Imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions

Information

  • Patent Grant
  • 8034941
  • Patent Number
    8,034,941
  • Date Filed
    Tuesday, June 23, 2009
    15 years ago
  • Date Issued
    Tuesday, October 11, 2011
    13 years ago
Abstract
The present invention relates to substituted imidazo-pyridinones and imidazo-pyridazinones of general formula
Description

The present invention relates to new substituted imidazopyridazinones and imidazopyridones of general formula




embedded image



the tautomers, the enantiomers, the diastereomers, the mixtures thereof, the prodrugs thereof and the salts thereof, particularly the physiologically acceptable salts thereof with inorganic or organic acids or bases which have valuable pharmacological properties, particularly an inhibiting effect on the activity of the enzyme dipeptidylpeptidase-IV (DPP-IV), the preparation thereof, the use thereof for the prevention or treatment of diseases or conditions associated with an increased DPP-IV activity or capable of being prevented or alleviated by reducing the DPP-IV activity, particularly type I or type II diabetes mellitus, the pharmaceutical compositions containing a compound of general formula (I) or a physiologically acceptable salt thereof as well as processes for the preparation thereof.


The present invention thus relates to the above compounds of general formula I which have valuable pharmacological properties, the pharmaceutical compositions containing the pharmacologically effective compounds, the use thereof and processes for the preparation thereof.


In the above general formula I


R1 denotes a C1-3-alkyl group substituted by a group Ra, where






    • Ra denotes a 3,4-dihydro-quinolinyl, 3,4-dihydro-isoquinolinyl, 1,4-dihydro-quinazolinyl, 3,4-dihydro-quinazolinyl, 1H-benzo[d][1,2]oxazinyl, 4H-benzo[e][1,3]-oxazinyl, 4H-benzo[d][1,3]oxazinyl or 2H-benzo[1,4]oxazinyl group, wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom and in the heterocyclyl moiety a methylene group may be replaced by a carbonyl group,

    • a 4H-benzo[e][1,3]thiazinyl, 4H-benzo[d][1,3]thiazinyl or 2H-benzo[1,4]thiazinyl group wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom and in the heterocyclyl moiety a methylene group may be replaced by a carbonyl group and the sulphur atom may be replaced by a sulphinyl or sulphonyl group,

    • a 2-oxo-2H-benzo[e][1,3]oxazinyl or 2,2-dioxo-1H-benzo[c][1,2]thiazinyl group wherein in each case in the benzo moiety
      • one to three methyne groups may each be replaced by a nitrogen atom,

    • a 2,3-dihydro-1H-benzo[e][1,4]diazepinyl, 4,5-dihydro-3H-benzo[b][1,4]diazepinyl or 5-oxo-4,5-dihydro-3H-benzo[e][1,4]diazepinyl group wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom and in the heterocyclyl moiety a methylene group may be replaced by a carbonyl group,

    • a 2,3-dihydro-benzo[f][1,4]oxazepinyl or 2,3-dihydro-benzo[b][1,4]oxazepinyl group wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom and in the heterocyclyl moiety a methylene group may be replaced by a carbonyl group,

    • a 2,3-dihydro-benzo[b][1,4]thiazepinyl or 2,3-dihydro-benzo[f][1,4]thiazepinyl group wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom and in the heterocyclyl moiety a methylene group may be replaced by a carbonyl group and the sulphur atom may be replaced by a sulphinyl or sulphonyl group,

    • a 5-oxo-4,5-dihydro-benzo[f][1,3,4]oxadiazepinyl group wherein
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom,

    • a 11H-dibenzo[b,e]azepinyl or 5H-dibenzo[a,d]cycloheptenyl group wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom and the methylene group in the heterocyclyl moiety may be replaced by an oxygen or sulphur atom, a carbonyl, sulphinyl or sulphonyl group or by an imino group substituted by Rx, where
        • Rx denotes a hydrogen atom or a C1-4-alkyl, C2-4-alkenyl, C2-4-alkynyl, C3-6-cycloalkyl, C3-6-cycloalkyl-C1-3-alkyl, aryl, aryl-C1-3-alkyl, hydroxy-C2-4-alkyl, C1-3-alkyloxy-C2-4-alkyl, C3-6-cycloalkyloxy-C2-4-alkyl, amino-C2-4-alkyl, C1-3-alkylamino-C2-4-alkyl, di-(C1-3-alkyl)-amino-C2-4-alkyl, C1-3-alkyl-carbonyl, C1-3-alkyloxy-carbonyl, C1-3-alkyloxy-carbonyl-C1-3-alkyl, aryl-carbonyl, C1-3-alkyl-sulphonyl or aryl-sulphonyl group,

    • a phenanthridinyl group wherein
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom, and

    • a 1,2,3,4-tetrahydro-phenanthridinyl, 1,2,3,4,4a,10b-hexahydro-phenanthridinyl, 2,3-dihydro-1H-4-aza-cyclopenta[a]naphthyl or a 8,9,10,11-tetrahydro-7H-6-aza-cyclohepta[a]naphthyl group wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom and one or two methylene groups may each be replaced by an oxygen atom or a carbonyl group, while, if two methylene groups are each replaced by an oxygen atom, the oxygen atoms must be separated from one another by at least two methylene units,

    • a phenanthrenyl group wherein
      • in each case one to three of the methyne groups in position 1 to 4 and 5 to 8 may each be replaced by a nitrogen atom,

    • a 1,2,3,4-tetrahydro-phenanthrenyl or a 1,2,3,4,5,6,7,8-octahydro-phenanthrenyl group wherein
      • in each case one or two of the methylene groups in position 1 to 4 and 5 to 8 may each be replaced by an oxygen atom or a carbonyl group, while, if two methylene groups are each replaced by an oxygen atom, the oxygen atoms must be separated from one another by at least two methylene units,

    • a 5H-benzo[e]pyrrolo[1,2-a][1,4]diazepinyl, thieno[3,2-b][1,4]benzoxazepinyl, 5H-dibenzo[d,f][1,3]diazepinyl or a 5-oxa-7-aza-dibenzo[a,c]cycloheptenyl group wherein in each case
      • in the benzo moiety one to three methyne groups may each be replaced by a nitrogen atom,

    • a naphtho[1,2-d]oxazolyl, naphtho[2,1-d]oxazolyl, naphtho[1,2-d]thiazolyl, naphtho[2,1-d]thiazolyl, naphtho[1,2-d]imidazolyl, naphtho[1,2-b]furanyl or naphtho[2,1-b]furanyl group wherein in each case
      • in the naphthyl moiety one to three methyne groups may each be replaced by a nitrogen atom,

    • or a furo[3,2-c]isoquinolinyl, pyrazolo[1,5-c]quinazolinyl or 1H-perimidinyl group,

    • while the methylene and methyne groups of the above mentioned radicals Ra may be substituted by the groups R10 to R13 and additionally by a C1-3-alkyl group and the imino groups of the above mentioned radicals Ra may be substituted by the groups Rx as hereinbefore defined and
      • R10 denotes a hydrogen atom,
      • a fluorine, chlorine, bromine or iodine atom,
      • a C1-4-alkyl, hydroxy, or C1-4-alkyloxy group,
      • a nitro, amino, C1-3-alkylamino, di-(C1-3-alkyl)amino, cyano-C1-3-alkylamino, N-(cyano-C1-3-alkyl)-N—(C1-3-alkyl)-amino, C1-3-alkyloxy-carbonyl-C1-3-alkylamino, pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, or 4-(C1-3-alkyl)-piperazin-1-yl group,
      • a C1-3-alkyl-carbonylamino, arylcarbonylamino, aryl-C1-3-alkyl-carbonylamino, C1-3-alkyloxy-carbonylamino, aminocarbonylamino, C1-3-alkylaminocarbonylamino, di-(C1-3-alkyl)aminocarbonylamino, pyrrolidin-1-yl-carbonylamino, piperidin-1-yl-carbonylamino, morpholin-4-yl-carbonylamino, piperazin-1-yl-carbonylamino or 4-(C1-3-alkyl)-piperazin-1-yl-carbonylamino, C1-3-alkyl-sulphonylamino, bis-(C1-3-alkylsulphonyl)-amino, aminosulphonylamino, C1-3-alkylamino-sulphonylamino, di-(C1-3-alkyl)amino-sulphonylamino, pyrrolidin-1-yl-sulphonylamino, piperidin-1-yl-sulphonylamino, morpholin-4-yl-sulphonylamino, piperazin-1-yl-sulphonylamino or 4-(C1-3-alkyl)-piperazin-1-yl-sulphonylamino, (C1-3-alkylamino)thiocarbonylamino, (C1-3-alkyloxy-carbonylamino)carbonylamino, arylsulphonylamino or aryl-C1-3-alkyl-sulphonylamino group,
      • an N—(C1-3-alkyl)-C1-3-alkyl-carbonylamino, N—(C1-3-alkyl)-arylcarbonylamino, N—(C1-3-alkyl)-aryl-C1-3-alkyl-carbonylamino, N—(C1-3-alkyl)-C1-3-alkyloxy-carbonylamino, N-(aminocarbonyl)-C1-3-alkylamino, N—(C1-3-alkyl-aminocarbonyl)-C1-3-alkylamino, N—[di-(C1-3-alkyl)aminocarbonyl]-C1-3-alkylamino, N—(C1-3-alkyl)-C1-3-alkyl-sulphonylamino, N—(C1-3-alkyl)-arylsulphonylamino, or N—(C1-3-alkyl)-aryl-C1-3-alkyl-sulphonylamino group,
      • a 2-oxo-imidazolidin-1-yl, 2,4-dioxo-imidazolidin-1-yl, 2,5-dioxo-imidazolidin-1-yl or 2-oxo-hexahydropyrimidin-1-yl group wherein the nitrogen atom in the 3 position may be substituted in each case by a methyl or ethyl group,
      • a cyano, carboxy, C1-3-alkyloxy-carbonyl, aminocarbonyl, C1-3-alkyl-aminocarbonyl, di-(C1-3-alkyl)-aminocarbonyl, pyrrolidin-1-yl-carbonyl, piperidin-1-yl-carbonyl, morpholin-4-yl-carbonyl, piperazin-1-yl-carbonyl or 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl group,
      • a C1-3-alkyl-carbonyl or an arylcarbonyl group,
      • a carboxy-C1-3-alkyl, C1-3-alkyloxy-carbonyl-C1-3-alkyl, cyano-C1-3-alkyl, aminocarbonyl-C1-3-alkyl, C1-3-alkyl-aminocarbonyl-C1-3-alkyl, di-(C1-3-alkyl)-aminocarbonyl-C1-3-alkyl, pyrrolidin-1-yl-carbonyl-C1-3-alkyl, piperidin-1-yl-carbonyl-C1-3-alkyl, morpholin-4-yl-carbonyl-C1-3-alkyl, piperazin-1-yl-carbonyl-C1-3-alkyl or 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl-C1-3-alkyl group,
      • a carboxy-C1-3-alkyloxy, C1-3-alkyloxy-carbonyl-C1-3-alkyloxy, cyano-C1-3-alkyloxy, aminocarbonyl-C1-3-alkyloxy, C1-3-alkyl-aminocarbonyl-C1-3-alkyloxy, di-(C1-3-alkyl)-aminocarbonyl-C1-3-alkyloxy, pyrrolidin-1-yl-carbonyl-C1-3-alkyloxy, piperidin-1-yl-carbonyl-C1-3-alkyloxy, morpholin-4-yl-carbonyl-C1-3-alkyloxy, piperazin-1-yl-carbonyl-C1-3-alkyloxy or 4-(C1-3-alkyl)-piperazin-1-yl-carbonyl-C1-3-alkyloxy group,
      • a hydroxy-C1-3-alkyl, C1-3-alkyloxy-C1-3-alkyl, amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl, di-(C1-3-alkyl)-amino-C1-3-alkyl, pyrrolidin-1-yl-C1-3-alkyl, piperidin-1-yl-C1-3-alkyl, morpholin-4-yl-C1-3-alkyl, piperazin-1-yl-C1-3-alkyl or 4-(C1-3-alkyl)-piperazin-1-yl-C1-3-alkyl group,
      • a hydroxy-C1-3-alkyloxy, C1-3-alkyloxy-C1-3-alkyloxy, C1-3-alkylsulphanyl-C1-3-alkyloxy, C1-3-alkylsulphinyl-C1-3-alkyloxy, C1-3-alkylsulphonyl-C1-3-alkyloxy, amino-C1-3-alkyloxy, C1-3-alkylamino-C1-3-alkyloxy, di-(C1-3-alkyl)-amino-C1-3-alkyloxy, pyrrolidin-1-yl-C1-3-alkyloxy, piperidin-1-yl-C1-3-alkyloxy, morpholin-4-yl-C1-3-alkyloxy, piperazin-1-yl-C1-3-alkyloxy or 4-(C1-3-alkyl)-piperazin-1-yl-C1-3-alkyloxy group,
      • a mercapto, C1-3-alkylsulphanyl, C1-3-alkysulphinyl, C1-3-alkylsulphonyl, C1-3-alkylsulphonyloxy, arylsulphonyloxy, trifluoromethylsulphanyl, trifluoromethylsulphinyl or trifluoromethylsulphonyl group,
      • a sulpho, aminosulphonyl, C1-3-alkyl-aminosulphonyl, di-(C1-3-alkyl)-aminosulphonyl, pyrrolidin-1-yl-sulphonyl, piperidin-1-yl-sulphonyl, morpholin-4-yl-sulphonyl, piperazin-1-yl-sulphonyl or 4-(C1-3-alkyl)-piperazin-1-yl-sulphonyl group,
      • a methyl or methoxy group substituted by 1 to 3 fluorine atoms,
      • an ethyl or ethoxy group substituted by 1 to 5 fluorine atoms,
      • a C2-4-alkenyl or C2-4-alkynyl group,
      • a C3-4-alkenyloxy or C3-4-alkynyloxy group,
      • a C3-6-cycloalkyl or C3-6-Cycloalkyloxy group,
      • a C3-6-cycloalkyl-C1-3-alkyl or C3-6-cycloalkyl-C1-3-alkyloxy group or
      • an aryl, aryloxy, aryl-C1-3-alkyl or aryl-C1-3-alkyloxy group,
      • R11 and R12, which may be identical or different, in each case represent a hydrogen atom, a fluorine, chlorine, bromine or iodine atom, a C1-3-alkyl, trifluoromethyl, hydroxy, C1-3-alkyloxy or cyano group, or
      • R11 together with R12, if these are bound to adjacent carbon atoms, also denotes a methylenedioxy, difluoromethylenedioxy, ethylenedioxy or a straight-chain C3-5-alkylene group and
      • R13 denotes a hydrogen atom, a fluorine, chlorine or bromine atom, a trifluoromethyl, C1-3-alkyl or C1-3-alkyloxy group,


