The field of the invention relates to medical imaging systems, and more particularly to an improved imaging transducer assembly.
Intraluminal, intracavity, intravascular, and intracardiac treatments and diagnosis of medical conditions utilizing minimally invasive procedures are effective tools in many areas of medical practice. These procedures are typically performed using imaging and treatment catheters that are inserted percutaneously into the body and into an accessible vessel of the vascular system at a site remote from the vessel or organ to be diagnosed and/or treated, such as the femoral artery. The catheter is then advanced through the vessels of the vascular system to the region of the body to be treated. The catheter may be equipped with an imaging device, typically an ultrasound imaging device, which is used to locate and diagnose a diseased portion of the body, such as a stenosed region of an artery. For example, U.S. Pat. No. 5,368,035, issued to Hamm et al., the disclosure of which is incorporated herein by reference, describes a catheter having an intravascular ultrasound imaging transducer.
a shows an example of an imaging transducer assembly 1 known in the art. The imaging transducer 1 is typically within the lumen 60 of a guidewire (partially shown), having an outer tubular wall member 5. The imaging transducer assembly 1 includes a coaxial cable 110, having a center conductor wire 120 and an outer shield wire 140, shown in
On the distal end of the non-conductive epoxy 35 is a layer of piezoelectric crystal (“PZT”) 80, “sandwiched” between a conductive acoustic lens 70 and a conductive backing material 90, formed from an acoustically absorbent material (e.g., an epoxy substrate having tungsten particles). The acoustic lens 70 is electrically coupled with the center conductor wire 120 of the coaxial cable 110 via a connector 40 that is insulated from the silver epoxy 30 and the backing material 90 by the non-conductive epoxy 35. The backing material 90 is connected to the steel housing 20. It is desirable for the imaging transducer assembly 1 to be surrounded by a sonolucent media. Thus, the lumen 60 of the guidewire is also filled with saline around the assembly 1. The driveshaft 10, the housing 20, and the acoustic lens 70 are exposed to the saline. During operation, the PZT layer 80 is electrically excited by both the backing material 90 and the acoustic lens 70. The backing material 90 receives its charge from the shield wire 140 of the coaxial cable 10 via the silver epoxy 30 and the steel housing 30, and the acoustic lens 70, which may also be silver epoxy, receives its charge from the center conductor wire 120 of the coaxial cable 110 via the connector 40, which may be silver epoxy as well.
The imaging transducer assembly is generally a rigid structure; however, the vessels through which the assembly is typically advanced are often tortuous, which create tight radii within the catheter. Thus, it is desirable to have the rigid portions, such as the imaging transducer assembly, of the catheter be relatively small in length.
Accordingly, an alternative transducer assembly may be desirable.
The improved imaging device is intended for use within the lumen of a human body, e.g., the lumen of a blood vessel. Generally, the imaging device is coupled to the distal end of a drive shaft, and a conductive wire is wrapped around a distal portion of the drive shaft.
In one embodiment of the improved imaging device, the conductive wire is part of a sensor adapted to communicate with a medical positioning system.
In another embodiment of the improved imaging device, the conductive wire is configured to be a matching circuit for the imaging device.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
In order to better appreciate how the above-recited and other advantages and objects of the present inventions are obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. It should be noted that the components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views. However, like parts do not always have like reference numerals. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
a is a cross-sectional side view of an imaging transducer assembly known in the art;
b is a cross-sectional view of the coaxial cable within the prior art imaging transducer assembly of
a is cross-sectional side view of an imaging transducer assembly in accordance with an example embodiment of the invention;
b is a cross-sectional view of a coaxial cable within the imaging transducer assembly of
a is a simplified diagram of an electrical circuit formed by the imaging transducer assembly of
b is a simplified diagram of an alternative electrical circuit formed an imaging transducer assembly in accordance with an example embodiment of the invention;
c is a cross-sectional view of a tri-axial cable within an imaging transducer assembly in accordance with an example embodiment of the invention; and
Described below is an improved imaging device assembly.
