A method as recited in claim 11, wherein: the first color is blue light emitted from the imaging structure;the second color is red light converted from the portion of the blue light; andthe third color is green light converted from the additional portion of the blue light.
  • 13. A method as recited in claim 11, wherein: the first color is blue light emitted by the embedded light source;the color conversion layer comprises a red stripe that converts the portion of the blue light to red light; andthe color conversion layer further comprises a green stripe that converts the additional portion of the blue light to green light.
  • 14. A method as recited in claim 10, wherein the embedded light source is one of a laser or an LED for direct light emission.
  • 15. A method as recited in claim 10, further comprising directing the light that is emitted from the imaging structure and through the color conversion layer with micro lens optics.
  • 16. A method as recited in claim 15, wherein the color conversion layer is integrated with the micro lens optics.
  • 17. A method, comprising: emitting light from an imaging unit in a first color, the light emitted by an imaging structure comprising: a silicon backplane with a driver pad array that controls an embedded light source formed as an individual emitter on the driver pad array in an emitter material layer, the embedded light source formed to approximate a parabolic structure configured to reflect light through a micro lens optic; anda conductive material layer over the embedded light source forming a p-n junction between the emitter material layer and the conductive material layer; ;andconverting only a portion of the light in the first color that is emitted from the embedded light source to at least a second color through a color conversion layer that is formed over the imaging structure.
  • 18. A method as recited in claim 17, further comprising converting an additional portion of the first color to a third color.
  • 19. A method as recited in claim 18, wherein: the first color is blue light emitted from the imaging structure;the second color is red light converted from the portion of the blue light; andthe third color is green light converted from the additional portion of the blue light.
  • 20. A method as recited in claim 17, wherein: the first color is blue light emitted by the embedded light source;the color conversion layer comprises a red stripe that converts the portion of the blue light to red light; andthe color conversion layer further comprises a green stripe that converts the additional portion of the blue light to green light.
US Referenced Citations (437)
Number Name Date Kind
3836258 Courten et al. Sep 1974 A
3906528 Johnson Sep 1975 A
3971065 Bayer Jul 1976 A
4711512 Upatnieks Dec 1987 A
4822145 Staelin Apr 1989 A
4860361 Sato et al. Aug 1989 A
4957351 Shioji Sep 1990 A
5019808 Prince et al. May 1991 A
5146355 Prince et al. Sep 1992 A
5252950 Saunders et al. Oct 1993 A
5309169 Leppert May 1994 A
5359444 Piosenka et al. Oct 1994 A
5453877 Gerbe et al. Sep 1995 A
5455458 Quon et al. Oct 1995 A
5455882 Veligdan Oct 1995 A
5459611 Bohn et al. Oct 1995 A
5483307 Anderson Jan 1996 A
5491580 O'Meara Feb 1996 A
5543588 Bisset et al. Aug 1996 A
5574473 Sekiguchi Nov 1996 A
5579830 Giammaruti Dec 1996 A
5583609 Mizutani et al. Dec 1996 A
5606455 Eichenlaub Feb 1997 A
5614941 Hines Mar 1997 A
5648643 Knowles et al. Jul 1997 A
5651414 Suzuki et al. Jul 1997 A
5673146 Kelly Sep 1997 A
5708449 Heacock et al. Jan 1998 A
5714967 Okamura et al. Feb 1998 A
5737171 Buller et al. Apr 1998 A
5751476 Matsui et al. May 1998 A
5771320 Stone Jun 1998 A
5856842 Tedesco Jan 1999 A
5861931 Gillian et al. Jan 1999 A
5886822 Spitzer Mar 1999 A
5940149 Vanderwerf Aug 1999 A
5959664 Woodgate Sep 1999 A
5982553 Bloom et al. Nov 1999 A
5991087 Rallison Nov 1999 A
6101008 Popovich Aug 2000 A
6144439 Carollo Nov 2000 A
6160667 Smoot Dec 2000 A
6188427 Anderson et al. Feb 2001 B1
6226178 Broder et al. May 2001 B1
6239502 Grewe et al. May 2001 B1
6271808 Corbin Aug 2001 B1
6307142 Allen et al. Oct 2001 B1
6323970 Popovich Nov 2001 B1
6377401 Bartlett Apr 2002 B1
6411512 Mankaruse et al. Jun 2002 B1
6446442 Batchelor et al. Sep 2002 B1
6466198 Feinstein Oct 2002 B1
6470289 Peters et al. Oct 2002 B1
6481851 McNelley et al. Nov 2002 B1
6496218 Takigawa et al. Dec 2002 B2
6529331 Massof et al. Mar 2003 B2
6542307 Gleckman et al. Apr 2003 B2
6545650 Yamada et al. Apr 2003 B1
6547416 Pashley et al. Apr 2003 B2
6554428 Fergason et al. Apr 2003 B2
6577411 David Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6606152 Littau Aug 2003 B2