        R2 denotes a hydrogen, fluorine or chlorine atom,


        a C1-6-alkyl group,


        a C2-4-alkenyl group,


        a C3-4-alkynyl group,


        a C3-6-cycloalkyl group,


        a C3-6-cycloalkyl-C1-3-alkyl group,


        a tetrahydrofuran-3-yl, tetrahydropyran-3-yl, tetrahydropyran-4-yl, tetrahydrofuranylmethyl or tetrahydropyranylmethyl group,


        an aryl group,


        an aryl-C1-4-alkyl group,


        an aryl-C2-3-alkenyl group,


        an arylcarbonyl group,


        an arylcarbonyl-C1-2-alkyl group,


        a heteroaryl group,


        a heteroaryl-C1-3-alkyl group,


        a furanylcarbonyl, thienylcarbonyl, thiazolylcarbonyl or pyridylcarbonyl group,


        a furanylcarbonylmethyl, thienylcarbonylmethyl, thiazolylcarbonylmethyl or pyridylcarbonylmethyl group,


        a C1-4-alkyl-carbonyl group,


        a C1-4-alkyl-carbonyl-C1-2-alkyl group,


        a C3-6-cycloalkyl-carbonyl group,


        a C3-6-cycloalkyl-carbonyl-C1-2-alkyl group,


        an aryl-A or aryl-A-C1-3-alkyl group, where A denotes an oxygen or sulphur atom, an imino, C1-3-alkylimino, sulphinyl or sulphonyl group,


        a group Rb, where

    • Rb denotes a cyano, carboxy, C1-3-alkyloxy-carbonyl, aminocarbonyl, C1-3-alkylamino-carbonyl, di-(C1-3-alkyl)-amino-carbonyl, pyrrolidin-1-ylcarbonyl, piperidin-1-ylcarbonyl, morpholin-4-ylcarbonyl, piperazin-1-ylcarbonyl, 4-methylpiperazin-1-ylcarbonyl, 4-ethylpiperazin-1-ylcarbonyl, hydroxy, mercapto, C1-3-alkyloxy, C1-3-alkylsulphenyl, C1-3-alkylsulphinyl, C1-3-alkylsulphonyl, amino, C1-3-alkylamino, di-(C1-3-alkyl)-amino, pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, piperazin-1-yl, 4-methyl-piperazin-1-yl or 4-ethyl-piperazin-1-yl group,


      or a C1-4-alkyl group substituted by a group Rb, where Rb is as hereinbefore defined,


      Y denotes a nitrogen atom or a group of formula C—R5,

    • while R5 is defined like R2 and in each case one of the two groups R2 and R5 must be a hydrogen atom or a C1-3-alkyl group,


      R3 denotes a C3-8-alkyl group,


      a C1-3-alkyl group substituted by a group Rc, where

    • Rc denotes a C3-7-cycloalkyl group optionally substituted by one or two C1-3-alkyl groups,

    • a C5-7-cycloalkenyl group optionally substituted by one or two C1-3-alkyl groups,

    • an aryl group or

    • a furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyridazinyl, pyrimidyl or pyrazinyl group, while the above mentioned heterocyclic groups may each be substituted by one or two C1-3-alkyl groups or by a fluorine, chlorine, bromine or iodine atom or by a trifluoromethyl, cyano or C1-3-alkyloxy group,


      a C3-8-alkenyl group,


      a C3-6-alkenyl group substituted by a fluorine, chlorine or bromine atom or by a trifluoromethyl group,


      a C3-8-alkynyl group,


      an aryl group or


      an aryl-C2-4-alkenyl group,


      and


      R4 denotes an azetidin-1-yl or pyrrolidin-1-yl group which is substituted in the 3 position by an amino, C1-3-alkylamino or a di-(C1-3-alkyl)amino group and may additionally be substituted by one or two C1-3-alkyl groups,


      a piperidin-1-yl or hexahydroazepin-1-yl group which is substituted in the 3 position or in the 4 position by an amino, C1-3-alkylamino or a di-(C1-3-alkyl)amino group and may additionally be substituted by one or two C1-3-alkyl groups,


      a 3-amino-piperidin-1-yl group wherein the piperidin-1-yl moiety is additionally substituted by an aminocarbonyl, C1-2-alkyl-aminocarbonyl, di-(C1-2-alkyl)aminocarbonyl, pyrrolidin-1-yl-carbonyl, (2-cyano-pyrrolidin-1-yl-)carbonyl, thiazolidin-3-yl-carbonyl, (4-cyano-thiazolidin-3-yl)carbonyl, piperidin-1-ylcarbonyl or morpholin-4-ylcarbonyl group,


      a 3-amino-piperidin-1-yl group wherein the piperidin-1-yl moiety in the 4 position or in the 5 position is additionally substituted by a hydroxy or methoxy group,


      a 3-amino-piperidin-1-yl group wherein the methylene group in the 2 position or in the 6 position is replaced by a carbonyl group,


      a piperidin-1-yl or hexahydroazepin-1-yl group substituted in the 3 position by an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino-group, wherein in each case two hydrogen atoms on the carbon skeleton of the piperidin-1-yl or hexahydroazepin-1-yl-group are replaced by a straight-chain alkylene bridge, this bridge containing 2 to 5 carbon atoms if the two hydrogen atoms are located on the same carbon atom, or 1 to 4 carbon atoms, if the hydrogen atoms are located on adjacent carbon atoms, or 1 to 4 carbon atoms, if the hydrogen atoms are located on carbon atoms which are separated by one atom, or 1 to 3 carbon atoms if the two hydrogen atoms are located on carbon atoms separated by two atoms,


      an azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl or hexahydroazepin-1-yl group which is substituted by an amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl or a di-(C1-3-alkyl)-amino-C1-3-alkyl group,


      a piperazin-1-yl or [1,4]diazepan-1-yl group optionally substituted at the carbon skeleton by one or two C1-3-alkyl groups,


      a 3-imino-piperazin-1-yl, 3-imino-[1,4]diazepan-1-yl or 5-imino-[1,4]diazepan-1-yl group optionally substituted at the carbon skeleton by one or two C1-3-alkyl groups,


      a [1,4]diazepan-1-yl group optionally substituted by one or two C1-3-alkyl groups, which is substituted in the 6 position by an amino group,


      a C3-7-cycloalkyl group which is substituted by an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino group,


      a C3-7-cycloalkyl group which is substituted by an amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl or a di-(C1-3-alkyl)amino-C1-3-alkyl group,


      a C3-7-cycloalkyl-C1-2-alkyl group wherein the cycloalkyl moiety is substituted by an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino group,


      a C3-7-cycloalkyl-C1-2-alkyl group wherein the cycloalkyl moiety is substituted by an amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl or a di-(C1-3-alkyl)amino-C1-3-alkyl group,


      a C3-7-cycloalkylamino group wherein the cycloalkyl moiety is substituted by an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino group, while the two nitrogen atoms at the cycloalkyl moiety are separated from one another by at least two carbon atoms,


      an N—(C3-7-cycloalkyl)-N—(C1-3-alkyl)-amino group wherein the cycloalkyl moiety is substituted by an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino group, while the two nitrogen atoms at the cycloalkyl moiety are separated from one another by at least two carbon atoms,


      a C3-7-cycloalkylamino group wherein the cycloalkyl moiety is substituted by an amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl or a di-(C1-3-alkyl)amino-C1-3-alkyl group,


      an N—(C3-7-cycloalkyl)-N—(C1-3-alkyl)-amino group wherein the cycloalkyl moiety is substituted by an amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl or a di-(C1-3-alkyl)amino-C1-3-alkyl group,


      a C3-7-cycloalkyl-C1-2-alkyl-amino group wherein the cycloalkyl moiety is substituted by an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino group,


      an N—(C3-7-cycloalkyl-C1-2-alkyl)-N—(C1-2-alkyl)-amino group wherein the cycloalkyl moiety is substituted by an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino group,


      a C3-7-cycloalkyl-C1-2-alkyl-amino group wherein the cycloalkyl moiety is substituted by an amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl or a di-(C1-3-alkyl)amino-C1-3-alkyl group,


      an N—(C3-7-cycloalkyl-C1-2-alkyl)-N—(C1-2-alkyl)-amino group wherein the cycloalkyl moiety is substituted by an amino-C1-3-alkyl, C1-3-alkylamino-C1-3-alkyl or a di-(C1-3-alkyl)amino-C1-3-alkyl group,


      a R19—C2-4-alkylamino group wherein R19 is separated from the nitrogen atom of the C2-4-alkylamino moiety by at least two carbon atoms and

    • R19 denotes an amino, C1-3-alkylamino or di-(C1-3-alkyl)-amino group,


      an R19—C2-4-alkylamino group wherein the nitrogen atom of the C2-4-alkylamino moiety is substituted by a C1-3-alkyl group and R19 is separated from the nitrogen atom of the C2-4-alkylamino moiety by at least two carbon atoms, while R19 is as hereinbefore defined,


      an amino group substituted by the group R20 wherein

    • R20 denotes an azetidin-3-yl, azetidin-2-ylmethyl, azetidin-3-ylmethyl, pyrrolidin-3-yl, pyrrolidin-2-ylmethyl, pyrrolidin-3-ylmethyl, piperidin-3-yl, piperidin-4-yl, piperidin-2-ylmethyl, piperidin-3-ylmethyl or piperidin-4-ylmethyl group, while the groups mentioned for R20 may each be substituted by one or two C1-3-alkyl groups,


      an amino group substituted by the group R20 and a C1-3-alkyl group wherein R20 is as hereinbefore defined, while the groups mentioned for R20 may each be substituted by one or two C1-3-alkyl groups,


      an R19—C3-4-alkyl group wherein the C3-4-alkyl moiety is straight-chained and may additionally be substituted by one or two C1-3-alkyl groups, while R19 is as hereinbefore defined,


      a 3-amino-2-oxo-piperidin-5-yl or 3-amino-2-oxo-1-methyl-piperidin-5-yl group,


      a pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, hexahydroazepin-3-yl or hexahydroazepin-4-yl group which is substituted in the 1 position by an amino, C1-3-alkylamino or di-(C1-3-alkyl)amino group,


      or an azetidin-2-yl-C1-2-alkyl, azetidin-3-yl-C1-2-alkyl, pyrrolidin-2-yl-C1-2-alkyl, pyrrolidin-3-yl, pyrrolidin-3-yl-C1-2-alkyl, piperidin-2-yl-C1-2-alkyl, piperidin-3-yl, piperidin-3-yl-C1-2-alkyl, piperidin-4-yl or piperidin-4-yl-C1-2-alkyl group, while the above mentioned groups may each be substituted by one or two C1-3-alkyl groups,


      while by the aryl groups mentioned in the definition of the above groups are meant phenyl or naphthyl groups which may be mono- or disubstituted by Rh, while the substituents may be identical or different and Rh denotes a fluorine, chlorine, bromine or iodine atom, a trifluoromethyl, cyano, nitro, amino, aminocarbonyl, aminosulphonyl, methylsulphonyl, acetylamino, methylsulphonylamino, C1-3-alkyl, cyclopropyl, ethenyl, ethynyl, hydroxy, C1-3-alkyloxy, difluoromethoxy or trifluoromethoxy group,


      by the heteroaryl groups mentioned in the definition of the above groups are meant a pyrrolyl, furanyl, thienyl, pyridyl, indolyl, benzofuranyl, benzothiophenyl, quinolinyl or isoquinolinyl group,


      or a pyrrolyl, furanyl, thienyl or pyridyl group, wherein one or two methyne groups are replaced by nitrogen atoms,


      or an indolyl, benzofuranyl, benzothiophenyl, quinolinyl or isoquinolinyl group, wherein one to three methyne groups are replaced by nitrogen atoms,

    • and the above mentioned heteroaryl groups may be mono- or disubstituted by Rh, while the substituents may be identical or different and Rh is as hereinbefore defined,


      while, unless otherwise stated, the above mentioned alkyl, alkenyl and alkynyl groups may be straight-chain or branched,


      and the hydrogen atoms of the methyl or ethyl groups contained in the definitions may be wholly or partly replaced by fluorine atoms,


      the tautomers, enantiomers, diastereomers, the mixtures thereof, the prodrugs thereof and the salts thereof.





Compounds of the above general formula I which contain one or more groups that can be cleaved in vivo are so-called prodrugs.


The carboxy groups mentioned in the definition of the above mentioned groups may be replaced by a group which can be converted into a carboxy group in vivo or by a group which is negatively charged under physiological conditions,


and furthermore the amino and imino groups mentioned in the definition of the above mentioned groups may be substituted by a group which can be cleaved in vivo. Such groups are described for example in WO 98/46576 and by N. M. Nielsen et al. in International Journal of Pharmaceutics 39, 75-85 (1987).


