1. Field of the Invention
Embodiments of this invention relate to the field of medical imaging. Specifically, some embodiments pertain to apparatus and methods for improving the quality of optical coherence tomography (OCT) images with the use of real-time video tracking technology.
2. Description of Related Art
Optical coherence tomography (OCT) is a high-resolution imaging technology used for in vivo cross-sectional and three-dimensional imaging of biology tissue microstructure (Wolfgang Drexler and James G. Fujimoto, [Optical Coherence Tomography: Technology and Application, Springer (2008)]). OCT has been used extensively for non-invasive imaging of the human eye for the past two decades.
Fourier-domain OCT (FD-OCT) is gaining popularity and has become a mainstream technology for non-invasive microstructure imaging due to its improved imaging speed and sensitivity. (See for example, Wojtkowski M. et al., [J. Biomed. Opt. 7,457-463 (2002)], Leitgeb R. et al., [Opt. Express 11, 889-894 (2003)], Choma M. A., et al., [Opt. Express 11, 2183-2189 (2003)], or de Boer J. F. et al, [Opt. Lett. 28, 2067-2069 (2003)]). Current commercial Fourier-domain OCT systems have imaging speeds between 25,000 to 53,000 axial scans (A-scans) per second. These imaging speeds enable a typical cross-sectional OCT image (B-scan) to be acquired in a few hundredths of a second. Due to short duration of image acquisition time, transverse motion artifacts caused by micro-saccadic movement of an object eye are insignificant in most OCT B-scan images. Axial motion artifacts caused by heart beat, respiration, and head movement are also minimized in a typical FD-OCT cross-sectional image.
It has been shown that the image quality of an OCT image can be improved through the reduction of speckle noise in the image by averaging multiple B-scans acquired at the identical location. (See for example, Sander B. et al., [Br. J. Ophthalmol. 89, 207-212 (2005)], Sakamoto A. et al., [Ophthalmology 115, 1071-1078.e7 (2008)], or Hangai M. et al., [Opt. Express 17, 4221-4235 (2009)]). Despite the increase in imaging speed of FD-OCT, transverse and axial motion artifact can still be an issue when the number of B-scans used for averaging is increased such that the total acquisition time approaches a few tenth of a second. An OCT image obtained through multiple B-scans averaging is likely to have blurring effects due to the averaging of backscattered signals from different locations as a result of motion artifacts during acquisition. Since the acquisition of a complete three-dimensional data set of an object eye using FD-OCT typically requires several seconds, transverse and axial motion artifacts are likely to occur and affect image quality. Therefore, an apparatus and a method are needed to track the motion of an object eye in real-time in order to improve the quality of OCT imaging and to preserve accurate three-dimensional anatomical information.
In an attempt to solve this problem, some commercial OCT systems use a separate laser scanning imaging system (also known as a scanning laser ophthalmoscope or SLO) to perform real-time transverse tracking of the OCT scanning beam (Hangai M. et al., [Opt. Express 17, 4221-4235 (2009)]). This approach increases the complexity and, therefore, the cost of the system as a whole; it also exposes the subject to additional optical radiation from the SLO beam.
To reduce the system complexity, near-infrared video images of the fundus was also used in an attempt to perform transverse tracking of OCT imaging. Koozekanani disclosed a method to track the optic nerve head in OCT video using dual eigenspaces and an adaptive vascular distribution model. (Koozekanani D. et al, [IEEE Trans Med Imaging, 22, 1519-36 (2003)]). However, such complex modeling is computationally intensive and cumbersome; and such motion tracking was not feasible in real-time due to its complexity.
Therefore, there is a need for better apparatus and method of motion tracking of OCT image data.
In accordance with some embodiments, an optical coherence tomography (OCT) system is provided. An optical coherence tomography (OCT) system according to some embodiments includes an OCT imager; a two-dimensional transverse scanner coupled to the OCT imager, the two-dimensional transverse scanner receiving light from the light source and coupling reflected light from a sample into the OCT imager; optics that couple light between the two-dimensional transverse scanner and the sample; a video camera coupled to the optics and acquiring images of the sample; and a computer coupled to receive images of the sample from the video camera, the computer processing the images and providing a motion offset signal based on the images to the two-dimensional transverse scanner.
In some embodiments, an imaging method includes directing an OCT light source from an OCT imager onto a sample; capturing an OCT image in the OCT imager; capturing video image of the sample using a video camera; analyzing the video image to determine a motion correction; and adjusting positioning of the OCT light source on the sample in response to the motion offset.
These and other embodiments are further described below with respect to the following figures.
The present invention provides solutions to address some of the drawbacks of these tracking approaches. Methods and apparatus for performing real-time transverse tracking using video images to achieve registration of the OCT scan positions are disclosed. A rapid and efficient algorithm can be used to obtain real-time tracking information using near-infrared video images. The real-time tracking detects transverse eye motion and actively moves the OCT scanning beam to the intended scan location. This active tracking system removes out-of-position OCT scans and facilitates the acquisition of OCT data from well-defined scan locations in the three-dimensional space. The optical backscattering intensity along each A-scan can be obtained through standard FD-OCT acquisition and processing. Sequential OCT B-scans can be aligned in the transverse, axial, and rotational directions to perform axial scan registration. OCT B-scans acquired from identical location and registered in this manner are suitable for improving the OCT image quality through multiple B-scan averaging. OCT B-scans acquired and processed in this manner can also be used to acquire three-dimensional data set with nearly no motion artifacts.