As mentioned above, an imaging device assembly is typically a rigid structure. However, because the assembly may travel through tortuous vessels, it may be preferable for the imaging device assembly to have a short length. In the particular embodiment described below, the imaging device assembly is an imaging transducer assembly. However, the invention may be adapted for use with other imaging devices instead.
One approach to reduce the length of the imaging transducer assembly is illustrated in
Turning back to
The distal end of the imaging transducer assembly 300 includes an imaging device such as an imaging transducer 365. The imaging transducer 365 includes an electrically conductive backing material 390, having a top, bottom and center, which may be formed from an acoustically absorbent material (for example, an epoxy substrate having tungsten or silver particles). The center of the backing material 390 surrounds a shield pellet 400, which is electrically coupled to the shield wire 430 at the distal end of the coaxial cable 410. The top of the backing material 390 is coupled to the bottom of a layer of piezoelectric crystal (PZT) 380. The top of the PZT layer 380 is coupled to a conductive acoustic lens 370, which may include silver epoxy. The acoustic lens 370 is electrically coupled to the center conductor wire 420 of the coaxial cable 410 via a connector 360, which may include silver epoxy formed in the non-conductive epoxy 330 such that the connector 360 is insulated from the backing material 390.
The imaging transducer assembly 300 further includes an insulated conductive wire 325 tightly wound around the distal end of the drive shaft 310, forming a second coil shape. The wire 325 may be configured to be part of a sensor adapted to communicate with a medical positioning system (not shown), if desired. The wire 325 may transmit electromagnetic signals to be received by an external receiver, (e.g., active transmission) or the wire 325 may be otherwise detectable (e.g., passive) by an external device. The wire 325 may also have magnetic qualities. The two ends of the wire 325 are terminals that may receive an electric charge. One end 350 of the wire 325 is coupled to the connector 360 that electrically couples the acoustic lens 370 with the center conductor wire 420 of the coaxial cable 410. The other end of the wire 325 is coupled to the shield wire 430 of the coaxial cable 410 via a silver epoxy 340 coupled to the shield pellet 400.
The second coil shape 325 desirably provides an inductance if the wire 325 is configured to be part of a sensor to increase the sensor's ability to send and receive electromagnetic signals. Further, the second coil shape also serves as a housing to reinforce the imaging transducer assembly 300. This configuration relieves the need for a separate housing element, which may desirably reduce the length of the imaging transducer assembly 300, thus improving the ability of the catheter to pass through a tortuous pathway.
It should be noted that the conductive wire configuration 325 may have a variety of other shapes and configurations. For example, configuration 325 may be a solid structure instead of a coiled wire. The wire 325 is preferably copper and approximately 10 microns in diameter. The small diameter of the wire 325 allows the second coil shape to have a small impact on the dimensions of the imaging transducer assembly 300, thus allowing the imaging transducer assembly 300 to still work within the lumen 305 of the guidewire or catheter assembly.
To protect the wire 325 from abrasion damage, a polyester (“PET”) shrink tube (not shown) may surround the imaging transducer assembly 300, covering the conductive wire 325. An opening is formed in the shrink tube where the acoustic beam is emitted from the imaging transducer 365. Shrink tubes made of PET are readily available in the commercial market with wall thickness below 0.0060 millimeters. Thus, the shrink tube adds little to the profile of the assembly 300. PET has a high tensile strength, as can be appreciated by one of ordinary skill in the art, and it has a dielectric strength to sufficiently insulate the electrical connections that could otherwise be exposed to the lumen 305.
Surrounding the coaxial cable 410 and the imaging transducer assembly 300, including the conductive wire 325, is non-conductive epoxy 330. The epoxy 330 electrically isolates the conductive wire 325 from the lumen 305, couples the imaging transducer assembly 300 to the driveshaft 310, reinforces the structure of the imaging transducer assembly 300, fills in gaps, and seals the perimeters of the shrink tube around the opening exposed for emission of the acoustic beam (not shown). The epoxy 330 may be a high strength epoxy that is curable via exposure to either ultra-violet (“UV”) or ambient light of sufficient intensity. The epoxy 330 may also be curable via catatonic curing with a curing agent for shaded areas not accessible to light. The epoxy 330 may have medium viscosity to prevent excessive wicking into the driveshaft 310, which could undesirably increase the length of the imaging transducer assembly 300.