By a group which can be converted in vivo into a carboxy group is meant, for example, a hydroxymethyl group, a carboxy group esterified with an alcohol wherein the alcohol moiety is preferably a C1-6-alkanol, a phenyl-C1-3-alkanol, a C3-9-cycloalkanol, while a C5-8-cycloalkanol may additionally be substituted by one or two C1-3-alkyl groups, a C5-8-cycloalkanol wherein a methylene group in the 3 or 4 position is replaced by an oxygen atom or by an imino group optionally substituted by a C1-3-alkyl, phenyl-C1-3-alkyl, phenyl-C1-3-alkyloxycarbonyl or C2-6-alkanoyl group and the cycloalkanol moiety may additionally be substituted by one or two C1-3-alkyl groups, a C4-7-cycloalkenol, a C3-5-alkenol, a phenyl-C3-5-alkenol, a C3-5-alkynol or phenyl-C3-5-alkynol with the proviso that no bonds to the oxygen atom start from a carbon atom which carries a double or triple bond, a C3-8-cycloalkyl-C1-3-alkanol, a bicycloalkanol with a total of 8 to 10 carbon atoms which may additionally be substituted in the bicycloalkyl moiety by one or two C1-3-alkyl groups, a 1,3-dihydro-3-oxo-1-isobenzofuranol or an alcohol of formula

Rp—CO—O—(RqCRr)—OH,

wherein

    • Rp denotes a C1-8-alkyl, C5-7-cycloalkyl, C1-8-alkyloxy, C5-7-cycloalkyloxy, phenyl or phenyl-C1-3-alkyl group,
    • Rq denotes a hydrogen atom, a C1-3-alkyl, C5-7-cycloalkyl or phenyl group and
    • Rr denotes a hydrogen atom or a C1-3-alkyl group,


      by a group which is negatively charged under physiological conditions is meant, for example, a tetrazol-5-yl, phenylcarbonylaminocarbonyl, trifluoromethylcarbonylaminocarbonyl, C1-6-alkylsulphonylamino, phenylsulphonylamino, benzylsulphonylamino, trifluoromethyl-sulphonylamino, C1-6-alkylsulphonylaminocarbonyl, phenylsulphonylaminocarbonyl, benzylsulphonylaminocarbonyl or perfluoro-C1-6-alkylsulphonylaminocarbonyl group


      and by a group which can be cleaved in vivo from an imino or amino group is meant, for example, a hydroxy group, an acyl group such as a phenylcarbonyl group optionally mono- or disubstituted by fluorine, chlorine, bromine or iodine atoms, by C1-3-alkyl or C1-3-alkyloxy groups, while the substituents may be identical or different, a pyridinoyl group or a C1-16-alkanoyl group such as the formyl, acetyl, propionyl, butanoyl, pentanoyl or hexanoyl group, a 3,3,3-trichloropropionyl or allyloxycarbonyl group, a C1-16-alkyloxycarbonyl or C1-6-alkylcarbonyloxy group, wherein hydrogen atoms may be wholly or partially replaced by fluorine or chlorine atoms such as the methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, tert.butoxycarbonyl, pentoxycarbonyl, hexoxycarbonyl, octyloxycarbonyl, nonyloxycarbonyl, decyloxycarbonyl, undecyloxycarbonyl, dodecyloxycarbonyl, hexadecyloxycarbonyl, methylcarbonyloxy, ethylcarbonyloxy, 2,2,2-trichloroethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, butylcarbonyloxy, tert.butylcarbonyloxy, pentylcarbonyloxy, hexylcarbonyloxy, octylcarbonyloxy, nonylcarbonyloxy, decylcarbonyloxy, undecylcarbonyloxy, dodecylcarbonyloxy or hexadecylcarbonyloxy group, a phenyl-C1-6-alkyloxycarbonyl group such as the benzyloxycarbonyl, phenylethoxycarbonyl or phenylpropoxycarbonyl group, a 3-amino-propionyl group wherein the amino group may be mono- or disubstituted by C1-6-alkyl or C3-7-cycloalkyl groups and the substituents may be identical or different, a C1-3-alkylsulphonyl-C2-4-alkyloxycarbonyl, C1-3-alkyloxy-C2-4-alkyloxy-C2-4-alkyloxycarbonyl, Rp—CO—O—(RqCRr)—O—CO, C1-6-alkyl-CO—NH—(RsCRt)—O—CO or C1-6-alkyl-CO—O—(RsCRt)—(RsCRt)—O—CO group, wherein Rp to Rr are as hereinbefore defined,
    • Rs, and Rt, which may be identical or different, denote hydrogen atoms or C1-3-alkyl groups.


Moreover, the saturated alkyl and alkyloxy moieties which contain more than 2 carbon atoms mentioned in the foregoing definitions and those that follow, unless otherwise stated, also include the branched isomers thereof such as, for example, the isopropyl, tert.butyl, isobutyl group, etc.


Preferred compounds of the above general formula I are those wherein


R1 denotes a methyl group substituted by a group Ra, where






    • Ra denotes a 3,4-dihydro-quinolinyl group,

    • a 3,4-dihydro-isoquinolinyl group,

    • a 1,4-dihydro-quinazolinyl or 4-oxo-1,4-dihydro-quinazolinyl group,

    • a 3,4-dihydro-quinazolinyl or 4-oxo-3,4-dihydro-quinazolinyl group,

    • a 1H-benzo[d][1,2]oxazinyl or 1-oxo-1H-benzo[d][1,2]oxazinyl group,

    • a 4H-benzo[e][1,3]oxazinyl or 4-oxo-4H-benzo[e][1,3]oxazinyl group,

    • a 4H-benzo[d][1,3]oxazinyl or 4-oxo-4H-benzo[d][1,3]oxazinyl group,

    • a 2H-benzo[1,4]oxazinyl or 2-oxo-2H-benzo[1,4]oxazinyl group,

    • a 4H-benzo[e][1,3]thiazinyl or 4-oxo-4H-benzo[e][1,3]thiazinyl group,

    • a 4H-benzo[d][1,3]thiazinyl or 2H-benzo[1,4]thiazinyl group,

    • a 2-oxo-2H-benzo[e][1,3]oxazinyl or 2,2-dioxo-1H-benzo[c][1,2]thiazinyl group,

    • a 2,3-dihydro-1H-benzo[e][1,4]diazepinyl or 2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepinyl group,

    • a 4,5-dihydro-3H-benzo[b][1,4]diazepinyl or 4-oxo-4,5-dihydro-3H-benzo[b][1,4]diazepinyl group,

    • a 5-oxo-4,5-dihydro-3H-benzo[e][1,4]diazepinyl group,

    • a 2,3-dihydro-benzo[f][1,4]oxazepinyl or 2,3-dihydro-benzo[b][1,4]oxazepinyl group,

    • a 2,3-dihydro-benzo[f][1,4]thiazepinyl or 2,3-dihydro-benzo[b][1,4]thiazepinyl group,

    • a 5-oxo-4,5-dihydro-benzo[f][1,3,4]oxadiazepinyl group,

    • a 11H-dibenzo[b,e]azepinyl or 11-oxo-11H-dibenzo[b,e]azepinyl group,

    • a 11H-benzo[e]pyrido[3,2-b]azepinyl or a 5H-1,9,10-triaza-dibenzo[a,d]cycloheptenyl group,

    • a 5H-dibenzo[b,e][1,4]diazepinyl or dibenzo[b,f][1,4]oxazepinyl group,

    • a dibenzo[b,f][1,4]thiazepinyl, 5-oxo-dibenzo[b,f][1,4]thiazepinyl or 5,5-dioxo-dibenzo[b,f][1,4]thiazepinyl group,

    • a 5H-dibenzo[a,d]cycloheptenyl or 5H-dibenzo[b,f]azepinyl group,

    • a phenanthridinyl, benzo[c][1,5]naphthyridinyl, benzo[h][1,6]naphthyridinyl, benzo[c][1,8]naphthyridinyl, benzo[f][1,7]naphthyridinyl or 1,5,9-triaza-phenanthrenyl group,

    • a 1,2,3,4-tetrahydro-phenanthridinyl, 1,2,3,4,4a,10b-hexahydro-phenanthridinyl, 2,3-dihydro-1H-4-aza-cyclopenta[a]naphthyl or 8,9,10,11-tetrahydro-7H-6-aza-cyclohepta[a]naphthyl group,

    • a 2,3-dihydro-1H-4-oxa-10-aza-phenanthrenyl or 1-oxo-2,3-dihydro-1H-4-oxa-10-aza-phenanthrenyl group,

    • a phenanthrenyl, benzo[h]quinolinyl, benzo[f]quinolinyl or benzo[f]quinoxalinyl group,

    • a 5H-benzo[e]pyrrolo[1,2-a][1,4]diazepinyl, thieno[3,2-b][1,4]benzoxazepinyl, 5H-dibenzo[d,f][1,3]diazepinyl or 5-oxa-7-aza-dibenzo[a,c]cycloheptenyl group,

    • a naphtho[1,2-d]oxazolyl, naphtho[2,1-d]oxazolyl, naphtho[1,2-d]thiazolyl, naphtho[2,1-d]thiazolyl, naphtho[1,2-d]imidazolyl, naphtho[1,2-b]furanyl or naphtho[2,1-b]furanyl group,

    • or a furo[3,2-c]isoquinolinyl, pyrazolo[1,5-c]quinazolinyl or 1H-perimidinyl group,

    • while the benzo groups of the above mentioned radicals Ra are substituted by the groups R10 to R13 and the alkylene units of the above mentioned groups Ra may be substituted by one or two fluorine atoms or one or two C1-3-alkyl or C1-3-alkyloxy-carbonyl groups and the imino groups of the above mentioned radicals Ra may be substituted by a C1-3-alkyl group and
      • R10 denotes a hydrogen atom,
      • a fluorine, chlorine, bromine or iodine atom,
      • a C1-3-alkyl or cyclopropyl group,
      • a hydroxy, C1-3-alkyloxy or cyclopropyloxy group,
      • a nitro, amino, C1-3-alkylamino or di-(C1-3-alkyl)amino group,
      • a C1-3-alkyl-carbonylamino or C1-3-alkyl-sulphonylamino group,
      • a cyano, carboxy, C1-3-alkyloxy-carbonyl, aminocarbonyl, C1-3-alkyl-aminocarbonyl or di-(C1-3-alkyl)-aminocarbonyl group,
      • a mercapto, C1-3-alkylsulphanyl, C1-3-alkysulphinyl, C1-3-alkylsulphonyl or aminosulphonyl group or
      • a difluoromethyl, trifluoromethyl, difluoromethoxy or trifluoromethoxy group and
      • R11, R12 and R13, which may be identical or different, in each case represent a hydrogen atom, a fluorine, chlorine or bromine atom, a methyl, trifluoromethyl or methoxy group,


        R2 denotes a hydrogen atom or


        a C1-3-alkyl, cyclopropyl, trifluoromethyl, cyanomethyl or 2-cyano-ethyl group,


        Y denotes a nitrogen atom or a group of formula C—R5,

    • while R5 denotes a hydrogen atom or a C1-3-alkyl group,


      R3 denotes a 2-buten-1-yl or 3-methyl-2-buten-1-yl group,


      a 1-buten-1-yl group,


      a 2-butyn-1-yl group or


      a 1-cyclopenten-1-ylmethyl group


      and


      R4 denotes a (3-amino-piperidin-1-yl) group,


      while, unless otherwise stated, the above mentioned alkyl groups may be straight-chain or branched,


      the tautomers, enantiomers, diastereomers, the mixtures thereof and the salts thereof.





Particularly preferred are those compounds of the above general formula I wherein


R1 denotes a methyl group substituted by a group Ra, where






    • Ra denotes a 3,4-dihydro-quinolin-2-yl group,

    • a 3,4-dihydro-isoquinolin-1-yl group,

    • a 1,4-dihydro-quinazolin-2-yl or 4-oxo-1,4-dihydro-quinazolin-2-yl group,

    • a 3,4-dihydro-quinazolin-2-yl or 4-oxo-3,4-dihydro-quinazolin-2-yl group,

    • a 1H-benzo[d][1,2]oxazin-4-yl or 1-oxo-1H-benzo[d][1,2]oxazin-4-yl group,

    • a 4H-benzo[e][1,3]oxazin-2-yl or 4-oxo-4H-benzo[e][1,3]oxazin-2-yl group,

    • a 4H-benzo[d][1,3]oxazin-2-yl or 4-oxo-4H-benzo[d][1,3]oxazin-2-yl group,

    • a 2H-benzo[1,4]oxazin-3-yl or 2-oxo-2H-benzo[1,4]oxazin-3-yl group,

    • a 4H-benzo[e][1,3]thiazin-2-yl or 4-oxo-4H-benzo[e][1,3]thiazin-2-yl group,

    • a 4H-benzo[d][1,3]thiazin-2-yl or 2H-benzo[1,4]thiazin-3-yl group,

    • a 2-oxo-2H-benzo[e][1,3]oxazin-4-yl or 2,2-dioxo-1H-benzo[c][1,2]thiazin-4-yl group,

    • a 2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl or 2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl group,

    • a 4,5-dihydro-3H-benzo[b][1,4]diazepin-2-yl or 4-oxo-4,5-dihydro-3H-benzo[b][1,4]diazepin-2-yl group,

    • a 5-oxo-4,5-dihydro-3H-benzo[e][1,4]diazepin-2-yl group,

    • a 2,3-dihydro-benzo[f][1,4]oxazepin-5-yl or 2,3-dihydro-benzo[b][1,4]oxazepin-4-yl group,

    • a 2,3-dihydro-benzo[f][1,4]thiazepin-5-yl or 2,3-dihydro-benzo[b][1,4]thiazepin-4-yl group,

    • a 5-oxo-4,5-dihydro-benzo[f][1,3,4]oxadiazepin-2-yl group,

    • a 11H-dibenzo[b,e]azepin-6-yl or 11-oxo-11H-dibenzo[b,e]azepin-6-yl group,

    • a 11H-benzo[e]pyrido[3,2-b]azepin-6-yl or a 5H-1,9,10-triaza-dibenzo[a,d]-cyclohepten-11-yl group,