6621702 Elias et al. Sep 2003 B2
6631755 Kung et al. Oct 2003 B1
6635999 Belliveau Oct 2003 B2
6639201 Almogy et al. Oct 2003 B2
6735499 Ohki et al. May 2004 B2
6753828 Tuceryan et al. Jun 2004 B2
6775460 Steiner et al. Aug 2004 B2
6804115 Lai Oct 2004 B2
6809925 Belady et al. Oct 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6867753 Chinthammit et al. Mar 2005 B2
6888613 Robins et al. May 2005 B2
6889755 Zuo et al. May 2005 B2
6906901 Liu Jun 2005 B1
6919867 Sauer Jul 2005 B2
6947020 Kiser et al. Sep 2005 B2
6964731 Krisko et al. Nov 2005 B1
6971443 Kung et al. Dec 2005 B2
6992738 Ishihara et al. Jan 2006 B2
6997241 Chou et al. Feb 2006 B2
7006215 Hoff et al. Feb 2006 B2
7015876 Miller Mar 2006 B1
7048385 Beeson et al. May 2006 B2
7069975 Haws et al. Jul 2006 B1
7113605 Rui et al. Sep 2006 B2
7116555 Kamath et al. Oct 2006 B2
7184615 Levola Feb 2007 B2
7191820 Chou et al. Mar 2007 B2
7193584 Lee Mar 2007 B2
7250930 Hoffman et al. Jul 2007 B2
7261453 Morejon et al. Aug 2007 B2
7271795 Bradski Sep 2007 B2
7277282 Tate Oct 2007 B2
7301587 Uehara et al. Nov 2007 B2
7337018 Espinoza-Ibarra et al. Feb 2008 B2
7359420 Shchegrov et al. Apr 2008 B2
7365734 Fateh et al. Apr 2008 B2
7369101 Sauer et al. May 2008 B2
7376852 Edwards May 2008 B2
7396133 Burnett et al. Jul 2008 B2
7412306 Katoh et al. Aug 2008 B2
7416017 Haws et al. Aug 2008 B2
7417617 Eichenlaub Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7428001 Schowengerdt et al. Sep 2008 B2
7430349 Jones Sep 2008 B2
7430355 Heikenfeld et al. Sep 2008 B2
7455102 Cheng Nov 2008 B2
7505269 Cosley et al. Mar 2009 B1
7513627 Larson et al. Apr 2009 B2
7515143 Keam et al. Apr 2009 B2
7542665 Lei Jun 2009 B2
7551814 Smits Jun 2009 B1
7576916 Amitai Aug 2009 B2
7583327 Takatani Sep 2009 B2
7607111 Vaananen et al. Oct 2009 B2
7619895 Wertz et al. Nov 2009 B1
7631687 Yang Dec 2009 B2
7646606 Rytka et al. Jan 2010 B2
7660500 Konttinen et al. Feb 2010 B2
7679641 Lipton et al. Mar 2010 B2
7693292 Gross et al. Apr 2010 B1
7701716 Blanco, Jr. et al. Apr 2010 B2
7719769 Sugihara et al. May 2010 B2
7768534 Pentenrieder et al. Aug 2010 B2
7777944 Ho et al. Aug 2010 B2
7817104 Ryu et al. Oct 2010 B2
7843691 Reichert et al. Nov 2010 B2
7868300 Kruit et al. Jan 2011 B2
7894613 Ong et al. Feb 2011 B1
7903409 Patel et al. Mar 2011 B2
7909958 Washburn et al. Mar 2011 B2
7941231 Dunn May 2011 B1
7986462 Kobayashi et al. Jul 2011 B2
8004621 Woodgate et al. Aug 2011 B2
8033709 Kao et al. Oct 2011 B2
8046616 Edwards Oct 2011 B2
8061411 Xu et al. Nov 2011 B2
8085948 Thomas et al. Dec 2011 B2
8125579 Khan et al. Feb 2012 B2
8160411 Levola et al. Apr 2012 B2
8195220 Kim et al. Jun 2012 B2
8233204 Robbins et al. Jul 2012 B1
8233273 Chen et al. Jul 2012 B2
8246170 Yamamoto et al. Aug 2012 B2
8274614 Yokote et al. Sep 2012 B2
8384999 Crosby et al. Feb 2013 B1
8392035 Patel et al. Mar 2013 B2
8395898 Chamseddine et al. Mar 2013 B1
8418083 Lundy et al. Apr 2013 B1
8446340 Aharoni May 2013 B2
8472119 Kelly Jun 2013 B1
8482920 Tissot et al. Jul 2013 B2
8576143 Kelly Nov 2013 B1
8611014 Valera et al. Dec 2013 B2
8629815 Brin et al. Jan 2014 B2
8638498 Bohn Jan 2014 B2
8645871 Fong et al. Feb 2014 B2
8666212 Amirparviz Mar 2014 B1
8712598 Dighde et al. Apr 2014 B2
8754831 Kollin et al. Jun 2014 B2
8770813 Bohn et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8817350 Robbins et al. Aug 2014 B1
8823531 McCleary et al. Sep 2014 B1
8854802 Robinson et al. Oct 2014 B2
8909384 Beitelmal et al. Dec 2014 B1
8917453 Bohn Dec 2014 B2
8934235 Rubenstein et al. Jan 2015 B2
8941683 Son et al. Jan 2015 B2
8989535 Robbins Mar 2015 B2
9052414 Travis et al. Jun 2015 B2
9223138 Bohn Dec 2015 B2
9272338 Fujita et al. Mar 2016 B2
9297996 Bohn et al. Mar 2016 B2
9298012 Bohn et al. Mar 2016 B2
9368546 Fleck et al. Jun 2016 B2
9578318 Fleck et al. Feb 2017 B2
9581820 Robbins Feb 2017 B2
9684174 Fleck et al. Jun 2017 B2
20010043208 Furness, III et al. Nov 2001 A1
20020015110 Brown Elliott Feb 2002 A1
20020041735 Cai et al. Apr 2002 A1
20020044152 Abbott et al. Apr 2002 A1
20020044162 Sawatari Apr 2002 A1
20020063820 Broer et al. May 2002 A1
20020097558 Stone et al. Jul 2002 A1
20020171939 Song Nov 2002 A1
20020180659 Takahashi Dec 2002 A1
20030006364 Katzir et al. Jan 2003 A1
20030023889 Hofstee et al. Jan 2003 A1
20030137706 Rmanujam et al. Jul 2003 A1
20030179453 Mori et al. Sep 2003 A1
20040011503 Kung et al. Jan 2004 A1
20040012341 Hyuga Jan 2004 A1
20040085649 Repetto et al. May 2004 A1
20040108971 Waldern et al. Jun 2004 A1
20040109234 Levola Jun 2004 A1
20040135209 Hsieh et al. Jul 2004 A1
20040195963 Choi Oct 2004 A1
