An image forming device includes a photoreceptor, a charging device, an exposure device which forms an electrostatic latent image on the photoreceptor, a developing device which develops the electrostatic latent image by applying a toner thereto, and a transfer device which transfers the toner image on the photoreceptor to a transfer material.
In the following description, with reference to the drawings, the same reference numbers are assigned to the same components or to similar components having the same function, and overlapping description is omitted. Further, the dimensional ratios of the drawings may not be limited to the ratios of the drawings. Hereinafter, example imaging systems will be described with reference to the drawings. The imaging systems may comprise, for example, an imaging apparatus such as a printer or a part of the imaging apparatus (for example, a developing system or the like).
As illustrated in
The recording medium conveying unit 10 accommodates a sheet P which is a recording medium having an image formed thereon. Further, the recording medium conveying unit 10 conveys the sheet P on a recording medium conveying path. The sheet P is stacked in a cassette. The recording medium conveying unit 10 is configured to convey the sheet P to a secondary transfer region R at a timing in which a toner image transferred to the sheet P reaches the secondary transfer region R.
The transfer unit 20 conveys the toner image formed by the photosensitive drum 30 to the secondary transfer region R in which the toner image is secondarily transferred to the sheet P. The transfer unit 20 includes, for example, a transfer belt 21, suspension rollers 21a, 21b, 21c, and 21d which suspend the transfer belt 21, a primary transfer roller 22 which sandwiches the transfer belt 21 along with the photosensitive drum 30, and a secondary transfer roller 24 which sandwiches the transfer belt 21 along with the suspension roller 21d.
The transfer belt 21 may include an endless belt which is moved in a circulating manner by the suspension rollers 21a, 21b, 21c, and 21d. The primary transfer roller 22 may be configured to press the photosensitive drum 30 from the inner peripheral side of the transfer belt 21. The secondary transfer roller 24 may be configured to press the suspension roller 21d from the outer peripheral side of the transfer belt 21. The transfer unit 20 may further include a belt cleaning device or the like which removes a toner adhering to the transfer belt 21.
The photosensitive drum 30 may comprise an electrostatic latent image carrier having an image formed on a peripheral surface thereof. The photosensitive drum 30 may be, for example, an Organic Photo Conductor (OPC). The example imaging apparatus 1 may comprise an apparatus configured to form a color image. In some examples, four photosensitive drums 30 respectively corresponding to yellow, magenta, cyan, and black colors may be located along the movement direction of the transfer belt 21. As illustrated in
The charging roller 32 uniformly charges a surface of the photosensitive drum 30 to a predetermined potential. The exposure unit 34 exposes the surface of the photosensitive drum 30 charged by the charging roller 32 in response to an image formed on the sheet P. Accordingly, a potential of a portion exposed by the exposure unit 34 in the surface of the photosensitive drum 30 changes so that an electrostatic latent image is formed. A separate toner tank 36 may be associated with each of the (e.g., four) developing devices 100. The developing device 100 generates a toner image by developing the electrostatic latent image formed on the photosensitive drum 30 by the toner. In some examples, four toner tanks 36 are respectively filled with a replenishment developer obtained by mixing yellow, magenta, cyan, and black toner and carriers.
The cleaning unit 38 collects the toner remaining on the photosensitive drum 30 after the toner image on the photosensitive drum 30 is initially transferred to the transfer belt 21. The cleaning unit 38 may remove the residual toner on the photosensitive drum 30 by bringing a cleaning blade into contact with, for example, the peripheral surface of the photosensitive drum 30. Furthermore, a charge elimination lamp which resets a potential of the photosensitive drum 30 may be located between the cleaning unit 38 and the charging roller 32 in the rotational direction of the photosensitive drum 30 on the circumference of the photosensitive drum 30.