    • a 5H-dibenzo[b,e][1,4]diazepin-11-yl or dibenzo[b,f][1,4]oxazepin-11-yl group,

    • a dibenzo[b,f][1,4]thiazepin-11-yl, 5-oxo-dibenzo[b,f][1,4]thiazepin-11-yl or 5,5-dioxo-dibenzo[b,f][1,4]thiazepin-11-yl group,

    • a 5H-dibenzo[a,d]cyclohepten-10-yl or 5H-dibenzo[b,f]azepin-10-yl group,

    • a phenanthridin-6-yl, benzo[c][1,5]naphthyridin-6-yl, benzo[h][1,6]naphthyridin-5-yl, benzo[c][1,8]naphthyridin-6-yl, benzo[f][1,7]naphthyridin-5-yl or 1,5,9-triaza-phenanthren-10-yl group,

    • a 1,2,3,4-tetrahydro-phenanthridin-6-yl, 1,2,3,4,4a,10b-hexahydro-phenanthridin-6-yl, 2,3-dihydro-1H-4-aza-cyclopenta[a]naphth-5-yl or 8,9,10,11-tetrahydro-7H-6-aza-cyclohepta[a]naphth-5-yl group,

    • a 2,3-dihydro-1H-4-oxa-10-aza-phenanthren-9-yl or 1-oxo-2,3-dihydro-1H-4-oxa-10-aza-phenanthren-9-yl group,

    • a phenanthren-9-yl, benzo[h]quinolin-6-yl, benzo[f]quinolin-6-yl or benzo[f]quinoxalin-6-yl group,

    • a 5H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-11-yl, thieno[3,2-b][1,4]benzoxazepin-9-yl, 5H-dibenzo[d,f][1,3]diazepin-6-yl or 5-oxa-7-aza-dibenzo[a,c]cyclohepten-6-yl group,

    • a naphtho[1,2-d]oxazol-2-yl, naphtho[2,1-d]oxazol-2-yl, naphtho[1,2-d]thiazol-2-yl, naphtho[2,1-d]thiazol-2-yl, naphtho[1,2-d]imidazol-2-yl, naphtho[1,2-b]furan-2-yl or naphtho[2,1-b]furan-2-yl group,

    • or a furo[3,2-c]isoquinolin-5-yl, pyrazolo[1,5-c]quinazolin-5-yl or 1H-perimidin-2-yl group,

    • while the benzo groups of the above mentioned radicals Ra are substituted by the groups R10 to R13 and the alkylene units of the above mentioned groups Ra may be substituted by one or two fluorine atoms or one or two methyl groups and the imino groups of the above mentioned radicals Ra may be substituted by a methyl group and
      • R10 denotes a hydrogen atom,
      • a fluorine, chlorine, bromine or iodine atom,
      • a methyl or ethyl group,
      • a hydroxy, methoxy or ethoxy group or
      • a difluoromethyl, trifluoromethyl, difluoromethoxy, or trifluoromethoxy group and
      • R11, R12 and R13, which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom or a methyl, trifluoromethyl or methoxy group,


        R2 denotes a hydrogen atom or


        a methyl, cyanomethyl, trifluoromethyl, ethyl, 2-cyano-ethyl, propyl, cyclopropyl or isopropyl group,


        Y denotes a nitrogen atom or a group of formula C—R5,

    • while R5 denotes a hydrogen atom or a methyl, ethyl, propyl or isopropyl group,


      R3 denotes a 2-buten-1-yl or 3-methyl-2-buten-1-yl group,


      a 1-buten-1-yl group,


      a 2-butyn-1-yl group or


      a 1-cyclopenten-1-ylmethyl group


      and


      R4 denotes a (3-amino-piperidin-1-yl) group,


      the tautomers, enantiomers, diastereomers, the mixtures thereof and the salts thereof.





Most particularly preferred are those compounds of the above general formula I wherein


R1 denotes a 4-oxo-3,4-dihydro-quinazolin-2-ylmethyl group,


a dibenzo[b,f][1,4]oxazepin-11-ylmethyl group,


a phenanthridin-6-ylmethyl group,


a phenanthren-9-ylmethyl group or


a naphtho[1,2-d]oxazol-2-ylmethyl or naphtho[2,1-d]oxazol-2-ylmethyl group,


R2 denotes a hydrogen atom or a methyl group,


Y denotes a nitrogen atom,


R3 denotes a 2-butyn-1-yl group


and


R4 denotes a (3-amino-piperidin-1-yl) group,


the tautomers, enantiomers, diastereomers, the mixtures thereof and the salts thereof.


The following compounds of general formula I deserve special mention:

  • (1) 2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


  • (2) 2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(phenanthridin-6-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (3) 2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(phenanthren-9-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (4) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(phenanthridin-6-yl)methyl]-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (5) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (6) 2-((S)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (7) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (8) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(naphtho[2,1-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (9) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(naphtho[1,2-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image


  • (10) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(4-oxo-3,4-dihydro-quinazolin-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one





embedded image



the enantiomers, the mixtures thereof and the salts thereof.


According to the invention the compounds of general formula I are obtained by methods known per se, for example by the following methods:


a) deprotecting a compound of general formula




embedded image



wherein R1, R2, Y and R3 are as hereinbefore defined and


R4″ denotes one of the groups mentioned for R4 hereinbefore which contain an imino, amino or alkylamino group, while the imino, amino or alkylamino group is substituted by a protective group.


The liberating of an amino group from a protected precursor is a standard reaction in synthetic organic chemistry. There are many examples of suitable protective groups. A summary of the chemistry of protective groups can be found in Theodora W. Greene and Peter G. M. Wuts, Protective Groups in Organic Synthesis, Second Edition, 1991, published by John Wiley and Sons, and in Philip J. Kocienski, Protecting Groups, published by Georg Thieme, 1994.


The following are examples of protective groups:


the tert.-butyloxycarbonyl group which can be cleaved by treating with an acid such as for example trifluoroacetic acid or hydrochloric acid or by treating with bromotrimethylsilane or iodotrimethylsilane, optionally using a solvent such as methylene chloride, ethyl acetate, dioxane, methanol, isopropanol or diethylether at temperatures between 0° C. and 80° C.,


the 2,2,2-trichloroethoxycarbonyl group which can be cleaved by treating with metals such as for example zinc or cadmium in a solvent such as acetic acid or a mixture of tetrahydrofuran and a weak aqueous acid at temperatures between 0° C. and the boiling temperature of the solvent used and


the carbobenzyloxycarbonyl group which can be cleaved for example by hydrogenolysis in the presence of a noble metal catalyst such as for example palladium-charcoal and a solvent such as for example alcohols, ethyl acetate, dioxane, tetrahydrofuran or mixtures of these solvents at temperatures between 0° C. and the boiling point of the solvent, by treating with boron tribromide in methylene chloride at temperatures between −20° C. and ambient temperature, or by treating with aluminium chloride/anisol at temperatures between 0° C. and ambient temperature.


Moreover, the compounds of general formula I obtained may be resolved into their enantiomers and/or diastereomers, as mentioned hereinbefore. Thus, for example, cis/trans mixtures may be resolved into their cis and trans isomers, and compounds with at least one stereocentre may be separated into their enantiomers.


Thus, for example, the cis/trans mixtures obtained may be resolved by chromatography into the cis and trans isomers thereof, the compounds of general formula I obtained which occur as racemates may be separated by methods known per se (cf. Allinger N. L. and Eliel E. L. in “Topics in Stereochemistry”, Vol. 6, Wiley Interscience, 1971) into their optical antipodes and compounds of general formula I with at least 2 asymmetric carbon atoms may be resolved into their diastereomers on the basis of their physical-chemical differences using methods known per se, e.g. by chromatography and/or fractional crystallisation, and, if these compounds are obtained in racemic form, they may subsequently be resolved into the enantiomers as mentioned above.


The enantiomers are preferably separated by column separation on chiral phases or by recrystallisation from an optically active solvent or by reacting with an optically active substance which forms salts or derivatives such as e.g. esters or amides with the racemic compound, particularly acids and the activated derivatives or alcohols thereof, and separating the diastereomeric mixture of salts or derivatives thus obtained, e.g. on the basis of their differences in solubility, whilst the free antipodes may be released from the pure diastereomeric salts or derivatives by the action of suitable agents. Optically active acids in common use are e.g. the D- and L-forms of tartaric acid or dibenzoyltartaric acid, di-O-p-toluoyltartaric acid, malic acid, mandelic acid, camphorsulphonic acid, glutamic acid, aspartic acid or quinic acid. An optically active alcohol may be for example (+)- or (−)-menthol and an optically active acyl group in amides, for example, may be a (+)- or (−)-menthyloxycarbonyl.


Furthermore, the compounds of formula I obtained may be converted into the salts thereof, particularly for pharmaceutical use into the physiologically acceptable salts with inorganic or organic acids. Acids which may be used for this purpose include for example hydrochloric acid, hydrobromic acid, sulphuric acid, methanesulphonic acid, phosphoric acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid or maleic acid.


Moreover, if the new compounds of formula I thus obtained contain a carboxy group, they may subsequently, if desired, be converted into the salts thereof with inorganic or organic bases, particularly for pharmaceutical use into the physiologically acceptable salts thereof. Suitable bases for this purpose include for example sodium hydroxide, potassium hydroxide, arginine, cyclohexylamine, ethanolamine, diethanolamine and triethanolamine.


The compounds of general formula II used as starting materials are either known from the literature or may be obtained by methods known from the literature (cf. Examples I to XVI).


As already mentioned hereinbefore, the compounds of general formula I according to the invention and the physiologically acceptable salts thereof have valuable pharmacological properties, particularly an inhibiting effect on the enzyme DPP-IV.


The biological properties of the new compounds were investigated as follows:


The ability of the substances and their corresponding salts to inhibit the DPP-IV activity can be demonstrated in a test set-up in which an extract of human colon carcinoma cell line Caco-2 is used as the DPP IV source. The differentiation of the cells in order to induce the DPP-IV expression was carried out as described by Reiher et al. in an article entitled “Increased expression of intestinal cell line Caco-2”, which appeared in Proc. Natl. Acad. Sci. Vol. 90, pages 5757-5761 (1993). The cell extract was obtained from cells solubilised in a buffer (10 mM Tris HCl, 0.15 M NaCl, 0.04 t.i.u. aprotinin, 0.5% Nonidet-P40, pH 8.0) by centrifuging at 35,000 g for 30 minutes at 4° C. (to remove cell debris).


The DPP-IV assay was carried out as follows:


50 μl substrate solution (AFC; AFC is amido-4-trifluoromethylcoumarin), final concentration 100 μM, were placed in black microtitre plates. 20 μl of assay buffer (final concentrations 50 mM Tris HCl pH 7.8, 50 mM NaCl, 1% DMSO) was pipetted in. The reaction was started by adding 30 μl of solubilised Caco-2 protein (final concentration 0.14 μg of protein per well). The test substances to be investigated were typically added prediluted in 20 μl, and the volume of assay buffer was then reduced accordingly. The reaction was carried out at ambient temperature, incubating for 60 minutes. Then the fluorescence was measured in a Victor 1420 Multilabel Counter, the excitation wavelength being 405 nm and the emission wavelength being 535 nm. Blank readings (corresponding to 0% activity) were obtained in mixtures without any Caco-2 protein (volume replaced by assay buffer), control values (corresponding to 100% activity) were obtained in mixtures with no substance added. The potency of the test substances in question, expressed as IC50 values, was calculated from dosage/activity curves consisting of 11 measuring points in each case. The following results were obtained:
















Compound
DPP IV inhibition



(Example No.)
IC50 [nM]



















1
14



1(1)
17



1(2)
58



1(3)
8



1(4)
9



1(7)
3



1(8)
7



1(9)
3










The compounds prepared according to the invention are well tolerated, as for example when 10 mg/kg of the compound of Example 1 were administered to rats by oral route no changes in the animals' behaviour could be detected.


In view of their ability to inhibit DPP-IV activity, the compounds of general formula I according to the invention and the corresponding pharmaceutically acceptable salts thereof are suitable for treating all those conditions or illnesses which can be influenced by the inhibition of the DPP-IV activity. It is therefore to be expected that the compounds according to the invention will be suitable for the prevention or treatment of diseases or conditions such as type I and type II diabetes mellitus, diabetic complications, metabolic acidosis or ketosis, insulin resistance, dyslipidaemias of various origins, arthritis, atherosclerosis and related diseases, obesity, allograft transplantation and calcitonin-induced osteoporosis. In addition these substances are capable of preventing B-cell degeneration such as e.g. apoptosis or necrosis of pancreatic B-cells. The substances are also suitable for improving or restoring the function of pancreatic cells and also increasing the number and size of pancreatic B-cells. Additionally, and on the basis of the role of the Glucagon-Like Peptides, such as e.g. GLP-1 and GLP-2 and their link with DPP-IV inhibition, it is likely that the compounds according to the invention are suitable for achieving, inter alia, a sedative or anxiety-relieving effect and also of favourably affecting catabolic states after operations or hormonal stress responses or of reducing mortality or morbidity after myocardial infarct. They are also suitable for treating all conditions which are connected with the above mentioned effects and which are mediated by GLP-1 or GLP-2. The compounds according to the invention may also be used as diuretics or antihypertensives and are suitable for preventing and treating acute renal failure. They are also suitable for the prevention and treatment of chronic inflammatory intestinal diseases. It is also expected that DPP-IV inhibitors and hence also the compounds according to the invention may be used to treat infertility or to improve fertility in humans or mammals, particularly when the infertility is connected with insulin resistance or polycystic ovary syndrome. The substances are also suitable for treating deficiencies of growth hormone which are associated with reduced stature.