20040267990 Lin Dec 2004 A1
20050174737 Meir Aug 2005 A1
20050179372 Kawakami Aug 2005 A1
20050207120 Tseng et al. Sep 2005 A1
20050225233 Boroson Oct 2005 A1
20050243107 Haim et al. Nov 2005 A1
20050248705 Smith et al. Nov 2005 A1
20050285878 Singh et al. Dec 2005 A1
20060018025 Sharon et al. Jan 2006 A1
20060032616 Yang Feb 2006 A1
20060038881 Starkweather et al. Feb 2006 A1
20060044399 Fredlund et al. Mar 2006 A1
20060054787 Olsen et al. Mar 2006 A1
20060072206 Tsuyuki et al. Apr 2006 A1
20060118280 Liu Jun 2006 A1
20060129951 Vaananen et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060139447 Unkrich Jun 2006 A1
20060152646 Schrader Jul 2006 A1
20060164382 Kulas et al. Jul 2006 A1
20060196643 Hata et al. Sep 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060249765 Hsieh Nov 2006 A1
20070002412 Aihara Jan 2007 A1
20070008456 Lesage et al. Jan 2007 A1
20070023703 Sunaoshi et al. Feb 2007 A1
20070027591 Goldenberg et al. Feb 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070097019 Wynne-Powell et al. May 2007 A1
20070147673 Crandall Jun 2007 A1
20070153395 Repetto et al. Jul 2007 A1
20070177260 Kuppenheimer et al. Aug 2007 A1
20070236959 Tolbert et al. Oct 2007 A1
20070284093 Bhatti et al. Dec 2007 A1
20080007511 Tsuboi et al. Jan 2008 A1
20080043100 Sobel et al. Feb 2008 A1
20080043425 Hebert et al. Feb 2008 A1
20080088603 Eliasson et al. Apr 2008 A1
20080088624 Long et al. Apr 2008 A1
20080106677 Kuan et al. May 2008 A1
20080117341 McGrew May 2008 A1
20080141681 Arnold Jun 2008 A1
20080150913 Bell et al. Jun 2008 A1
20080174735 Quach et al. Jul 2008 A1
20080232680 Berestov et al. Sep 2008 A1
20080248852 Rasmussen Oct 2008 A1
20080280682 Brunner et al. Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080297535 Reinig Dec 2008 A1
20080303918 Keithley Dec 2008 A1
20080311386 Wendt Dec 2008 A1
20090002939 Baugh et al. Jan 2009 A1
20090015742 Liao et al. Jan 2009 A1
20090021908 Patel et al. Jan 2009 A1
20090051283 Cok et al. Feb 2009 A1
20090084525 Satou et al. Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090128449 Brown et al. May 2009 A1
20090128901 Tilleman et al. May 2009 A1
20090180250 Holling et al. Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090190003 Park et al. Jul 2009 A1
20090195756 Li et al. Aug 2009 A1
20090222147 Nakashima et al. Sep 2009 A1
20090244413 Ishikawa et al. Oct 2009 A1
20090246707 Li et al. Oct 2009 A1
20090256837 Deb et al. Oct 2009 A1
20090262419 Robinson et al. Oct 2009 A1
20100002989 Tokushima Jan 2010 A1
20100021108 Kang et al. Jan 2010 A1
20100053151 Marti et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100061078 Kim et al. Mar 2010 A1
20100084674 Paetzold et al. Apr 2010 A1
20100096617 Shanks Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100141905 Burke Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100188353 Yoon et al. Jul 2010 A1
20100200736 Laycock et al. Aug 2010 A1
20100201953 Freeman et al. Aug 2010 A1
20100213467 Lee et al. Aug 2010 A1
20100220439 Qin Sep 2010 A1
20100229853 Vandal et al. Sep 2010 A1
20100238270 Bjelkhagen et al. Sep 2010 A1
20100238664 Steenbergen Sep 2010 A1
20100245387 Bachelder et al. Sep 2010 A1
20100259889 Chen et al. Oct 2010 A1
20100271467 Akeley Oct 2010 A1
20100277421 Charlier et al. Nov 2010 A1
20100277439 Charlier et al. Nov 2010 A1
20100277779 Futterer et al. Nov 2010 A1
20100281439 Markovic et al. Nov 2010 A1
20100300654 Edwards Dec 2010 A1
20100309687 Sampsell et al. Dec 2010 A1
20100315781 Agostini Dec 2010 A1
20100317132 Rogers et al. Dec 2010 A1
20100321609 Qi et al. Dec 2010 A1
20100328351 Tan Dec 2010 A1
20110012814 Tanaka Jan 2011 A1
20110021251 Lindén Jan 2011 A1
20110025605 Kwitek Feb 2011 A1
20110032482 Agurok Feb 2011 A1
20110050547 Mukawa Mar 2011 A1
20110050655 Mukawa Mar 2011 A1
20110063795 Yeh et al. Mar 2011 A1
20110068699 Knapp Mar 2011 A1
20110075442 Chiang Mar 2011 A1
20110084893 Lee et al. Apr 2011 A1
20110090343 Alt et al. Apr 2011 A1
20110091156 Laughlin Apr 2011 A1
20110114823 Katzir et al. May 2011 A1
20110127024 Patel et al. Jun 2011 A1
20110134017 Burke Jun 2011 A1
20110134645 Hitchcock et al. Jun 2011 A1
20110141388 Park et al. Jun 2011 A1
20110148931 Kim Jun 2011 A1
20110149201 Powell et al. Jun 2011 A1
20110163986 Lee et al. Jul 2011 A1
20110194029 Herrmann et al. Aug 2011 A1
20110205251 Auld Aug 2011 A1
20110210946 Goertz et al. Sep 2011 A1
20110214082 Osterhout et al. Sep 2011 A1
20110215349 An et al. Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221659 King et al. Sep 2011 A1
20110222236 Luo et al. Sep 2011 A1
20110227820 Haddick et al. Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110242145 Nishimura et al. Oct 2011 A1