The fixing unit 40 fixes the toner image secondarily transferred from the transfer belt 21 to the sheet P to the sheet P. The fixing unit 40 includes, for example, a heating roller 42 and a pressing roller 44. The heating roller 42 is a cylindrical member that is rotatable about a rotary shaft. For example, a heat source such as a halogen lamp may be located inside the heating roller 42. The pressing roller 44 is a cylindrical member that is rotatable about a rotary shaft. The pressing roller 44 may be configured to press the heating roller 42. For example, a thermal resistant elastic layer such as silicon rubber may be located on the outer peripheral surfaces of the heating roller 42 and the pressing roller 44. The sheet P is caused to pass through a fixing nip portion which is a contact region between the heating roller 42 and the pressing roller 44 so that the toner image is heated and fixed to the sheet P.
Further, the imaging apparatus 1 may comprise discharge rollers 52 and 54 for discharging the sheet P to which the toner image is fixed by the fixing unit 40 to the outside of the apparatus.
Next, an example operation of the example imaging apparatus 1 will be described. When an image signal of a recording target image is input to the imaging apparatus 1, the control unit of the imaging apparatus 1 uniformly charges the surfaces of the photosensitive drum 30 to a predetermined potential by the charging roller 32. Then, the control unit of the imaging apparatus 1 forms an electrostatic latent image by irradiating a laser beam to the surface of the photosensitive drum 30 by the exposure unit 34 on the basis of the received image signal.
The developing device 100 mixes and stirs the toner and the carrier by adjusting the toner and the carrier to a predetermined mixing ratio. The developing device 100 adjusts the developer by uniformly dispersing the toner to apply an optimal charging amount. The adjusted developer is carried (held) by the developing roller 110. Then, when the developer is conveyed to a region (a supply position) facing the photosensitive drum 30 by the rotation of the developing roller 110, the toner in the developer carried on the developing roller 110 moves to the electrostatic latent image formed on the peripheral surface of the photosensitive drum 30 so that the electrostatic latent image is developed. The toner image which is formed in this way is initially transferred from the photosensitive drum 30 to the transfer belt 21 in a region in which the photosensitive drum 30 faces the transfer belt 21. The toner images formed on four photosensitive drums 30 are sequentially superimposed on the transfer belt 21 so that one composite toner image is formed. Then, the composite toner image may be secondarily transferred to sheet P conveyed from the recording medium conveying unit 10 in the secondary transfer region R in which the suspension roller 21d faces the secondary transfer roller 24.
The sheet P to which the composite toner image is secondarily transferred is conveyed to the fixing unit 40. When the sheet P is caused to pass between the heating roller 42 and the pressing roller 44 while applying a heat and a pressure thereto, the composite toner image is fused or otherwise fixed to the sheet P. Then, the sheet P is discharged to the outside of the imaging apparatus 1 by the discharge rollers 52 and 54. For imaging systems including a belt cleaning device, the toner remaining on the transfer belt 21 after the composite toner image is secondarily transferred to the sheet P may be removed by the belt cleaning device.
A schematic configuration of the example developing device 100 will be described. The developing device 100 uses, for example, a two-component developer including a toner and a carrier as the developer. Further, in order to prolong the life of the developer, the developing device 100 discharges an old developer from a developer discharge port and replenishes a new developer into a developer storage chamber.
The developing device 100 illustrated in
A developing chamber C1 may be located at an upper portion inside the casing 150 (see
A first conveying member 120 and a second conveying member 130 are located below the developing roller 110. The first conveying member 120 and the second conveying member 130 frictionally charge the carrier and the toner by stirring a magnetic carrier and a non-magnetic toner constituting the developer inside the casing 150.
The casing 150 includes, for example, a first casing portion 151, a second casing portion 152, and a third casing portion 153. The first casing portion 151 accommodates the developing roller 110 and the first conveying member 120. The second casing portion 152 accommodates the second conveying member 130. The third casing portion 153 is connected to the end portions of the first casing portion 151 and the second casing portion 152. The third casing portion 153 accommodates the end portions of the first conveying member 120 and the second conveying member 130.
The developing roller 110 includes, for example, a rotary shaft 112. Both end portions of the rotary shaft 112 are rotatably supported by, for example, the first casing portion 151.