The compounds according to the invention may also be used in conjunction with other active substances. Therapeutic agents which are suitable for such combinations include, for example, antidiabetics, such as metformin, sulphonylureas (e.g. glibenclamide, tolbutamide, glimepiride), nateglinide, repaglinide, thiazolidinedione (e.g. rosiglitazone, pioglitazone), PPAR-gamma agonists (e.g. GI 262570), alpha-glucosidase inhibitors (e.g. acarbose, voglibose), alpha2 antagonists, insulin and insulin analogues, GLP-1 and GLP-1 analogues (e.g. exendin-4) or amylin. Also, inhibitors of protein tyrosine phosphatase 1, substances which influence deregulated glucose production in the liver, such as e.g. inhibitors of glucose-6-phosphatase, or fructose-1,6-bisphosphatase, glycogen phosphorylase, glucagon receptor antagonists and inhibitors of phosphoenol pyruvate carboxykinase, glycogen synthase kinase or pyruvate dehydrokinase, lipid lowering agents, such as HMG-CoA-reductase inhibitors (e.g. simvastatin, atorvastatin), fibrates (e.g. bezafibrate, fenofibrate), nicotinic acid and its derivatives, cholesterol absorption inhibitors such as for example ezetimibe, bile acid-binding substances such as for example cholestyramine, HDL-raising compounds such as for example inhibitors of CETP or regulators of ABC1 or active substances for the treatment of obesity, such as e.g. sibutramine or tetrahydrolipostatin, or β3-agonists such as SB-418790 or AD-9677.


It is also possible to combine the compounds with drugs for treating high blood pressure such as e.g. AII antagonists or ACE inhibitors, diuretics, β-blockers, etc., or combinations thereof.


The dosage required to achieve such an effect is expediently, by intravenous route, 1 to 100 mg, preferably 1 to 30 mg, and by oral route 1 to 1000 mg, preferably 1 to 100 mg, in each case 1 to 4 times a day. For this purpose, the compounds of formula I prepared according to the invention, optionally combined with other active substances, may be incorporated together with one or more inert conventional carriers and/or diluents, e.g. with corn starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethylene glycol, propylene glycol, cetylstearyl alcohol, carboxymethylcellulose or fatty substances such as hard fat or suitable mixtures thereof into conventional galenic preparations such as plain or coated tablets, capsules, powders, suspensions or suppositories.


The Examples that follow are intended to illustrate the invention:


Preparation of the starting compounds:







EXAMPLE I
2-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]-oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

317 mg 11-chloromethyl-dibenzo[b,f][1,4]oxazepin are added to 400 mg 2-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one and 276 mg potassium carbonate in 4 ml N,N-dimethylformamide. The reaction mixture is stirred for two hours at 80° C. For working up it is combined with water and the precipitate formed is suction filtered. The crude product is purified by chromatography over a silica gel column with methylene chloride/methanol (100:0 to 70:30) as eluant.


Yield: 120 mg (20% of theory)


Mass spectrum (ESI+): m/z=594 [M+H]+


The following compounds are obtained analogously to Example I:

  • (1) 2-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(phenanthridin-6-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one
  • (2) 2-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(phenanthren-9-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one
  • (3) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(phenanthridin-6-yl)methyl]-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.41 (silica gel, cyclohexane/ethyl acetate=3:7)


Mass spectrum (ESI+): m/z=592 [M+H]+

  • (4) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.50 (silica gel, cyclohexane/ethyl acetate=2:8)


Mass spectrum (ESI+): m/z=608 [M+H]+

  • (5) 2-bromo-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Mass spectrum (ESI+): m/z=474, 476 [M+H]+

  • (6) 2-bromo-3-(2-butyn-1-yl)-5-[(naphtho[2,1-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.80 (silica gel, methylene chloride/ethanol=9:1)

  • (7) 2-bromo-3-(2-butyn-1-yl)-5-[(naphtho[1,2-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.50 (silica gel, methylene chloride/methanol=19:1)

  • (8) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-cyanomethyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.40 (silica gel, petroleum ether/ethyl acetate=1:4)


Mass spectrum (ESI+): m/z=426 [M+H]+


EXAMPLE II
2-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

2.50 g 3-(tert.-butyloxycarbonylamino)-piperidine are added to 2.65 g 2-bromo-3-(2-butyn-1-yl)-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one and 2.12 g sodium carbonate in 5 ml dimethylsulphoxide. The reaction mixture is stirred overnight at 85° C.


After cooling to ambient temperature it is combined with water and extracted with ethyl acetate. The combined organic phases are dried over magnesium carbonate and evaporated down. The crude product is further reacted without any further purification.


Mass spectrum (ESI+): m/z=387 [M+H]+


The following compounds are obtained analogously to Example II:

  • (1) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.15 (silica gel, cyclohexane/ethyl acetate=3:7)


Mass spectrum (ESI+): m/z=401 [M+H]+

  • (2) 2-[(S)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Mass spectrum (ESI+): m/z=594 [M+H]+

  • (3) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Mass spectrum (ESI+): m/z=594 [M+H]+

  • (4) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(naphtho[2,1-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.70 (silica gel, methylene chloride/ethanol=9:1)

  • (5) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(naphtho[1,2-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Rf value: 0.65 (silica gel, methylene chloride/methanol=9:1)


Mass spectrum (ESI+): m/z=568 [M+H]+

  • (6) 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


Mass spectrum (ESI+): m/z=387 [M+H]+


Rf value: 0.50 (silica gel, methylene chloride/ethanol=9:1)


EXAMPLE III
2-bromo-3-(2-butyn-1-yl)-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

0.63 ml hydrazine hydrate are added dropwise to 3.68 g methyl 2-bromo-3-(2-butyn-1-yl)-5-formyl-3H-imidazole-4-carboxylate in 50 ml of ethanol. The reaction mixture is stirred for one hour at ambient temperature, then 3 ml acetic acid are added and the reaction mixture is refluxed for a further hour. The precipitate formed is suction filtered, washed with ethanol and diethyl ether and dried.


Yield: 2.65 g (77% of theory)


Mass spectrum (ESI+): m/z=267, 269 [M+H]+


EXAMPLE IV
methyl 2-bromo-3-(2-butyn-1-yl)-5-formyl-3H-imidazole-4-carboxylate

45 ml diisobutylaluminum hydride solution (1M in toluene) are added dropwise to 12.45 g dimethyl 2-bromo-3-(2-butyn-1-yl)-1H-imidazole-4,5-dicarboxylate in 150 ml of tetrahydrofuran under an argon atmosphere at −65° C. The reaction mixture is stirred for two hours at −65° C., then another 9 ml diisobutylaluminum hydride solution are added. After another hour the reaction mixture is quenched at −65° C. with a mixture of 1 M hydrochloric acid and tetrahydrofuran (1:1) and stirred for ten minutes. Then the cooling bath is removed, the reaction mixture is diluted with water and extracted with ethyl acetate. The combined organic phases are dried over magnesium sulphate and evaporated down. The crude product is purified by chromatography over a silica gel column with cyclohexane/ethyl acetate (2:1 to 1:1).


Yield: 9.58 g (85% of theory)


Mass spectrum (ESI+): m/z=285, 287 [M+H]+


The following compounds are obtained analogously to Example IV:

  • (1) methyl 2-bromo-3-(3-methyl-2-buten-1-yl)-5-formyl-3H-imidazole-4-carboxylate


Mass spectrum (ESI+): m/z=301, 303 [M+H]+


EXAMPLE V
dimethyl 2-bromo-3-(2-butyn-1-yl)-1H-imidazole-4,5-dicarboxylate

4.53 ml of 1-bromo-2-butyne are added to 13.20 g dimethyl 2-bromo-1H-imidazole-4,5-dicarboxylate and 8.57 g potassium carbonate in 70 ml N,N-dimethylformamide and the reaction mixture is stirred overnight at ambient temperature.


For working up it is combined with water and extracted with ethyl acetate. The combined organic phases are dried over magnesium sulphate and evaporated down.


Yield: 14.58 g (92% of theory)


Mass spectrum (ESI+): m/z=315, 317 [M+H]+


The following compounds are obtained analogously to Example V:

  • (1) dimethyl 2-bromo-3-(3-methyl-2-buten-1-yl)-1H-imidazole-4,5-dicarboxylate


Mass spectrum (ESI+): m/z=331, 333 [M+H]+


EXAMPLE VI
Dimethyl 2-bromo-1H-imidazole-4,5-dicarboxylate

6.11 ml bromine are added to 19.80 g dimethyl 1H-imidazole-4,5-dicarboxylate and 14.92 g potassium carbonate in 600 ml methylene chloride. The reaction mixture is stirred for one hour at ambient temperature, then a mixture of saturated sodium sulphite solution and saturated sodium chloride solution (1:1) is added. The organic phase is largely separated off and the aqueous phase is extracted with ethyl acetate several times. The combined organic phases are dried over magnesium sulphate and evaporated down, leaving about 7.40 g crude product. The aqueous phase is combined with ethyl acetate and extracted overnight in an extraction apparatus. The ethyl acetate extract is evaporated down and the flask residue is combined with the crude product already obtained.


Yield: 13.10 g (46% of theory)


Mass spectrum (ESI+): m/z=263, 265 [M+H]+


EXAMPLE VII
2-Bromo-3-(2-butyn-1-yl)-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

0.50 ml of 1-bromo-2-butyne are added to 1.30 g 2-bromo-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one and 0.99 ml Hünig base in 30 ml of N,N-dimethylformamide. The reaction mixture is stirred for three hours at ambient temperature. Then the solvent is distilled off in vacuo using the rotary evaporator. The flask residue is stirred with 40 ml of water and 0.5 ml concentrated aqueous ammonia solution, suction filtered and washed with ethanol as well as diethyl ether.


Yield: 1.30 g (82% of theory)


Rf value: 0.60 (silica gel, cyclohexane/ethyl acetate=3:7)


Mass spectrum (ESI+): m/z=281, 283 [M+H]+


EXAMPLE VIII
2-bromo-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

5.20 ml of a 1.8 M solution of bromine in acetonitrile are slowly added dropwise to 1.40 g of 7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one and 1.30 g potassium carbonate in 40 ml acetonitrile. Then the reaction mixture is heated to 70° C., whereupon the mixture is rapidly decolourised. More bromine solution and potassium carbonate are added batchwise until the reaction has ended, according to HPLC-MS. For working up the reaction mixture is evaporated down, stirred with 100 ml of water and suction filtered. The filtrate is acidified with 1 M hydrochloric acid and extracted with ethyl acetate. The combined extracts are dried over sodium sulphate and evaporated down.


Yield: 1.30 g (61% of theory)


Rf value: 0.37 (silica gel, methylene chloride/methanol=9:1)


Mass spectrum (ESI+): m/z=229, 231 [M+H]+


EXAMPLE IX
7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

A solution of 4.00 g sodium nitrite in 15 ml of water is added dropwise at 50° C. to 2.20 g of 4-amino-7-methyl-3H-imidazo[4,5-d]pyridazine in a mixture of 30 ml acetic acid, 5 ml of water and 0.5 ml concentrated sulphuric acid. The reaction mixture is stirred for a further two hours at 50° C. and then heated to 90° C. for one hour. After cooling to ambient temperature the reaction mixture is diluted with 30 ml of water. The precipitate formed is suction filtered, washed with water, ethanol and diethyl ether and dried.


Yield: 1.00 g (45% of theory)


Mass spectrum (ESI+): m/z=151 [M+H]+


EXAMPLE X
4-amino-7-methyl-3H-imidazo[4,5-d]pyridazine

A mixture of 2.00 g 5-acetyl-3H-imidazole-4-carbonitrile and 4.00 ml hydrazine hydrate in 50 ml of ethanol is heated to 100° C., until the reaction is complete according to HPLC-MS. After cooling to ambient temperature the reaction mixture is evaporated down, stirred with 20 ml of cold ethanol and suction filtered. The filter cake is washed with diethyl ether and dried.


Yield: 2.10 g (95% of theory)


Mass spectrum (ESI+): m/z=150 [M+H]+


EXAMPLE XI
5-acetyl-3H-imidazole-4-carbonitrile

57 ml of a 3 M solution of methylmagnesium bromide in diethyl ether are added to 7.00 g of 4,5-dicyano-imidazole in 80 ml of tetrahydrofuran under an argon atmosphere, while the temperature is maintained between 5° C. and 15° C.


After two hours the reaction is complete according to thin layer chromatography and the reaction mixture is diluted with 400 ml of ethyl acetate. Then 400 ml saturated ammonium chloride solution are slowly added. After ten minutes the mixture is acidified with semiconcentrated sulphuric acid and stirred for another twenty minutes before the organic phase is separated off. The aqueous phase is extracted with ethyl acetate and the combined organic phases are dried over sodium sulphate and evaporated down. The flask residue is stirred with ethyl acetate, suction filtered and washed with ethyl acetate and diethyl ether.


Yield: 3.30 g (43% of theory)


Mass spectrum (ESI+): m/z=136 [M+H]+


EXAMPLE XII
2-chloromethyl-naphtho[2,1-d]oxazole

Prepared by reacting 2.93 g of 2-amino-1-naphthol with 3.54 g of 2-chloro-1,1,1-triethoxy-ethane in 25 ml of ethanol at 60° C.


Yield: 1.90 g (58% of theory)


Rf value: 0.55 (silica gel, petroleum ether/ethyl acetate=9:1)


Mass spectrum (ESI+): m/z=218, 220 [M+H]+


The following compounds are obtained analogously to Example XII:

  • (1) 2-chloromethyl-naphtho[1,2-d]oxazole


Rf value: 0.90 (silica gel, methylene chloride/methanol=19:1)


Mass spectrum (ESI+): m/z=218, 220 [M+H]+


EXAMPLE XIII
2-bromo-3-(3-methyl-2-buten-1-yl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-one

1.55 g Burgess reagent (methoxycarbonylsulphamoyl-triethylammonium-N-betaine) are added to 1.60 g of 2-bromo-7-hydroxy-3-(3-methyl-2-buten-1-yl)-3,5,6,7-tetrahydro-imidazo[4,5-c]pyridin-4-one in 20 ml methylene chloride and 4 ml of tetrahydrofuran. The reaction mixture is stirred for eight hours at 60° C., then another 0.3 equivalents Burgess reagent is added. After a further two hours the cooled reaction mixture is combined with aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate. The combined organic phases are dried over magnesium sulphate and evaporated down. The flask residue is chromatographed through a silica gel column with methylene chloride/methanol (1:0 to 10:1) as eluant.