20110242392 Chiang Oct 2011 A1
20110242757 Tracy et al. Oct 2011 A1
20110248904 Miyawaki et al. Oct 2011 A1
20110248958 Gruhlke et al. Oct 2011 A1
20110267799 Epstein et al. Nov 2011 A1
20110283223 Vaittinen et al. Nov 2011 A1
20110299044 Yeh et al. Dec 2011 A1
20110304640 Noge Dec 2011 A1
20110309378 Lau et al. Dec 2011 A1
20110310232 Wilson et al. Dec 2011 A1
20110310312 Yokote et al. Dec 2011 A1
20120013651 Trayner et al. Jan 2012 A1
20120019434 Kuhlman et al. Jan 2012 A1
20120026161 Chen et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120038629 Brown et al. Feb 2012 A1
20120041721 Chen Feb 2012 A1
20120050144 Morlock Mar 2012 A1
20120052934 Maharbiz et al. Mar 2012 A1
20120062998 Schultz Mar 2012 A1
20120069413 Schultz Mar 2012 A1
20120083325 Heatherly Apr 2012 A1
20120102438 Robinson et al. Apr 2012 A1
20120105487 Son et al. May 2012 A1
20120106170 Matthews et al. May 2012 A1
20120111544 Senatori May 2012 A1
20120113092 Bar-Zeev et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120157114 Alameh et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176474 Border Jul 2012 A1
20120182687 Dighde et al. Jul 2012 A1
20120188205 Jansson et al. Jul 2012 A1
20120200495 Johansson Aug 2012 A1
20120206589 Crandall Aug 2012 A1
20120206880 Andres et al. Aug 2012 A1
20120218301 Miller Aug 2012 A1
20120227006 Amm Sep 2012 A1
20120235885 Miller et al. Sep 2012 A1
20120242561 Sugihara Sep 2012 A1
20120242798 Mcardle et al. Sep 2012 A1
20120249797 Haddick et al. Oct 2012 A1
20120256856 Suzuki et al. Oct 2012 A1
20120256963 Suzuki et al. Oct 2012 A1
20120287381 Li et al. Nov 2012 A1
20120292535 Choi et al. Nov 2012 A1
20130000871 Olson et al. Jan 2013 A1
20130027772 Large Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130081779 Liao et al. Apr 2013 A1
20130093741 Akimoto et al. Apr 2013 A1
20130106674 Wheeler et al. May 2013 A1
20130162673 Bohn Jun 2013 A1
20130163089 Bohn Jun 2013 A1
20130170031 Bohn Jul 2013 A1
20130186596 Rubenstein Jul 2013 A1
20130186598 Rubenstein Jul 2013 A1
20130187943 Bohn et al. Jul 2013 A1
20130201285 Mao et al. Aug 2013 A1
20130207896 Robinson et al. Aug 2013 A1
20130207964 Fleck Aug 2013 A1
20130208003 Bohn Aug 2013 A1
20130208362 Bohn Aug 2013 A1
20130215081 Levin et al. Aug 2013 A1
20130242056 Fleck Sep 2013 A1
20130242555 Mukawa Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130252628 Kuehnel Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins Oct 2013 A1
20130294030 Wang et al. Nov 2013 A1
20130307875 Anderson Nov 2013 A1
20130314793 Robbins Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130335671 Fleck Dec 2013 A1
20130342674 Dixon Dec 2013 A1
20140010265 Peng Jan 2014 A1
20140041827 Giaimo Feb 2014 A1
20140078130 Uchino et al. Mar 2014 A1
20140094973 Giaimo et al. Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn Apr 2014 A1
20140111865 Kobayashi Apr 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140176528 Robbins Jun 2014 A1
20140184699 Ito et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140320399 Kim et al. Oct 2014 A1
20150168731 Robbins Jun 2015 A1
20160033697 Sainiemi et al. Feb 2016 A1
20160035539 Sainiemi et al. Feb 2016 A1
20160231570 Levola et al. Aug 2016 A1
20160234485 Robbins et al. Aug 2016 A1
20160282625 Fleck et al. Sep 2016 A1
20170163977 Fleck et al. Jun 2017 A1
Foreign Referenced Citations (48)
Number Date Country
1440513 Sep 2003 CN
101029968 Sep 2007 CN
101589326 Nov 2009 CN
201491069 May 2010 CN
101881936 Nov 2010 CN
102004315 Apr 2011 CN
102156555 Aug 2011 CN
102007021036 Nov 2008 DE
0977022 Feb 2000 EP
1494109 Jan 2005 EP
2065750 Jun 2009 EP
2112547 Oct 2009 EP
2216678 Jan 2010 EP
2700987 Feb 2014 EP
3018524 May 2016 EP
H02227340 Sep 1990 JP
H0422358 Jan 1992 JP
7311303 Nov 1995 JP
H08190640 Jul 1996 JP
2001078234 Mar 2001 JP
2005309638 Nov 2005 JP
2006349921 Dec 2006 JP
2008017135 Jan 2008 JP
2008097599 Apr 2008 JP
2008518368 May 2008 JP
201061545 Mar 2010 JP
20090076539 Jul 2009 KR
20110070087 Jun 2011 KR
20120023458 Mar 2012 KR
200846700 Dec 2008 TW
WO-9418595 Aug 1994 WO
WO 0133282 May 2001 WO
WO-0195027 Dec 2001 WO
WO-03090611 Nov 2003 WO
WO 2006054056 May 2006 WO
WO 2008021504 Feb 2008 WO
WO 2009077601 Jun 2009 WO
WO 2010125337 Nov 2010 WO
WO 2011003381 Jan 2011 WO
WO-2011041466 Apr 2011 WO
2011051660 May 2011 WO
WO-2011051660 May 2011 WO
WO 2011090455 Jul 2011 WO
WO 2011110728 Sep 2011 WO
WO 2011131978 Oct 2011 WO
WO 2012172295 Dec 2012 WO
WO-2013164665 Nov 2013 WO
WO 2014130383 Aug 2014 WO
Non-Patent Literature Citations (228)
Entry
“Advisory Action”, U.S. Appl. No. 13/428,879, Sep. 19, 2014, 3 pages.