The first conveying member 120 supplies the developer to the developing roller 110 while conveying the mixed and stirred developer. The first conveying member 120 includes, for example, a first support shaft 122 and a first conveying blade 124. The first support shaft 122 is rotatably supported by the first casing portion 151 and the third casing portion 153. The first conveying blade 124 may be located on the outer peripheral surface of the first support shaft 122. The first conveying blade 124 includes a spiral inclined surface which is located along the longitudinal direction of the first support shaft 122.
The second conveying member 130 is in charge of sufficiently charging the developer by mixing and stirring the developer. The second conveying member 130 conveys the charged developer to the first conveying member 120. Similar to the first conveying member 120, the second conveying member 130 includes, for example, a second support shaft 132 and a second conveying blade 134. The second support shaft 132 is rotatably supported by the second casing portion 152 and the third casing portion 153. The second conveying blade 134 may be located on the outer peripheral surface of the second support shaft 132. The second conveying blade 134 includes a spiral inclined surface which is located along the longitudinal direction of the second support shaft 132.
For example, the first conveying member 120 and the second conveying member 130 are arranged so that the first support shaft 122 and the second support shaft 132 are substantially parallel to each other. The first casing portion 151 and the second casing portion 152 are located adjacent to each other in a substantially vertical direction. In this example, a lower portion of the first casing portion 151 and an upper portion of the second casing portion 152 are formed as one member (hereinafter, referred to as a “partition plate 154”). The partition plate 154 may also function as a part of the first casing portion 151 and a part of the second casing portion 152. The partition plate 154 divides the first conveying member 120 and the second conveying member 130 from each other. The partition plate 154 may be configured with an opening portion H1. The opening portion H1 may be located in the vicinity of an end portion opposite to an end portion supported by the third casing portion 153 in the first conveying member 120. The opening portion H1 delivers the developer from the inside of the second casing portion 152 into the first casing portion 151.
The developer which is conveyed while being stirred by the second conveying member 130 inside the second casing portion 152 is sent into the first casing portion 151 through the opening portion H1. The first conveying blade 124 of the first conveying member 120 conveys the developer from the opening portion H1 toward the third casing portion 153 while stirring the developer. While the developer is conveyed by the first conveying member 120, a part of the developer moves to the peripheral surface of the developing roller 110. In this way, the first conveying member 120 supplies the developer to the developing roller 110 while conveying the developer. The remaining developer which does not move to the peripheral surface of the developing roller 110 is sent from the inside of the first casing portion 151 into the third casing portion 153.
The third casing portion 153 includes, for example, an inlet path forming portion 153a and a developer discharge path forming portion 153b. The inlet path forming portion 153a accommodates an end portion of the second conveying member 130 and supports the end portion. The inlet path forming portion 153a may be configured with a developer supply port H2. A replenishment developer is supplied from the developer supply unit into the inlet path forming portion 153a through the developer supply port H2. The replenishment developer which is supplied into the inlet path forming portion 153a passes through the inlet path forming portion 153a and is sent into the second casing portion 152.
The developer discharge path forming portion 153b accommodates an end portion of the first conveying member 120 and supports the end portion. The developer discharge path forming portion 153b may be configured with a developer discharge port H3. The developer discharge port H3 discharges the developer which is degraded by a printing operation to the outside of the casing 150 by using a change in volume of the developer inside the casing 150. In this way, a space inside the developer discharge path forming portion 153b functions as a developer discharge path L including the developer discharge port H3 discharging the developer.
The third casing portion 153 may be configured with, for example, an opening portion H4 which connects a space inside the inlet path forming portion 153a to a space inside the developer discharge path forming portion 153b. The developer which is sent from the first casing portion 151 into the developer discharge path forming portion 153b is sent into the inlet path forming portion 153a through the opening portion H4 and is further sent into the second casing portion 152.
In this way, a conveying path C2 through which the developer is circulated and conveyed by the first conveying member 120 and the second conveying member 130 may be located between the opening portion H1 and the opening portion H4 inside the first casing portion 151, the second casing portion 152, and the third casing portion 153. In
Inside the casing 150, the conveying path C2 is located adjacent to the lower side of the developing chamber C1. In the conveying path C2, a portion formed inside the first casing portion 151 communicates with the developing chamber C1 in the vertical direction. Accordingly, the conveying path C2 can circulate the developer and to supply the developer to the developing roller 110.