To facilitate the operation of the imaging transducer 365 of the imaging transducer assembly 300, the lumen 305 of the guidewire or catheter assembly is preferably filled with a sonolucent media, such as saline. If the conductive wire 325 is configured to be part of a sensor, then it may be desirable to have at least one of the ends 350, 340 of the wire 325 be insulated from the saline within the lumen 305 because if both ends, 350 and 340, were exposed to the saline, the semi-conductive nature of the saline might shunt the ends, 350 and 340, thus undesirably “shorting out” the sensor, and/or affecting the signal-to-noise ratio of the navigational signals. In light of this, the imaging transducer assembly 300 preferably has one end 340 of the wire 325 insulated from the drive shaft 310 and saline by the non-conductive epoxy 330. Further, because the wire 325 is insulated, the coil portion of the wire 325 is also insulated from the driveshaft 310 and the saline in the lumen 305. The other end 350 of the wire 325, however, may be exposed to the saline via the acoustic lens 370.
During the operation of the imaging transducer assembly 300, the PZT crystal 380 is electrically excited by both the backing material 390, charged through the shield wire 430, and the acoustic lens 370, charged through the center conductor wire 420. In addition, the conductive wire 325 is also charged by the shield wire 430 and the center conductor wire 420. If the conductive wire 325 is configured to send electromagnetic signals to nodes of a medical positioning system (not shown), then the charge may facilitate a broadcast, via the conductive wire 325. However, if the conductive wire 325 is configured to receive electromagnetic signals from one or more nodes of a medical positioning system (not shown), then separate circuitry including a signal processor may be used to filter and extract the desired electromagnetic signals. Other features and circuits may also be added as desired.
Thus, turning to
As can be appreciated by one of ordinary skill in the art, it may be desirable to couple the imaging transducer 365 with a matching circuit and/or tuning circuit (“matching/tuning circuit”). The matching/tuning circuit filters out undesirable reactance properties of the transducer 365 to optimize the transmitted beam energy emitted from the transducer 365, which may result in stronger echoes. In one embodiment of a transducer assembly 300, the conductive wire 325 may be utilized as a matching/tuning circuit in addition to, or alternatively to, a sensor adapted to communicate with a medical positioning system, wherein the sensor is configured to transmit electromagnetic signals. The wire 325 may be in parallel to the imaging transducer 365, as described above and shown in
Alternatively, the transducer 365 may be configured to be in series with the wire 325, as shown in
Inductors are often used in matching/tuning circuits to filter, or tune out, the reactance of the parallel capacitance of the transducer 365, i.e., second capacitor 369. For the above example, it may be desirable to have an inductor be configured to have an inductance of approximately 470 uH in series with the transducer 365, as shown in
If the energy source is an ultrasound console, then the conductive wire 325, set up as a matching/tuning circuit and a sensor, may be configured such that it resonates at or near the same frequency as the imaging transducer 365, which provides tuning for the transducer 365. The pulse generated by the ultrasound console may provide excitation to both the transducer 365 and the wire 325. If tuning/matching are not desired, then the wire 325 may be configured to resonate at a different frequency, preferably within the imaging period of the transducer 365. Accordingly, a narrower pulse from the ultrasound console may excite the transducer 365 only, then a longer pulse, which will excite the conductive wire 325 only, may follow the narrower pulse. The length of the longer pulse may be determined by the desired resonant frequency of the conductive wire 325 and the transducer 365. Thus, if the conductive wire 325 is configured to be a sensor of a medical positioning system, multiple receivers (not shown), adapted to receive signals from the sensor, may be coupled with the ultrasound console whereby the ultrasound console will process information from the receivers and provide the coordinates of the wire 325.
If the conductive wire 325 is used as both a matching/tuning circuit and a sensor, then the matching/tuning aspect of the wire 325 may overly influence the sensor aspect. One approach to alleviate this is to use a tri-axial cable, as shown in
Turning to
The length of the guidewire 500 may vary depending on the application. In a preferred embodiment, the length of the guidewire 500 is between 30 cm and 300 cm. A catheter (not shown) may be configured to use several different diameters of guidewires 500. For example, the guidewire 500 may have a diameter of 0.010, 0.014, 0.018, or 0.035 inches. Typically, the diameter of the guidewire 500 is uniform.