“Augmented Reality and Physical Games”, U.S. Appl. No. 13/440,165, Apr. 5, 2012, 49 pages.
“BragGrate Mirror”, Retrieved from <http://web.archive.org/web/20090814104232/http://www.optigrate.com/BragGrate—Mirror.html> on Jul. 8, 2014, Aug. 14, 2009, 2 pages.
“Corrected Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 24, 2014, 25 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Sep. 11, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Dec. 15, 2014, 2 pages.
“DigiLens”, SBG Labs, retrieved from <http://www.digilens.com/products.html> on Jun. 19, 2012, 1 page.
“Final Office Action”, U.S. Appl. No. 13/355,836, Mar. 10, 2014, 18 pages.
“Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 23, 2015, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/355,914, Jun. 19, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/397,516, Jan. 29, 2015, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/428,879, Jul. 14, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 15, 2014, 24 pages.
“Final Office Action”, U.S. Appl. No. 13/432,372, Jan. 29, 2015, 33 pages.
“Final Office Action”, U.S. Appl. No. 13/440,165, Jun. 6, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/477,646, Feb. 23, 2015, 36 pages.
“Final Office Action”, U.S. Appl. No. 13/477,646, May 5, 2014, 26 pages.
“Foreign Office Action”, CN Application No. 201210563730.3, Jan. 7, 2015, 16 pages.
“Foreign Office Action”, EP Application No. 13769961.7, Mar. 11, 2015, 8 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016658, Apr. 23, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/053676, Oct. 16, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/030632, Jun. 26, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028477, Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/031111, Jun. 26, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/076832, Mar. 17, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/061225, Jun. 4, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/021784, Apr. 30, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/021783, May 15, 2013, 9 pages.
“Light Guide Techniques using LED Lamps”, Application Brief I-003, retrieved from <http://www.ciri.org.nz/downloads/Lightpipe%20design.pdf> on Jan. 12, 2012, Oct. 14, 2008, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 6, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Apr. 9, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,836, Nov. 4, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 14, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Oct. 28, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Apr. 3, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, May 5, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Feb. 24, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Mar. 17, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jun. 2, 2015, 25 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jul. 8, 2014, 33 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, May 9, 2014, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, Oct. 24, 2014, 27 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 13, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Oct. 16, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Oct. 6, 2014, 34 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Nov. 22, 2013, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/570,073, Jan. 23, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/631,308, Feb. 23, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/722,917, May 21, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Nov. 24, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Jan. 22, 2015, 17 pages.
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Jun. 13, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Oct. 8, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/488,145, Nov. 19, 2014, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 13/355,836, Sep. 27, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/488,145, Sep. 8, 2014, 14 pages.
“Restriction Requirement”, U.S. Appl. No. 13/570,073, Nov. 18, 2014, 7 pages.
“Supplementary European Search Report”, EP Application No. 13769961.7, Mar. 3, 2015, 3 pages.
“Two-Faced: Transparent Phone with Dual Touch Screens”, Retrieved from <http://gajitz.com/two-faced-transparent-phone-with-dual-touch-screens/>, Jun. 7, 2012, 3 pages.
“Written Opinion”, Application No. PCT/US2013/061225, Oct. 10, 2014, 6 Pages.
Aron,“‘Sprinting’ chips could push phones to the speed limit”, New Scientist, Feb. 20, 2012, Issue #2852, Feb. 20, 2012, 2 pages.
Barger,“COTS Cooling”, Publication of the National Electronics Manufacturing Center of Excellence, Retrieved from: <http://www.empf.org/empfasis/2009/Oct09/cots.html > on Jul. 9, 2012, Oct. 2009, 4 pages.
Baudisch,“Back-of-Device Interaction Allows Creating Very Small Touch Devices”, In Proceedings of 27th International Conference on Human Factors in Computing Systems, Retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.3337&rep=rep1&type=pdf >, Apr. 2005, 10 pages.
Baxtor,“TwinTech GeForce GTS 250 XT OC 1GB Graphics Card”, retrieved from <http://www.tweaktown.com/reviews/2733/twintech—geforce—gts—250—xt—oc—1gb—graphics—card/index3.html> on Dec. 30, 2011, Apr. 24, 2009, 4 pages.
Chen,“Strategies for 3D Video with Wide Fields-of-View”, IEEE Proceeding Optoelectronics, vol. 148, Issue 2, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=926823>, Apr. 2001, pp. 85-90.
Chirgwin,“Researchers propose ‘overclock’ scheme for mobiles—Processing at a sprint to overcome tech limitations”, The Register, Feb. 21, 2012, Feb. 21, 2012, 2 pages.
Coldewey, “Researchers Propose “Computational Sprinting” To Speed Up Chips by 1000%—But Only for a Second”, TechCrunch, Feb. 28, 2012, Feb. 29, 2012, 2 pages.
DeAgazio,“Selecting Display Backlighting for Portable, Handheld Devices”, Hearst Electronics Products, retrieved from <http://www2.electronicproducts.com/Selecting—display—backlighting—for—portable—handheld—devices-article-farcglobal-feb2008-html.aspx> on Jan. 12, 2012, Jan. 2, 2008, 4 pages.