As illustrated in
A regulation member 170 may be located at a position which is located at the upstream side of the closest approach position X and is adjacent to the developing roller 110. Furthermore, the upstream side herein indicates the upstream side of the developing roller 110 in the rotational direction. Similarly, the downstream side is set to the downstream side of the developing roller 110 in the rotational direction. The regulation member 170 restricts the thickness of the developer carried by the developing roller 110. The regulation member 170 may be attached to, for example, the inner surface of the first casing portion 151.
The opening portion H of the first casing portion 151 may be configured with a first seal member 160. The first seal member 160 may be located at the upstream side of the developing roller 110 in the rotational direction in relation to the closest approach position X. An end portion at the upstream side of the first seal member 160 (the upstream side of the developing roller 110 in the rotational direction) is fixed to an edge portion of the opening portion H of the first casing portion 151 (the casing 150). An end portion at the downstream side of the first seal member 160 (the downstream side of the developing roller 110 in the rotational direction) extends toward the closest approach position X between the developing roller 110 and the photosensitive drum 30. A front end portion (a downstream end portion) of the first seal member 160 is in contact with the developer (the toner) carried by the developing roller 110 in the movement region D.
In some examples, the opening portion H of the first casing portion 151 may be configured with a second seal member 180. The second seal member 180 is located between the upper portion of the developing roller 110 and the lower surface of the upper portion of the first casing portion 151. The developing device 100 includes the second seal member 180 which may be located between the developing roller 110 and the casing 150 at the downstream position of the closest approach position X. The second seal member 180 may comprise an elastic member. The second seal member 180 may extend along the extension direction of the developing roller 110. An upstream end portion of the second seal member 180 may be attached to the inner surface of the upper portion of the first casing portion 151. The second seal member 180 may be in slidable contact with the outer peripheral surface of the upper portion of the developing roller 110. In some examples, the developing device 100 can increase the sealability and airtightness of the developing device 100 by the second seal member 180.
As illustrated in
The inlet 191 of the discharge path 190 is connected to the casing 150 and communicates with a space inside the casing 150. The inlet 191 communicates with the developing chamber C1 in the casing 150. The inlet 191 is located at a portion outside the conveying path C2. In some examples, the inlet 191 is located at the developer discharge path L which is outside the conveying path C2 and communicates with the developer discharge path L (see
The outlet 192 of the discharge path 190 is located between the developing roller 110 and the photosensitive drum 30. The outlet 192 may be located at the upstream position in relation to the closest approach position X of the developing roller 110 and the photosensitive drum 30. In some examples, the outlet 192 is located at a position between the developing roller 110 and the photosensitive drum 30 and a position between the upstream side of the closest approach position X and the downstream side of the regulation member 170.
The outlet 192 extends to a position facing the outer peripheral surface (the developer storage portion) of the developing roller 110 as illustrated in
The intermediate portion 193 connects the inlet 191 and the outlet 192 to each other. The intermediate portion 193 is located outside the casing 150. In some examples, the intermediate portion 193 passes through the outside of the casing 150. Furthermore, at least a part of the intermediate portion 193 may pass through the outside of the casing 150. Depending on the installation positions of the inlet 191 and the outlet 192, a part of the intermediate portion 193 may penetrate the casing 150. Additionally, a concave portion or the like may be located in the casing 150 to avoid interference with the intermediate portion 193 depending on the installation positions of the inlet 191 and the outlet 192.
As illustrated in
In some examples, the developing device 100 may include the discharge path 190 which discharges air inside the casing 150 to a position between the developing roller 110 and the photosensitive drum 30. Accordingly, the developing device 100 may be configured to suppress an increase in pressure inside the casing 150 and to suppress the developer from being scattered from a portion having low sealability and airtightness. Further, when the developing device 100 includes the discharge path 190 which suppresses an increase in pressure inside the casing 150, the amount of developer which is discharged from the developer discharge port H3 may be suppressed, restricted, limited or otherwise controlled when there is an increase in pressure inside the casing 150.