In some embodiments of the present invention, infrared video can be used to achieve real-time tracking and three-dimensional registration of OCT data acquisition.
Commercially available Fourier-domain OCT systems have imaging speeds in the range of several tens of thousands of axial scans (A-scans) per second. At these speeds, an individual cross-sectional OCT image (B-scan) will likely not contain significant motion artifacts from involuntary micro-saccadic motion, or motion due to subject's breathing, heart beat or head movement. However, the acquisition of a complete three-dimensional data set at these imaging speeds still requires up to a few seconds. This results in motion artifacts as shown in
One of the advantages of using motion detection and correction is to reduce the motion artifact shown in
Simultaneous viewing of the scanning region, the region of interest 315, is provided by an infrared camera 301 where the video images are captured by a video digitizer 302 for display onto a computer display 303 to provide the operator continual feedback of the OCT scanning position relative to the anatomical region of interest during image acquisition. Optical lenses 305, 306 and 308 focus the OCT beam and the video image on the region of interest 315 in the sample 310.
In some embodiments, the video based tracking elements, as depicted in
In some embodiments, the fixation position of the OCT system can be adjusted to increase the area of the region of interest 315. For instance, an offset can be introduced to the fixation position so that the subject's fixation gaze is not centered on the center of the video frame. For example, this fixation offset can be adjusted to bring more of the optic disc region into the video frame. The optic disc in the video image can further serve as a high contrast reliable feature in the fundus for detecting motion and computing the transverse offset.
In some embodiments, the video memory storage 340 can obtain a reference video frame from a reference image database 342. In some embodiments, this reference video frame was acquired in an imaging session from a subject's previous office visit to act as a reference for follow-up visits. The real-time video images captured by the video digitizer 302 can be compared to this reference video frame to determine the offset between the current OCT scan position and the desired OCT scan position. This position offset can then be applied to the two-dimensional (2D) transverse scanners 320 to adjust for scan position and to enable acquisition of reproducible OCT scan locations over office visits.
In accordance with some embodiments, the optic disc in the video frame can be isolated and detected automatically when performing the motion detection algorithm. Tracking the position of the optic disc over multiple office visits has an advantage over tracking other retinal features of the eye because the position and contrast of the optic disc are relatively more prominent and stable over time. Other retinal features in the video frame are often changed due to disease progression or therapeutic treatment.
In some embodiments, the acquisition timing properties for the infrared video and the OCT imaging are determined using a clock 355 in the computer. The onboard high-precision computer clock 355 can be used to determine the precise timing relationship between an infrared video frame and an OCT image frame. This further reduces the cost and complexity of the system by eliminating the need for an additional hardware triggering capability on the infrared video camera.
In some embodiments of the present invention, properties of the infrared video camera and the OCT scanners, such as position and aspect ratio, are utilized for calibration using a feature of a known size and dimensions. This calibration process ensures a proper and controlled relationship between the video camera and the OCT scanner so that the transverse motion offset from the video frames and the error offset signals can be accurately applied to provide real-time motion correction.
Applying some embodiments of the present invention can reduce or remove the motion artifact shown in
With the addition of real-time OCT tracking to a standard OCT system, the benefits of averaging multiple B-scans to improve image quality can be significantly enhanced.
In accordance with some embodiments, the image quality of multiple B-scan averaging can further be enhanced by performing OCT image alignment in the transverse, axial, and rotational directions before applying B-scan averaging. Each acquired OCT image can be correlated to a reference OCT image in the axial and/or transverse direction to achieve best OCT image alignment. In some embodiment, to achieve rotational alignment, each A-scan in an OCT image can be correlated along the axial direction with a corresponding A-scan in the reference OCT image. This image alignment method based on the OCT image can remove axial motion from the subject that cannot be corrected by real-time video tracking. The combination of real-time transverse motion correction and axial motion image alignment enables the acquisition of OCT data from a well-defined scan location in the three-dimensional space.
In accordance with some embodiments of the present invention, simple and rapid real-time OCT tracking can be achieved in the apparatus discussed in
Video based tracking is easily adaptable as most commercially available OCT imaging devices use near-infrared videos of the object for operator aiming. Therefore, the systems and methods disclosed herein can enable video based tracking on these OCT imaging devices with little modification, such as a software and/or a firmware upgrade.
The systems and methods disclosed herein can also improve evaluation of disease progression because OCT data can be tracked more accurately over multiple office visits. In order to track disease progression or response to treatment, it is desirable to perform OCT measurements, such as properties and characteristics of retinal and/or intra-retinal thicknesses, at the same location over multiple office visits. Video-based real-time tracking can remove eye motion during acquisition and account for the changes in patient's fixation from one visit to another. This enables the acquisition of OCT scans at identical locations over office visits and improves the quality of the OCT measurements, such as the retina or intra-retinal layers.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those of ordinary skill in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims. Those ordinarily skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the method and compositions described herein. Such equivalents are intended to be encompassed by the claims.
This application claims priority to U.S. Provisional Application 61/481,055, filed on Apr. 29, 2011, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61481055 | Apr 2011 | US |