Eadicicco,“First Transparent Tablet Lets You Touch From Both Sides”, Retrieved from <http://blog.laptopmag.com/first-transparent-tablet>, Dec. 26, 2013, 4 pages.
Greenemeier,“Could “Computational Sprinting” Speed Up Smart Phones without Burning Them Out?”, Scientific American, Feb. 29, 2012, Feb. 29, 2012, 2 pages.
Han,“Accurate diffraction efficiency control for multiplexed volume holographic gratings”, Retrieved at: opticalengineering.spiedigitallibrary.org/data/Journals/.../2799—1, 2002, 4 pages.
Hua,“Engineering of Head-mounted Projective Displays”, In Proceedings of Applied Optics, vol. 39, No. 22, Aug. 1, 2000, 11 pages.
Jarvenpaa,“Compact near-to-eye display with integrated gaze tracker”, Second International Conference on Computer Engineering and Applications, Mar. 19, 2010, 9 pages.
Jaworski,“A Novel Design of Heat Sink with PCM for Electronics Cooling”, 10th International Conference on Thermal Energy Storage, Stockton, May 31-Jun. 2, 2006, retrieved from <https://intraweb.stockton.edu/eyos/energy—studies/content/docs/FINAL—PRESENTATIONS/4b-6%20.pdf> on Jan. 5, 2012, May 31, 2006, 8 pages.
Kress,“Exit Pupil for Wearable See-through displays”, Downloaded From: http://proceedings.spiedigitallibrary.org/ on Jan. 31, 2015 Terms of Use: http://spiedl.org/terms, 2012, 8 pages.
Krishnan,“A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics”, IEEE transactions on components and packaging technologies, vol. 28, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1432936> on Jan. 5, 2012, Jun. 2005, pp. 281-289.
Lanman,“Near-eye Light Field Displays”, In Journal of ACM Transactions on Graphics, vol. 32, No. 6, Nov. 2013, 10 pages.
Large,“Parallel Optics in Waveguide Displays: a Flat Panel Autostereoscopic”, Display Technology, Journal of, Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2- 70F9D4081007/ParallelOpticsinWaveguideDisplaysMS090925.Final.pdf>, Jun. 21, 2010, pp. 1-7.
Lerner,“Penn Helps Rethink Smartphone Design With ‘Computational Sprinting’”, Penn News Release, Feb. 28, 2012, 2 pages.
Li,“Switchable Electro-optic Diffractive Lens with High Efficiency for Ophthalmic Applications”, PNAS Apr. 18, 2006 vol. 103 No. 16 6100-6104, Retrieved from: <http://www.pnas.org/content/103/16/6100.long> Feb. 22, 2012, Feb. 2, 2006, 4 pages.
Man,“IT Equipment Noise Emission Standards: Overview of New Development in the Next Edition of ISO/ECMA Standards”, In Proceedings of 37th International Congress and Exposition on Noise Control Engineering, Available at <http://www.ecma-international.org/activities/Acoustics/Inter-noise%202008%20paper%20on%20ECMA-74%20updates.pdf >, Oct. 26, 2008, 8 pages.
Massenot,“Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Retrieved at: http://oatao.univ-toulouse.fr/2874/, 2005, 8 pages.
McMillan,“Your Future iPhone May Be Stuffed With Wax”, Aug. 23, 2013, 3 pages.
Minier,“Diffraction Characteristics of Superimposed Holographic gratings in Planar Optical waveguides”, IEEE Photonics Technology Letters, vol. 4, No. 10, Oct. 1992, 4 pages.
Moore,“Computational sprinting pushes smartphones till they're tired”, Michigan News Release, Feb. 28, 2012, 2 pages.
Nguyen,“Advanced Cooling System Using Miniature Heat Pipes in Mobile PC”, IEEE Transactions on Components and Packaging Technology, vol. 23, No. 1, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=833046&userType=inst>, Mar. 2000, pp. 86-90.
Owano,“Study explores computing bursts for smartphones”, PhysOrg.com, Feb. 21, 2012, Feb. 21, 2012, 2 pages.
Papaefthymiou,“Computational Sprinting on a Hardware/Software Testbed”, In the Proceedings of the 18th Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Mar. 2013., Mar. 2013, 12 pages.
Patrizio,“Researchers Working on Ways to Put 16-Core Processors in Smartphones”, Brighthand, Mar. 18, 2012, Mar. 18, 2012, 2 pages.
Pu,“Exposure schedule for multiplexing holograms in photopolymer films”, Retrieved at: lo.epfl.ch/webdav/site/lo/shared/1996/OE—35—2824—Oct1996.pdf, Oct. 1996, 6 pages.
Raghavan,“Computational Sprinting”, In the Proceedings of the 18th Symposium on High Performance Computer Architecture (HPCA), Feb. 2012, Feb. 2012, 12 pages.
Raghavan,“Designing for Responsiveness With Computational Sprinting”, IEEE Micro's “Top Picks of 2012” Issue, May 2013, 8 pages.
Scott,“RearType: Text Entry Using Keys on the Back of a Device”, In Proceedings of 12th Conference on Human-Computer Interaction with Mobile Devices and Services, Retrieved from <https://research.microsoft.com/pubs/135609/reartype%20mobilehci.pdf>, Sep. 7, 2010, 9 pages.
Stupar,“Optimization of Phase Change Material Heat Sinks for Low Duty Cycle High Peak Load Power Supplies”, IEEE transactions on components, packaging and manufacturing technology, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081913> on Jan. 5, 2012, Nov. 15, 2011, 14 pages.
Tari,“CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative”, IEEE Transactions on Components and Packaging Technologies, vol. 33, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466211> on Dec. 30, 2011, Jun. 2010, pp. 443-452.
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express—Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf>, Oct. 15, 2009, pp. 19714-19719.