Yield: 1.06 g (60% of theory)


Mass spectrum (ESI+): m/z=282, 284 [M+H]+


EXAMPLE XIV
2-bromo-7-hydroxy-3-(3-methyl-2-buten-1-yl)-3,5,6,7-tetrahydro-imidazo[4,5-c]pyridin-4-one

90 ml of water and 5.40 g iron powder are added to 4.15 g methyl 2-bromo-5-(1-hydroxy-2-nitro-ethyl)-3-(3-methyl-2-buten-1-yl)-3H-imidazole-4-carboxylate in 270 ml of ethanol. The mixture is refluxed, combined with 36 ml glacial acetic acid and stirred for one and a half hours at reflux temperature. The cooled reaction solution is filtered through Celite. The filtrate is evaporated down, combined with ethanol and made basic with solid potassium carbonate. The mixture is stirred for three hours at 60° C. Then the ethanol is distilled off, the flask residue is combined with water and extracted with ethyl acetate. The combined extracts are dried over magnesium sulphate and evaporated down. The crude product is purified by chromatography over a silica gel column with methylene chloride/methanol (1:1 to 7:1) as eluant.


Yield: 1.62 g (47% of theory)


Mass spectrum (ESI+): m/z=300, 302 [M+H]+


EXAMPLE XV
Methyl 2-bromo-5-(1-hydroxy-2-nitro-ethyl)-3-(3-methyl-2-buten-1-yl)-3H-imidazole-4-carboxylate

35 ml nitromethane are added to 1.14 g caesium carbonate in 15 ml of methanol at ambient temperature. Then the mixture is combined with a solution of 3.50 g methyl 2-bromo-3-(3-methyl-2-buten-1-yl)-5-formyl-3H-imidazole-4-carboxylate in 20 ml of methanol and 5 ml methylene chloride and stirred for 15 minutes at ambient temperature. Then 0.5 ml acetic acid are added and the solution is evaporated down in vacuo. The flask residue is combined with aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate. The combined organic phases are dried over magnesium sulphate and evaporated down.


Yield: 4.15 g (99% of theory)


Mass spectrum (ESI+): m/z=362, 364 [M+H]+


EXAMPLE XVI
2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(4-oxo-3,4-dihydro-quinazolin-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

40 mg sodium methoxide (95%) are added to a solution of 605 mg 2-[(R)-3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-cyanomethyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one in 9 ml of methanol. The mixture is stirred for one hour at ambient temperature and then neutralised with 41 μL glacial acetic acid. Then a solution of 195 mg anthranilic acid in 2 ml of methanol is added and the reaction mixture is heated to 70° C. After about two hours a white, voluminous precipitate is formed and the reaction mixture is cooled to ambient temperature. The precipitate formed is suction filtered, washed with cold methanol and dried.


Yield: 234 mg (30% of theory)


Mass spectrum (ESI+): m/z=545 [M+H]+


Preparation of the final compounds:


EXAMPLE 1



embedded image


2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one

0.33 ml trifluoroacetic acid are added to 120 mg 2-[3-(tert.-butyloxycarbonylamino)-piperidin-1-yl]-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one in 3 ml methylene chloride while cooling with an ice bath. The reaction mixture is stirred overnight at ambient temperature.


For working up it is poured onto cooled saturated potassium carbonate solution and extracted with methylene chloride. The organic phase is separated off and evaporated down. The crude product is purified by chromatography over a silica gel column with methylene chloride/methanol (100:0 to 70:30) as eluant.


Yield: 63 mg (63% of theory)


Mass spectrum (ESI+): m/z=494 [M+H]+


The following compounds are obtained analogously to Example 1:

  • (1) 2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(phenanthridin-6-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Mass spectrum (ESI+): m/z=478 [M+H]+

  • (2) 2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(phenanthren-9-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Mass spectrum (ESI+): m/z=477 [M+H]+

  • (3) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(phenanthridin-6-yl)methyl]-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one x trifluoroacetic acid




embedded image


Rf value: 0.45 (Reversed phase ready-made TLC plate (E. Merck), acetonitrile/water/trifluoroacetic acid=50:50:0.1)


Mass spectrum (ESI+): m/z=492 [M+H]+

  • (4) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Carried out with isopropanolic hydrochloric acid (5-6 M) in methylene chloride.


Mass spectrum (ESI+): m/z=508 [M+H]+

  • (5) 2-((S)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Mass spectrum (ESI+): m/z=494 [M+H]+

  • (6) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Mass spectrum (ESI+): m/z=494 [M+H]+

  • (7) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(naphtho[2,1-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Rf value: 0.40 (silica gel, methylene chloride/ethanol/conc. aqueous ammonia=90:10:2)


Mass spectrum (ESI+): m/z=468 [M+H]+

  • (8) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(naphtho[1,2-d]oxazol-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Mass spectrum (ESI+): m/z=468 [M+H]+

  • (9) 2-((R)-3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)-5-[(4-oxo-3,4-dihydro-quinazolin-2-yl)methyl]-3,5-dihydro-imidazo[4,5-d]pyridazin-4-one




embedded image


Mass spectrum (ESI+): m/z=445 [M+H]+


The following compounds may also be obtained analogously to the foregoing Examples and other methods known from the literature:














No.
Name
Structural formula







 (1)
2-(3-amino-piperidin-1-yl)-3-(2-buten-1-yl)- 5-[(3,4-dihydro-quinolin-2-yl)methyl]-6,7- dimethyl-3,5-dihydro-imidazo[4,5-c]pyridin- 4-one


embedded image







 (2)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(3,4-dihydro-isoquinolin-1-yl)methyl]-7- cyclopropyl-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







 (3)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(3,3-dimethyl-3,4-dihydro-isoquinolin-1- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







 (4)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4,4-dimethyl-3,4-dihydro-isoquinolin-1- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







 (5)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1-methyl-1,4-dihydro-quinazolin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







 (6)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1-methyl-4-oxo-1,4-dihydro-quinazolin- 2-yl)methyl]3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







 (7)
2-(3-amino-piperidin-1-yl)-3-(2-buten-1-yl)- 5-[(5,6,7,8-tetrafluoro-1-methyl-1,4-dihydro- quinazolin-2-yl)methyl]-3,5-dihydro- imidazo[4,5-c]pyridin-4-one


embedded image







 (8)
2-(3-amino-piperidin-1-yl)-3-(2-buten-1-yl)- 5-[(3,4-dihydro-quinazolin-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







 (9)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(3-methyl-3,4-dihydro-quinazolin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(10)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(3-methyl-3,4-dihydro-quinazolin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridin-4-one


embedded image







(11)
2-(3-amino-piperidin-1-yl)-3-(1-buten-1-yl)- 5-[(1H-benzo[d][1,2]oxazin-4-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(12)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1-oxo-1H-benzo[d][1,2]oxazin-4- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(13)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4H-benzo[e][1,3]oxazin-2-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(14)
2-(3-amino-piperidin-1-yl)-3-(2-buten-1-yl)- 5-[(4,4-dimethyl-4H-benzo[e][1,3]oxazin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(15)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4-oxo-4H-benzo[e][1,3]oxazin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(16)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4H-benzo[d][1,3]oxazin-2-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(17)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4H-benzo[d][1,3]oxazin-2-yl)methyl]-7- methyl-3,5-dihydro-imidazo[4,5-c]pyridin-4- one


embedded image







(19)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4,4-dimethyl-4H-benzo[d][1,3]oxazin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(20)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4-oxo-4H-benzo[d][1,3]oxazin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(21)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2H-benzo[1,4]oxazin-3-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(22)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2-oxo-2H-benzo[1,4]oxazin-3- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(23)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,2-dimethyl-2H-benzo[1,4]oxazin-3- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(24)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[4H-benzo[e][1,3]thiazin-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(25)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[4,4-dimethyl-4H-benzo[e][1,3]thiazin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(26)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[4-oxo-4H-benzo[e][1,3]thiazin-2- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(27)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4H-benzo[d][1,3]thiazin-2-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(28)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2H-benzo[1,4]thiazin-3-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(29)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2-oxo-2H-benzo[e][1,3]oxazin-4- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(30)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1-methyl-2,2-dioxo-1H- benzo[c][1,2]thiazin-4-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(31)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,3-dihydro-1H-benzo[e][1,4]diazepin-5- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(32)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2-oxo-2,3-dihydro-1H- benzo[e][1,4]diazepin-5-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(33)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1-methyl-2,3-dihydro-1H- benzo[e][1,4]diazepin-5-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(34)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1-methyl-2-oxo-2,3-dihydro-1H- benzo[e][1,4]diazepin-5-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(35)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(4-oxo-4,5-dihydro-3H- benzo[b][1,4]diazepin-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(36)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5-methyl-4-oxo-4,5-dihydro-3H- benzo[b][1,4]diazepin-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(37)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[5-oxo-4,5-dihydro-3H- benzo[e][1,4]diazepin-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(38)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[4-methyl-5-oxo-4,5-dihydro-3H- benzo[3][1,4]diazepin-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(39)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,3-dihydro-benzo[f][1,4]oxazepin-5- yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(40)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(3,3-dimethyl-2,3-dihydro- benzo[f][1,4]oxazepin-5-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(41)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,2-dimethyl-2,3-dihydro- benzo[f][1,4]oxazepin-5-yl)methyl]-7- methyl-3,5-dihydro-imidazo[4,5-d]pyridazin- 4-one


embedded image







(42)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,3-dihydro-benzo[b][1,4]oxazepin-4- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(43)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(6,6-dimethyl-2,3-dihydro- benzo[b][1,4]oxazepin-4-yl)methyl]-7- methyl-3,5-dihydro-imidazo[4,5-d]pyridazin- 4-one


embedded image







(44)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,3-dihydro-benzo[b][1,4]thiazepin-4- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(45)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,2-dimethyl-2,3-dihydro- benzo[b][1,4]thiazepin-4-yl)methyl]-7- methyl-3,5-dihydro-imidazo[4,5-d]pyridazin- 4-one


embedded image







(46)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,3-dihydro-benzo[f][1,4]thiazepin-5- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(47)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5-oxo-4,5-dihydro- benzo[f][1,3,4]oxadiazepin-2-yl)methyl]-7- methyl-3,5-dihydro-imidazo[4,5-d]pyridazin- 4-one


embedded image







(48)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(11H-dibenzo[b,e]azepin-6-yl)methyl]-7- ethyl-3,5-dihydro-imidazo[4,5-d]pyridazin-4- one


embedded image







(49)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(11H-dibenzo[b,e]azepin-6-yl)methyl]-7- cyanomethyl-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(50)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(11,11-difluoro-11H-dibenzo[b,e]azepin- 6-yl)methyl]-3,5-dihydro-imidazo[4,5- c]pyridin-4-one


embedded image







(51)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(11-oxo-11H-dibenzo[b,e]azepin-6- yl)methyl]-7-(2-cyanoethyl)-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(52)
2-(3-amino-piperidin-1-yl)-3-(1-buten-1-yl)- 5-[(11H-benzo[e]pyrido[3,2-b]azepin-6- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(53)
2-(3-amino-piperidin-1-yl-(2-butyn-1-yl)-5- [(5H-1,9,10-triaza-dibenzo[a,d]cyclohepten- 11-yl)methyl]-3,5-dihydro-imidazo[4,5- d]pyridin-4-one


embedded image







(54)
2-(3-amino-piperidin-1-yl)-3-(2-buten-1-yl)- 5-[(5-methyl-5H-dibenzo[b,e][1,4]diazepin- 11-yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(55)
2-(3-amino-piperidin-1-yl)-3-(1-buten-1-yl)- 5-[(dibenzo[b,f][1,4]oxazepin-11-yl)methyl]- 3,5-dihydro-imidazo[4,5-c]pyridin-4-one


embedded image







(56)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(dibenzo[b,f][1,4]thiazepin-11-yl)methyl]- 7-methyl-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(57)
2-(3-amino-piperidin-1-yl)-3-(1-buten-1-yl)- 5-[(dibenzo[b,f][1,4]thiazepin-11-yl)methyl]- 3,5-dihydro-imidazo[4,5-c]pyridin-4-one


embedded image







(58)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5-oxo-dibenzo[b,f][1,4]thiazepin-11- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(59)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5,5-dioxo-dibenzo[b,f][1,4]-thiazepin-11- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(60)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5H-dibenzo[a,d]cyclohepten-10- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(61)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5-methyl-5H-dibenzo[b,f]azepin-10- yl)methyl]-7-trifluoromethyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(62)
2-(3-amino-piperidin-1-yl)-3-(3-methyl-2- buten-1-yl)-5-[(phenanthridin-6-yl)methyl]- 7-methyl-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(63)
2-(3-amino-piperidin-1-yl)-3-(2-buten-1-yl)- 5-[(phenanthridin-6-yl)methyl]-7-methyl-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(64)
2-(3-amino-piperidin-1-yl)-3-(1-buten-1-yl)- 5-[(phenanthridin-6-yl)methyl]-7-methyl-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(65)
2-(3-amino-piperidin-1-yl)-3-[(1- cyclopenten-1-yl)methyl]-5-[(phenanthridin- 6-yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(66)
2-(3-amino-piperidin-1-yl)-3-(1-buten-1-yl)- 5-[(phenanthridin-6-yl)methyl]-3,5-dihydro- imidazo[4,5-c]pyridin-4-one


embedded image







(67)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(benzo[c][1,5]naphthyridin-6-yl)methyl]- 7-cyclopropyl-3,5-dihydro-imidazo[4,5- d]pyridazin-4-one