The inlet 191 of the discharge path 190 may be located outside the conveying path C2 through which the developer is circulated and conveyed. Accordingly, the amount of the developer flowing into the discharge path 190 may be decreased when an air stream flows from the inlet 191 into the discharge path 190 with an increase in pressure inside the casing 150. Thus, the developing device 100 can suppress the developer from being discharged from the casing 150 when discharging air inside the casing 150.
The outlet 192 of the discharge path 190 may be located at the upstream position in relation to the closest approach position X between the developing roller 110 and the photosensitive drum 30. Accordingly, the developing device 100 may be configured to hold the developer included in the air discharged from the outlet 192 on the developing roller 110 or to move the developer to the photosensitive drum 30.
The developing device 100 includes the first seal member 160. The outlet 192 of the discharge path 190 is located between the developing roller 110 and the first seal member 160. In some examples, the developing device 100 may be configured to suppress the scattering of the developer included in the air discharged from the outlet 192 of the discharge path 190. The front end portion of the first seal member 160 is in contact with the developer carried by the developing roller 110. Further, a downstream end portion of the first seal member 160 may be fixed to the casing. Accordingly, the developing device 100 may be configured to close a space between the first seal member 160 and the developing roller 110 and to further suppress the scattering of the developer included in the air discharged from the outlet 192 of the discharge path 190.
The inner diameter of the discharge path 190 may be larger than the diameter of the developer discharge port H3. In some examples, the developing device 100 may be configured to suppress the amount of the developer discharged from the developer discharge port H3 along the air stream generated with an increase in pressure inside the casing 150.
The example developing device 100, or operation thereof, may be modified. For example, the inlet 191 of the discharge path 190 may not be located in the developer discharge path L. By way of further example, and similar to the developing device 100A illustrated in
As illustrated in
The example discharge paths 190A and 190B which are described with reference to
As illustrated in
The inlet of the discharge path may be connected to an end surface of the developing roller 110 in the extension direction of the casing 150 similar to the inlet 191A illustrated in
As illustrated in
In some examples, the bypass flow passage 200 includes a bypass flow passage inlet 201 and a bypass flow passage outlet 202. The bypass flow passage inlet 201 may be located below the outlet 192 of the discharge path 190 between the developing roller 110 and the photosensitive drum 30. The bypass flow passage inlet 201 faces the outlet 192 (the upper side). The shape of the bypass flow passage inlet 201 may be configured to receive the developer discharged from the outlet 192 of the discharge path 190. Similar to the outlet 192 of the discharge path 190 illustrated in
In some examples, the bypass flow passage 200 may be configured to collect the developer discharged from the outlet 192 of the discharge path 190 along with air by the bypass flow passage inlet 201 and to return the developer to the conveying path C2 again. Accordingly, the developing device 100D can suppress, limit, restrict or otherwise control a decrease in the amount of the developer inside the casing 150.
It is to be understood that not all aspects, advantages and features described herein may necessarily be achieved by, or included in, any one particular example. Indeed, having described and illustrated various examples herein, it should be apparent that other examples may be modified in arrangement and detail.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-197627 | Oct 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/054197 | 10/2/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/081231 | 4/23/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7340188 | Yamada et al. | Mar 2008 | B2 |
7925190 | Matsumoto | Apr 2011 | B2 |
8855525 | Muto | Oct 2014 | B2 |
8923726 | Tsuda et al. | Dec 2014 | B2 |
20030091363 | Hoffman et al. | May 2003 | A1 |
20040083887 | Simpson et al. | May 2004 | A1 |
20040245711 | Domoto et al. | Dec 2004 | A1 |
20110211859 | Shimoyama et al. | Sep 2011 | A1 |
20150093139 | Kuramoto et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2004272144 | Sep 2004 | JP |
2011197442 | Oct 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20210278783 A1 | Sep 2021 | US |