Travis,“The Design of Backlights for View-Sequential 3D”, Microsoft Corporation, Available at <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71- A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx>, Jul. 3, 2010, 4 pages.
Van“A Survey of Augmented Reality Technologies, Applications and Limitations”, The International Journal of Virtual Reality, 2010, 9(2), Available at <http://www.ijvr.org/issues/issue2-2010/paper1%20.pdf>, Jun. 2010, pp. 1-19.
Walker,“Thermalright Ultra-120 Extreme CPU Cooler”, retrieved from <http://wwvv.pro-clockers.com/cooling/66-thermalright-ultra-120-extreme-cpu-cooler.html> on Dec. 30, 2011, Jul. 2, 2009, 7 pages.
Westerinen,“Light Guide Display and Field of View”, U.S. Appl. No. 13/428,879, Mar. 23, 2012, 46 pages.
Wigdor,“LucidTouch: A See-Through Mobile Device”, In Proceedings of 20th Annual ACM symposium on User Interface Software and Technology, Retrieved from <http://dl.acm.org/citation.cfm?id=1294259>, Oct. 7, 2007, 10 pages.
Yan,“Multiplexing holograms in the photopolymer with equal diffraction efficiency”, 2005, 9 pages.
Zharkova,“Study of the Dynamics of Transmission Gratings Growth on Holographic Polymer-Dispersed Liquid Crystals”, International Conference on Methods of Aerophysical Research, ICMAR 2008, 2008, 4 pages.
“Final Office Action”, U.S. Appl. No. 13/440,165, Jul. 21, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/774,875, Jun. 4, 2015, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/134,993, Jul. 16, 2015, 19 pages.
“Foreign Office Action”, CN Application No. 201210563730.3, Aug. 14, 2015, 4 Pages.
“Foreign Office Action”, EP Application No. 13765041.2, Aug. 5, 2015, 6 pages.
“Foreign Office Action”, EP Application No. 13769961.7, Jun. 30, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Jun. 26, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Jun. 18, 2015, 43 pages.
“Notice of Allowance”, U.S. Appl. No. 13/336,873, Jul. 31, 2015, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/420,388, Aug. 13, 2015, 6 pages.
“Supplementary European Search Report”, EP Application No. 13765041.2, Jul. 21, 2015, 3 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/397,495, Mar. 3, 2016, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/397,516, Mar. 3, 2016, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 18, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/722,917, Feb. 9, 2016, 17 pages.
“Notice of Allowance”, U.S. Appl. No. 13/397,516, Feb. 1, 2016, 7 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/397,495, Jan. 26, 2016, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/134,993, Mar. 2, 2016, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/447,464, Jan. 12, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/336,873, Sep. 11, 2015, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/336,873, Nov. 27, 2015, 4 pages.
“Final Office Action”, U.S. Appl. No. 13/397,617, Nov. 18, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/428,879, Dec. 10, 2015, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/477,646, Nov. 24, 2015, 39 pages.
“Final Office Action”, U.S. Appl. No. 13/722,917, Sep. 23, 2015, 14 pages.
“Foreign Notice of Allowance”, CN Application No. 201210563730.3, Nov. 30, 2015, 4 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/041900, Oct. 21, 2015, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/041909, Oct. 20, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Sep. 24, 2015, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/420,388, Dec. 4, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Sep. 16, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/397,495, Oct. 20, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 14/134,993, Nov. 17, 2015, 9 pages.
Ando,“Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching”, Journal of Microelectromechanical Systems, Jun. 1, 2007, 10 pages.
Gila,“First Results From a Multi-Ion Beam Lithography and Processing System at The University of Florida”, AIP Conference Proceedings, Jun. 1, 2011, 6 pages.
“Advisory Action”, U.S. Appl. No. 13/432,311, Mar. 24, 2016, 3 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/397,516, May 16, 2016, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/420,388, Apr. 21, 2016, 9 pages.
“Final Office Action”, U.S. Appl. No. 13/774,875, Apr. 22, 2016, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/015496, Apr. 11, 2016, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/015873, May 23, 2016, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, May 18, 2016, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Mar. 28, 2016, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/617,606, May 23, 2016, 12 pages.
“Final Office Action”, U.S. Appl. No. 14/617,606, Dec. 27, 2016, 13 pages.
“Foreign Office Action”, TW Application No. 102101510, Dec. 6, 2016, 11 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2015/041900, Oct. 11, 2016, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, Jan. 12, 2017, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/722,917, Dec. 6, 2016, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/617,769, Jan. 12, 2017, 10 pages.
Schrauwen,“Focused-Ion-Beam Fabrication of Slanted Grating Couplers in Silicon-on-Insulator Waveguides”, IEEE Photonics Technology Letters, vol. 19, Issue 11, Jun. 1, 2007, 3 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 15/171,924, Nov. 30, 2016, 2 pages.
“Examiner's Answer to Appeal Brief”, U.S. Appl. No. 13/428,879, Oct. 12, 2016, 18 pages.
“Examiner's Answer to Appeal Brief”, U.S. Appl. No. 13/477,646, Oct. 26, 2016, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/397,617, Sep. 21, 2016, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/722,917, Jun. 17, 2016, 19 pages.
“Foreign Office Action”, CN Application No. 201380015757.1, Jul. 11, 2016, 13 pages.
“Foreign Office Action”, CN Application No. 201380017348.5, Jan. 14, 2016, 12 pages.
“Foreign Office Action”, CN Application No. 201380017348.5, Jun. 17, 2016, 7 pages.
“Foreign Office Action”, CN Application No. 201380017348.5, Oct. 18, 2016, 7 pages.
“Foreign Office Action”, CN Application No. 201380067523.1, Aug. 22, 2016, 13 pages.