embedded image







(68)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(benzo[h][1,6]naphthyridin-5-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(69)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(benzo[c][1,8]naphthyridin-6-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(70)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5-benzo[f][1,7]naphthyridin-5- yl)methyl]-3,5-dihydro-imidazo[4,5- c]pyridin-4-one


embedded image







(71)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1,5,9-triaza-phenanthren-10-yl)methyl]- 3,5-dihydro-imidazo[4,5-c]pyridin-4-one


embedded image







(72)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1,2,3,4-tetrahydrophenanthridin-6- yl)methyl]-3,5-dihydro-imidazo[4,5- c]pyridin-4-one


embedded image







(73)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1,2,3,4,4a,10b-hexahydro-phenanthridin- 6-yl)methyl]-3,5-dihydro-imidazo[4,5- c]pyridin-4-one


embedded image







(74)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,3-dihydro-1H-4-aza- cyclopenta[a]naphth-5-yl)methyl]-3,5- dihydro-imidazo[4,5-c]pyridin-4-one


embedded image







(75)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(8,9,10,11-tetrahydro-7H-6-aza- cyclohepta[a]naphth-5-yl)methyl]-3,5- dihydro-imidazo[4,5-c]pyridin-4-one


embedded image







(76)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2,3-dihydro-1H-4-oxo-10-aza- phenanthren-9-yl)methyl]-3,5-dihydro- imidazo[4,5-c]pyridin-4-one


embedded image







(77)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1-oxo-2,3-dihydro-1H-4-oxo-10-aza- phenanthren-9-yl)methyl]-3,5-dihydro- imidazo[4,5-c]pyridin-4-one


embedded image







(78)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(10-cyanophenanthren-9-yl)methyl]-3,5- dihydro-imidazo[4,5-c]pyridin-4-one


embedded image







(79)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(benzo[h]quinolin-6-yl)methyl]-3,5- dihydro-imidazo[4,5-c]pyridin-4-one


embedded image







(80)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(benzo[f]quinolin-6-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(81)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(benzo[f]quinoxalin-6-)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(82)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5H-benzo[e]pyrrolo[1,2-a][1,4]diazepin- 11-yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(83)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(thieno[3,2-b][1,4]benzoxazepin-9- yl)methyl]-7-trifluoromethyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(84)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(thieno[3,2-b][1,4]benzoxazepin-9- yl)methyl]-3,5-dihydro-imidazo[4,5- c]pyridin-4-one


embedded image







(85)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5H-dibenzo[d,f][1,3]diazepin-6- yl)methyl]-7-methyl-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image







(86)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(5-methyl-5H-dibenzo[d,f][1,3]diazepin- 6-yl)methyl]-3,5-dihydro-imidazo[4,5- c]pyridin-4-one


embedded image







(87)
2-(3-amino-piperidin-1-yl)-3-(3-methylbut-2- en-1-yl)-5-[(5-oxa-7-aza- dibenzo[a,c]cyclohepten-6-yl)methyl]-7- methyl-3,5-dihydro-imidazo[4,5-c]pyridin-4- one


embedded image







(88)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(naphtho[1,2-d]thiazol-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(89)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(naphtho[2,1-d]thiazol-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(90)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(3H-naphtho[1,2-d]imidazol-2-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(91)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(naphtho[1,2-b]furan-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(92)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(naphtho[2,1-b]furan-2-yl)methyl]-3,5- dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(93)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(2-methyl-furo[3,2-c]isoquinolin-5- yl)methyl]-3,5-dihydro-imidazo[4,5- c]pyridin-4-one


embedded image







(94)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(pyrazolo[1,5-c]quinazolin-5-yl)methyl]- 3,5-dihydro-imidazo[4,5-d]pyridazin-4-one


embedded image







(95)
2-(3-amino-piperidin-1-yl)-3-(2-butyn-1-yl)- 5-[(1H-perimidin-2-yl)methyl]-3,5-dihydro- imidazo[4,5-d]pyridazin-4-one


embedded image











EXAMPLE 2
Coated Tablets Containing 75 mg of Active Substance











1 tablet core contains:


















active substance
75.0 mg



calcium phosphate
93.0 mg



corn starch
35.5 mg



polyvinylpyrrolidone
10.0 mg



hydroxypropylmethylcellulose
15.0 mg



magnesium stearate
 1.5 mg




230.0 mg 











Preparation:


The active substance is mixed with calcium phosphate, corn starch, polyvinylpyrrolidone, hydroxypropylmethylcellulose and half the specified amount of magnesium stearate. Blanks 13 mm in diameter are produced in a tablet-making machine and these are then rubbed through a screen with a mesh size of 1.5 mm using a suitable machine and mixed with the rest of the magnesium stearate. This granulate is compressed in a tablet-making machine to form tablets of the desired shape.

    • Weight of core: 230 mg
    • die: 9 mm, convex


The tablet cores thus produced are coated with a film consisting essentially of hydroxypropylmethylcellulose. The finished film-coated tablets are polished with beeswax.

    • Weight of coated tablet: 245 mg.


EXAMPLE 3
Tablets Containing 100 mg of Active Substance











Composition:


1 tablet contains:



















active substance
100.0
mg



lactose
80.0
mg



corn starch
34.0
mg



polyvinylpyrrolidone
4.0
mg



magnesium stearate
2.0
mg




220.0
mg











Method of Preparation:


The active substance, lactose and starch are mixed together and uniformly moistened with an aqueous solution of the polyvinylpyrrolidone. After the moist composition has been screened (2.0 mm mesh size) and dried in a rack-type drier at 50° C. it is screened again (1.5 mm mesh size) and the lubricant is added. The finished mixture is compressed to form tablets.

    • Weight of tablet: 220 mg
    • Diameter: 10 mm, biplanar, facetted on both sides and notched on one side.


EXAMPLE 4
Tablets Containing 150 mg of Active Substance











Composition:


1 tablet contains:


















active substance
150.0 mg 



powdered lactose
89.0 mg



corn starch
40.0 mg



colloidal silica
10.0 mg



polyvinylpyrrolidone
10.0 mg



magnesium stearate
 1.0 mg




300.0 mg 











Preparation:


The active substance mixed with lactose, corn starch and silica is moistened with a 20% aqueous polyvinylpyrrolidone solution and passed through a screen with a mesh size of 1.5 mm. The granules, dried at 45° C., are passed through the same screen again and mixed with the specified amount of magnesium stearate. Tablets are pressed from the mixture.

    • Weight of tablet: 300 mg
    • die: 10 mm, flat


EXAMPLE 5
Hard Gelatine Capsules Containing 150 mg of Active Substance











1 capsule contains:



















active substance
150.0
mg



corn starch (dried)
approx. 80.0
mg



lactose (powdered)
approx. 87.0
mg



magnesium stearate
3.0
mg




approx. 420.0
mg











Preparation:


The active substance is mixed with the excipients, passed through a screen with a mesh size of 0.75 mm and homogeneously mixed using a suitable apparatus. The finished mixture is packed into size 1 hard gelatine capsules.

    • Capsule filling: approx. 320 mg
    • Capsule shell: size 1 hard gelatine capsule.


EXAMPLE 6
Suppositories Containing 150 mg of Active Substance











1 suppository contains:


















active substance
150.0 mg



polyethyleneglycol 1500
550.0 mg



polyethyleneglycol 6000
460.0 mg



polyoxyethylene sorbitan monostearate
840.0 mg




2,000.0 mg











Preparation:


After the suppository mass has been melted the active substance is homogeneously distributed therein and the melt is poured into chilled moulds.


EXAMPLE 7
Suspension Containing 50 mg of Active Substance











100 ml of suspension contain:



















active substance
1.00
g



carboxymethylcellulose-Na-salt
0.10
g



methyl p-hydroxybenzoate
0.05
g



propyl p-hydroxybenzoate
0.01
g



glucose
10.00
g



glycerol
5.00
g



70% sorbitol solution
20.00
g



flavouring
0.30
g



dist. water
ad 100
ml











Preparation:


The distilled water is heated to 70° C. The methyl and propyl p-hydroxybenzoates together with the glycerol and sodium salt of carboxymethylcellulose are dissolved therein with stirring. The solution is cooled to ambient temperature and the active substance is added and homogeneously dispersed therein with stirring. After the sugar, the sorbitol solution and the flavouring have been added and dissolved, the suspension is evacuated with stirring to eliminate air.

    • 5 ml of suspension contain 50 mg of active substance.


EXAMPLE 8
Ampoules Containing 10 mg Active Substance











Composition:



















active substance
10.0
mg










0.01 N hydrochloric acid
q.s.











double-distilled water
ad 2.0
ml











Preparation:


The active substance is dissolved in the necessary amount of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 2 ml ampoules.


EXAMPLE 9
Ampoules Containing 50 mg of Active Substance











Composition:



















active substance
50.0
mg










0.01 N hydrochloric acid
q.s.











double-distilled water
ad 10.0
ml











Preparation:


The active substance is dissolved in the necessary amount of 0.01 N HCl, made isotonic with common salt, filtered sterile and transferred into 10 ml ampoules.