A proximal portion 510 of the guidewire 500 may be adapted to connect to circuitry (not shown) that processes imaging signals from the imaging transducer and/or circuitry (not shown) that processes navigational signals from the sensor 320., such circuits being well known.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, the reader is to understand that the specific ordering and combination of process actions described herein is merely illustrative, and the invention can be performed using different or additional process actions, or a different combination or ordering of process actions. For example, this invention is particularly suited for applications involving medical imaging devices, but can be used on any design involving imaging devices in general. As a further example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This is a continuation-in-part of U.S. patent application Ser. No. 10/401,901, entitled “An Improved Imaging Transducer Assembly,” filed on Mar. 28, 2003 now U.S. Pat. No. 7,081,094, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4154246 | LeVeen | May 1979 | A |
4951677 | Crowley et al. | Aug 1990 | A |
5002058 | Martinelli | Mar 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5115814 | Griffith et al. | May 1992 | A |
5176140 | Kami et al. | Jan 1993 | A |
5207225 | Oaks et al. | May 1993 | A |
5228176 | Bui et al. | Jul 1993 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5259837 | Van Wormer | Nov 1993 | A |
5351693 | Taimisto et al. | Oct 1994 | A |
5353798 | Sieben | Oct 1994 | A |
5368035 | Hamm et al. | Nov 1994 | A |
5368036 | Tanaka et al. | Nov 1994 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5437282 | Koger et al. | Aug 1995 | A |
5488954 | Sleva et al. | Feb 1996 | A |
5488955 | Dias | Feb 1996 | A |
5515853 | Smith et al. | May 1996 | A |
5546947 | Yagami et al. | Aug 1996 | A |
5596990 | Yock et al. | Jan 1997 | A |
5715825 | Crowley | Feb 1998 | A |
5738100 | Yagami et al. | Apr 1998 | A |
5846205 | Curley et al. | Dec 1998 | A |
5938602 | Lloyd | Aug 1999 | A |
5938615 | Eberle et al. | Aug 1999 | A |
5951480 | White et al. | Sep 1999 | A |
5954649 | Chia et al. | Sep 1999 | A |
6019725 | Vesely et al. | Feb 2000 | A |
6019726 | Webb | Feb 2000 | A |
6095976 | Nachtomy et al. | Aug 2000 | A |
6149599 | Schlesinger et al. | Nov 2000 | A |
6161032 | Acker | Dec 2000 | A |
6162179 | Moore | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6245020 | Moore et al. | Jun 2001 | B1 |
6248075 | McGee et al. | Jun 2001 | B1 |
6259941 | Chia et al. | Jul 2001 | B1 |
6283920 | Eberle et al. | Sep 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6457365 | Stephens et al. | Oct 2002 | B1 |
6461298 | Fenster et al. | Oct 2002 | B1 |
6464642 | Kawagishi | Oct 2002 | B1 |
6490474 | Willis et al. | Dec 2002 | B1 |
6511428 | Azuma et al. | Jan 2003 | B1 |
6520916 | Brennen | Feb 2003 | B1 |
6592520 | Peszynski et al. | Jul 2003 | B1 |
6593884 | Gilboa et al. | Jul 2003 | B1 |
6607488 | Jackson et al. | Aug 2003 | B1 |
6785571 | Glossop | Aug 2004 | B2 |
20020007120 | Moore et al. | Jan 2002 | A1 |
20020026129 | White et al. | Feb 2002 | A1 |
20020099289 | Crowley | Jul 2002 | A1 |
20040133105 | Ostrovsky et al. | Jul 2004 | A1 |
20040193041 | Ostrovsky | Sep 2004 | A1 |
20050085716 | Hamm et al. | Apr 2005 | A1 |
20060106314 | Ostrovsky | May 2006 | A1 |
Number | Date | Country |
---|---|---|
WO9203095 | Mar 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20040193057 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10401901 | Mar 2003 | US |
Child | 10754292 | US |