“Foreign Office Action”, EP Application No. 13765041.2, Aug. 4, 2016, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Aug. 17, 2016, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Sep. 22, 2016, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/617,606, Sep. 9, 2016, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/171,924, Jul. 13, 2016, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/420,388, Oct. 6, 2016, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/635,474, Oct. 17, 2016, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 15/171,924, Oct. 21, 2016, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 14/635,474, Jul. 12, 2016, 5 pages.
“HDTV Helmet Mounted Display”, Available at <http://defense-update.com/products/h/HDTV-HMD.htm>,(Jan. 26, 2005), 1 page.
Baluja, Shumeet et al., “Non-Intrusive Gaze Tracking Using Artificial Neural Networks”, Technical Report CMU-CS-94-102, Available at <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.4027&rep=rep1&type=pdf>,(Jan. 5, 1994), 14 pages.
Cheng, Yu-Hsiang et al., “Waveguide Displays Based on Polymer-dispersed Liquid Crystals”, SPIE Newsroom, Available at <http://spie.org/documents/Newsroom/Imported/003805/003805—10.pdf>,(Aug. 12, 2011), 2 pages.
Karp, Jason H., et al., “Planar Micro-optic Solar Concentration using Multiple Imaging Lenses into a Common Slab Waveguide”, In Proceedings of SPIE vol. 7407, Available at <http://psilab.ucsd.edu/research/slab—concentration/files/SPIE—Slab—Published.pdf>,(Jan. 2009), 11 pages.
Singh Brar, Rajwinder et al., “Laser-Based Head-Tracked 3D Display Research”, Journal of Display Technology, vol. 6, No. 10, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462999>,(Oct. 2010), pp. 531-543.
Allen, et al., “ELiXIR—Solid-State Luminaire with Enhanced Light Extraction by Internal Reflection”, Retrieved at <<http://www.nanolab.uc.edu/Publications/PDFfiles/355.pdf>>, Proceedings of Journal of Display Technology, Jun. 2007, pp. 155-159.
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, dated Nov. 25, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2012/069330, (dated Mar. 28, 2013), 9 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2012/069331, (dated Mar. 29, 2013), 10 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2012/071563, (dated Apr. 25, 2013), 13 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/026200, (dated Jun. 3, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/343,675, (dated Jul. 16, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, (dated Nov. 13, 2013), 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,895, (dated Oct. 24, 2013), 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/343,675, (dated Sep. 16, 2013), 8 pages.
“Final Office Action”, U.S. Appl. No. 13/397,495, dated May 29, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/336,895, dated May 27, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, dated Jun. 12, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, dated Apr. 17, 2014, 34 pages.
“Notice of Allowance”, U.S. Appl. No. 13/356,545, dated Mar. 28, 2014, 6 pages.
“Final Office Action”, U.S. Appl. No. 14/134,993, dated Aug. 20, 2014, 15 pages.
“Foreign Office Action”, CN Application No. 201210567932.5, dated Aug. 14, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, dated Jul. 25, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, dated Oct. 9, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/336,895, dated Aug. 11, 2014, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/356,545, dated Jul. 22, 2014, 2 pages.
“Foreign Office Action”, AU Application No. 2013361148, dated Feb. 15, 2017, 3 pages.
“Foreign Office Action”, JP Application No. 2015-501688, dated Dec. 20, 2016, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/171,924, dated Feb. 1, 2017, 8 pages.
“Second Written Opinion”, Application No. PCT/US2016/015496, dated Feb. 9, 2017, 7 pages.
“Second Written Opinion”, Application No. PCT/US2016/015869, dated Jan. 20, 2017, 5 pages.
“Second Written Opinion”, Application No. PCT/US2016/015873, dated Feb. 6, 2017, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/635,474, dated Feb. 2, 2017, 4 pages.
“Final Office Action”, U.S. Appl. No. 13/336,873, dated Jan. 5, 2015, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/525,649, dated Oct. 9, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, dated Jan. 29, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, dated Jun. 5, 2014, 7 pages.
Jacques, et al., “Polarized Light Imaging of Tissue”, Available at <http://www.lumamed.com/documents/5—polarized%20light%20imaging.pdf>,2004, 17 pages.
Li, et al., “Design Optimization of Reflective Polarizers for LCD Backlight Recycling”, Journal of Display Technology, vol. 5, No. 8, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5196840 >,Aug. 2009, pp. 335-340.
Melcher, “LCoS for High Performance Displays”, In Proceedings of LEOS 2003, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253048>,Oct. 27, 2003, pp. 812-813.
“Corrected Notice of Allowance”, U.S. Appl. No. 15/171,924, dated Mar. 31, 2017, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 15/171,924, dated May 17, 2017, 2 pages.
“Ex Parte Quayle Action”, U.S. Appl. No. 14/617,769, dated Jun. 2, 2017, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/432,311, dated May 15, 2017, 22 pages.
“Foreign Notice of Allowance”, CN Application No. 201380067523.1, dated Jun. 2, 2017, 4 pages.
“Foreign Notice of Allowance”, TW Application No. 102101510, dated Mar. 23, 2017, 4 pages.
“Foreign Office Action”, AU Application No. 2013361148, dated Apr. 11, 2017, 3 pages.
“Foreign Office Action”, CN Application No. 201380015757.1, dated Mar. 27, 2017, 12 pages.
“Foreign Office Action”, CN Application No. 201380067523.1, dated Apr. 17, 2017, 6 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2016/015871, dated May 15, 2017, 10 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2016/015873, dated May 15, 2017, 8 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2016/015496, dated May 4, 2017, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/617,606, dated Mar. 27, 2017, 14 pages.
“Notice of Allowance”, U.S. Appl. No. 13/397,617, dated Apr. 25, 2017, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/440,165, dated Mar. 23, 2017, 5 pages.
Related Publications (1)
Number Date Country
20130208482 A1 Aug 2013 US