Claims
  • 1. A compound of formula (I)
  • 2. The compound of formula I according to claim 1, wherein R1 denotes a methyl group substituted by a group Ra, where Ra denotes a 3,4-dihydro-quinolinyl group,a 3,4-dihydro-isoquinolinyl group,a 1,4-dihydro-quinazolinyl or 4-oxo-1,4-dihydro-quinazolinyl group,a 3,4-dihydro-quinazolinyl or 4-oxo-3,4-dihydro-quinazolinyl group,a 1H-benzo[d][1,2]oxazinyl or 1-oxo-1H-benzo[d][1,2]oxazinyl group,a 4H-benzo[e][1,3]oxazinyl or 4-oxo-4H-benzo[e][1,3]oxazinyl group,a 4H-benzo[d][1,3]oxazinyl or 4-oxo-4H-benzo[d][1,3]oxazinyl group,a 2H-benzo[1,4]oxazinyl or 2-oxo-2H-benzo[1,4]oxazinyl group,a 4H-benzo[e][1,3]thiazinyl or 4-oxo-4H-benzo[e][1,3]thiazinyl group,a 4H-benzo[d][1,3]thiazinyl or 2H-benzo[1,4]thiazinyl group,a 2-oxo-2H-benzo[e][1,3]oxazinyl or 2,2-dioxo-1H-benzo[c][1,2]thiazinyl group,a 2,3-dihydro-1H-benzo[e][1,4]diazepinyl or 2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepinyl group,a 4,5-dihydro-3H-benzo[b][1,4]diazepinyl or 4-oxo-4,5-dihydro-3H-benzo[b][1,4]diazepinyl group,a 5-oxo-4,5-dihydro-3H-benzo[e][1,4]diazepinyl group,a 2,3-dihydro-benzo[f][1,4]oxazepinyl or 2,3-dihydro-benzo[b][1,4]oxazepinyl group,a 2,3-dihydro-benzo[f][1,4]thiazepinyl or 2,3-dihydro-benzo[b][1,4]thiazepinyl group,a 5-oxo-4,5-dihydro-benzo[f][1,3,4]oxadiazepinyl group,a 11H-dibenzo[b,e]azepinyl or 11-oxo-11H-dibenzo[b,e]azepinyl group,a 11H-benzo[e]pyrido[3,2-b]azepinyl or a 5H-1,9,10-triaza-dibenzo[a,d]-cycloheptenyl group,a 5H-dibenzo[b,e][1,4]diazepinyl or dibenzo[b,f][1,4]oxazepinyl group,a dibenzo[b,f][1,4]thiazepinyl, 5-oxo-dibenzo[b,f][1,4]thiazepinyl or 5,5-dioxo-dibenzo[b,f][1,4]thiazepinyl group,a 5H-dibenzo[a,d]cycloheptenyl or 5H-dibenzo[b,f]azepinyl group,a phenanthridinyl, benzo[c][1,5]naphthyridinyl, benzo[h][1,6]naphthyridinyl, benzo[c][1,8]naphthyridinyl, benzo[f][1,7]naphthyridinyl or 1,5,9-triaza-phenanthrenyl group,a 1,2,3,4-tetrahydro-phenanthridinyl, 1,2,3,4,4a,10b-hexahydro-phenanthridinyl, 2,3-dihydro-1H-4-aza-cyclopenta[a]naphthyl or 8,9,10,11-tetrahydro-7H-6-aza-cyclohepta[a]naphthyl group,a 2,3-dihydro-1H-4-oxa-10-aza-phenanthrenyl or 1-oxo-2,3-dihydro-1H-4-oxa-10-aza-phenanthrenyl group,a phenanthrenyl, benzo[h]quinolinyl, benzo[f]quinolinyl or benzo[f]quinoxalinyl group,a 5H-benzo[e]pyrrolo[1,2-a][1,4]diazepinyl, thieno[3,2-b][1,4]benzoxazepinyl, 5H-dibenzo[d,f][1,3]diazepinyl or 5-oxa-7-aza-dibenzo[a,c]cycloheptenyl group,a naphtho[1,2-d]oxazolyl, naphtho[2,1-c]oxazolyl, naphtho[1,2-d]thiazolyl, naphtho[2,1-c]thiazolyl, naphtho[1,2-d]imidazolyl, naphtho[1,2-b]furanyl or naphtho[2,1-b]furanyl group,or a furo[3,2-c]isoquinolinyl, pyrazolo[1,5-c]quinazolinyl or 1H-perimidinyl group,while the benzo groups of the above mentioned radicals Ra are substituted by the groups R10 to R13 and the alkylene units of the above mentioned groups Ra may be substituted by one or two fluorine atoms or one or two C1-3-alkyl or C1-3-alkyloxy-carbonyl groups and the imino groups of the above mentioned radicals Ra may be substituted by a C1-3-alkyl group and R10 denotes a hydrogen atom,a fluorine, chlorine, bromine or iodine atom,a C1-3-alkyl or cyclopropyl group,a hydroxy, C1-3-alkyloxy or cyclopropyloxy group,a nitro, amino, C1-3-alkylamino or di-(C1-3-alkyl)amino group,a C1-3-alkyl-carbonylamino or C1-3-alkyl-sulphonylamino group,a cyano, carboxy, C1-3-alkyloxy-carbonyl, aminocarbonyl, C1-3-alkyl-aminocarbonyl or di-(C1-3-alkyl)-aminocarbonyl group,a mercapto, C1-3-alkylsulphanyl, C1-3-alkysulphinyl, C1-3-alkylsulphonyl or aminosulphonyl group ora difluoromethyl, trifluoromethyl, difluoromethoxy or trifluoromethoxy group andR11, R12 and R13, which may be identical or different, in each case represent a hydrogen atom, a fluorine, chlorine or bromine atom, a methyl, trifluoromethyl or methoxy group,R2 denotes a hydrogen atom ora C1-3-alkyl, cyclopropyl or trifluoromethyl group,Y denotes a group of formula C—R5, while R5 denotes a hydrogen atom or a C1-3-alkyl group,R3 denotes a 2-buten-1-yl or 3-methyl-2-buten-1-yl group,a 1-buten-1-yl group, ora 2-butyn-1-yl groupandR4 denotes a (3-amino-piperidin-1-yl) group,while, unless otherwise stated, the above mentioned alkyl groups may be straight-chain or branched,or a tautomer, enantiomer, diastereomer, mixture thereof, or salt thereof.
  • 3. The compound of formula I according to claim 2, wherein R1 denotes a methyl group substituted by a group Ra, where Ra denotes a 3,4-dihydro-quinolin-2-yl group,a 3,4-dihydro-isoquinolin-1-yl group,a 1,4-dihydro-quinazolin-2-yl or 4-oxo-1,4-dihydro-quinazolin-2-yl group,a 3,4-dihydro-quinazolin-2-yl or 4-oxo-3,4-dihydro-quinazolin-2-yl group,a 1H-benzo[d][1,2]oxazin-4-yl or 1-oxo-1H-benzo[d][1,2]oxazin-4-yl group,a 4H-benzo[e][1,3]oxazin-2-yl or 4-oxo-4H-benzo[e][1,3]oxazin-2-yl group,a 4H-benzo[d][1,3]oxazin-2-yl or 4-oxo-4H-benzo[d][1,3]oxazin-2-yl group,a 2H-benzo[1,4]oxazin-3-yl or 2-oxo-2H-benzo[1,4]oxazin-3-yl group,a 4H-benzo[e][1,3]thiazin-2-yl or 4-oxo-4H-benzo[e][1,3]thiazin-2-yl group,a 4H-benzo[d][1,3]thiazin-2-yl or 2H-benzo[1,4]thiazin-3-yl group,a 2-oxo-2H-benzo[e][1,3]oxazin-4-yl or 2,2-dioxo-1H-benzo[c][1,2]thiazin-4-yl group,a 2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl or 2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl group,a 4,5-dihydro-3H-benzo[b][1,4]diazepin-2-yl or 4-oxo-4,5-dihydro-3H-benzo[b][1,4]diazepin-2-yl group,a 5-oxo-4,5-dihydro-3H-benzo[e][1,4]diazepin-2-yl group,a 2,3-dihydro-benzo[f][1,4]oxazepin-5-yl or 2,3-dihydro-benzo[b][1,4]oxazepin-4-yl group,a 2,3-dihydro-benzo[f][1,4]thiazepin-5-yl or 2,3-dihydro-benzo[b][1,4]thiazepin-4-yl group,a 5-oxo-4,5-dihydro-benzo[f][1,3,4]oxadiazepin-2-yl group,a 11H-dibenzo[b,e]azepin-6-yl or 11-oxo-11H-dibenzo[b,e]azepin-6-yl group,a 11H-benzo[e]pyrido[3,2-b]azepin-6-yl or a 5H-1,9,10-triaza-dibenzo[a,d]-cyclohepten-11-yl group,a 5H-dibenzo[b,e][1,4]diazepin-11-yl or dibenzo[b,f][1,4]oxazepin-11-yl group,a dibenzo[b,f][1,4]thiazepin-11-yl, 5-oxo-dibenzo[b,f][1,4]thiazepin-11-yl or 5,5-dioxo-dibenzo[b,f][1,4]thiazepin-11-yl group,a 5H-dibenzo[a,d]cyclohepten-10-yl or 5H-dibenzo[b,f]azepin-10-yl group,a phenanthridin-6-yl, benzo[c][1,5]naphthyridin-6-yl, benzo[h][1,6]naphthyridin-5-yl, benzo[c][1,8]naphthyridin-6-yl, benzo[f][1,7]naphthyridin-5-yl or 1,5,9-triaza-phenanthren-10-yl group,a 1,2,3,4-tetrahydro-phenanthridin-6-yl, 1,2,3,4,4a, 10b-hexahydro-phenanthridin-6-yl, 2,3-dihydro-1H-4-aza-cyclopenta[a]naphth-5-yl or 8,9,10,11-tetrahydro-7H-6-aza-cyclohepta[a]naphth-5-yl group,a 2,3-dihydro-1H-4-oxa-10-aza-phenanthren-9-yl or 1-oxo-2,3-dihydro-1H-4-oxa-10-aza-phenanthren-9-yl group,a phenanthren-9-yl, benzo[h]quinolin-6-yl, benzo[f]quinolin-6-yl or benzo[f]quinoxalin-6-yl group,a 5H-benzo[e]pyrrolo[1,2-a][1,4]diazepin-11-yl, thieno[3,2-b][1,4]benzoxazepin-9-yl, 5H-dibenzo[d,f][1,3]diazepin-6-yl or 5-oxa-7-aza-dibenzo[a,c]cyclohepten-6-yl group,a naphtho[1,2-d]oxazol-2-yl, naphtho[2,1-d]oxazol-2-yl, naphtho[1,2-d]thiazol-2-yl, naphtho[2,1-d]thiazol-2-yl, naphtho[1,2-d]imidazol-2-yl, naphtho[1,2-b]furan-2-yl or naphtho[2,1-b]furan-2-yl group,or a furo[3,2-c]isoquinolin-5-yl, pyrazolo[1,5-c]quinazolin-5-yl or 1H-perimidin-2-yl group,while the benzo groups of the above mentioned radicals Ra are substituted by the groups R10 to R13 and the alkylene units of the above mentioned groups Ra may be substituted by one or two fluorine atoms or one or two methyl groups and the imino groups of the above mentioned radicals Ra may be substituted by a methyl group and R10 denotes a hydrogen atom,a fluorine, chlorine, bromine or iodine atom,a methyl or ethyl group,a hydroxy, methoxy or ethoxy group ora difluoromethyl, trifluoromethyl, difluoromethoxy, or trifluoromethoxy group andR11, R12 and R13, which may be identical or different, each denote a hydrogen, fluorine, chlorine or bromine atom or a methyl, trifluoromethyl or methoxy group,R2 denotes a hydrogen atom ora methyl, trifluoromethyl, ethyl, propyl, cyclopropyl or isopropyl group,Y denotes a group of formula C—R5, while R5 denotes a hydrogen atom or a methyl, ethyl, propyl or isopropyl group,R3 denotes a 2-buten-1-yl or 3-methyl-2-buten-1-yl group,a 1-buten-1-yl group, ora 2-butyn-1-yl groupandR4 denotes a (3-amino-piperidin-1-yl) group,or a tautomer, enantiomer, diastereomer, mixture thereof, or salt thereof.
  • 4. A physiologically acceptable salt of the compound according to claim 1 with an inorganic or organic acid.
  • 5. A pharmaceutical composition containing a compound according to claim 1 or a salt with an inorganic or organic acid optionally together with one or more inert carriers and/or diluents.
Priority Claims (1)
Number Date Country Kind
103 27 439 Jun 2003 DE national
RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 10/865,719, filed Jun. 10, 2004, now allowed, which claims benefit of U.S. Ser. No. PV 60/487,309, filed Jul. 15, 2003, and claims priority to German Application No. DE 10327439.1 filed Jun. 18, 2003, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (69)
Number Name Date Kind
2928833 Leake et al. Mar 1960 A
4005208 Bender Jan 1977 A
4599338 Regnier et al. Jul 1986 A
5041448 Janssens Aug 1991 A
5051517 Findeisen Sep 1991 A
5223499 Greenlee Jun 1993 A
5234897 Findeisen et al. Aug 1993 A
5258380 Janssens et al. Nov 1993 A
5266555 Findeisen et al. Nov 1993 A
5389642 Dorsch et al. Feb 1995 A
5470579 Bonte et al. Nov 1995 A
5719279 Kufner-Muhl et al. Feb 1998 A
5753635 Buckman May 1998 A
6303661 Demuth Oct 2001 B1
6342601 Bantick Jan 2002 B1
6548481 Demuth Apr 2003 B1
6579868 Asano Jun 2003 B1
6784195 Hale et al. Aug 2004 B2
6821978 Chackalamannil Nov 2004 B2
6869947 Kanstrup Mar 2005 B2
7060722 Kitajima Jun 2006 B2
7074794 Kitajima Jul 2006 B2
7074798 Yoshikawa Jul 2006 B2
7074923 Dahanukar Jul 2006 B2
7109192 Hauel et al. Sep 2006 B2
7192952 Kanstrup Mar 2007 B2
7217711 Eckhardt May 2007 B2
7235538 Kanstrup et al. Jun 2007 B2
20020161001 Kanstrup Oct 2002 A1
20020169174 Chackalamannil et al. Nov 2002 A1
20020198205 Himmelsbach Dec 2002 A1
20030105077 Kanstrup et al. Jun 2003 A1
20030199528 Kanstrup Oct 2003 A1
20030232987 Dahanukar Dec 2003 A1
20030236272 Carr Dec 2003 A1
20040034014 Kanstrup et al. Feb 2004 A1
20040077645 Himmelsbach et al. Apr 2004 A1
20040082570 Yoshikawa Apr 2004 A1
20040087587 Himmelsbach May 2004 A1
20040097510 Himmelsbach et al. May 2004 A1
20040116328 Yoshikawa et al. Jun 2004 A1
20040122228 Maier Jun 2004 A1
20040138214 Himmelsbach et al. Jul 2004 A1
20040138215 Eckhardt Jul 2004 A1
20040166125 Himmelsbach Aug 2004 A1
20050020574 Hauel et al. Jan 2005 A1
20050026921 Eckhardt Feb 2005 A1
20050130985 Himmelsbach Jun 2005 A1
20050187227 Himmelsbach et al. Aug 2005 A1
20050203095 Eckhardt Sep 2005 A1
20050234108 Himmelsbach et al. Oct 2005 A1
20050261352 Eckhardt Nov 2005 A1
20060004074 Eckhardt Jan 2006 A1
20060058323 Eckhardt Mar 2006 A1
20060063787 Yoshikawa Mar 2006 A1
20060079541 Langkopf Apr 2006 A1
20060094722 Yasuda May 2006 A1
20060100199 Yoshikawa et al. May 2006 A1
20060142310 Pfrengle et al. Jun 2006 A1
20060173056 Kitajima et al. Aug 2006 A1
20060205711 Himmelsbach et al. Sep 2006 A1
20060247226 Himmelsbach et al. Nov 2006 A1
20070027168 Pfrengle et al. Feb 2007 A1
20070088038 Eckhardt et al. Apr 2007 A1
20070093659 Bonfanti et al. Apr 2007 A1
20070142383 Eckhardt et al. Jun 2007 A1
20070185091 Himmelsbach et al. Aug 2007 A1
20070219178 Muramoto Sep 2007 A1
20070281940 Dugi et al. Dec 2007 A1
Foreign Referenced Citations (58)
Number Date Country
2136288 May 1995 CA
2418656 Feb 2002 CA
2496325 Mar 2004 CA
2496249 Apr 2004 CA
2505389 May 2004 CA
2508233 Jun 2004 CA
2529729 Dec 2004 CA
2543074 Jun 2005 CA
2555050 Sep 2005 CA
2556064 Sep 2005 CA
2590912 Jun 2006 CA
10109021 Sep 2002 DE
10117803 Oct 2002 DE
0149578 Jul 1985 EP
0400974 May 1990 EP
0399285 Nov 1990 EP
0412358 Feb 1991 EP
0524482 Jan 1993 EP
0657454 Jun 1995 EP
1054012 Nov 2000 EP
1338595 Aug 2003 EP
1514552 Mar 2005 EP
1537880 Aug 2005 EP
385302 Apr 1973 ES
2707641 Jan 1995 FR
S37-4895 Jun 1962 JP
2003300977 Oct 2003 JP
2006045156 Feb 2006 JP
9107945 Jun 1991 WO
9403456 Feb 1994 WO
9929695 Jun 1999 WO
0202560 Jan 2002 WO
0214271 Feb 2002 WO
0224698 Mar 2002 WO
02068420 Sep 2002 WO
03004496 Jan 2003 WO
03024965 Mar 2003 WO
03057200 Jul 2003 WO
03104229 Dec 2003 WO
2004018467 Mar 2004 WO
2004018468 Mar 2004 WO
2004028524 Apr 2004 WO
2004033455 Apr 2004 WO
2004041820 May 2004 WO
2004046148 Jun 2004 WO
2004048379 Jun 2004 WO
2004050658 Jun 2004 WO
2004096806 Nov 2004 WO
2004108730 Dec 2004 WO
2004111051 Dec 2004 WO
2005058901 Jun 2005 WO
2005082906 Sep 2005 WO
2005085246 Sep 2005 WO
2006029769 Mar 2006 WO
2006048427 May 2006 WO
2006068163 Jun 2006 WO
2007017423 Feb 2007 WO
2008017670 Feb 2008 WO
Related Publications (1)
Number Date Country
20090258856 A1 Oct 2009 US
Provisional Applications (1)
Number Date Country
60487309 Jul 2003 US
Divisions (1)
Number Date Country
Parent 10865719 Jun 2004 US
Child 12489716 US