The present disclosure is directed to inductors, and more specifically to immersion cooled inductors.
It is known in the art that inductors generate large amounts of heat during operation. In order to prevent damage due to overheating, inductors are cooled. One method of cooling an inductor is to immerse the inductor in a dielectric cooling liquid within a hermetically sealed cooling tank. This configuration is referred to as an immersion cooled inductor.
With high heat flux immersion cooling, heat from the inductor causes the dielectric cooling liquid to change states from a liquid to a gas (referred to as boiling). The heated cooling vapor (gas) rises to the top of the hermetically sealed cooling tank and condenses, thereby providing a cooling effect to the inductor. The rising gas is normally in a moving collection of bubbles, but other flow patterns such as annular flow are possible. Most commonly, the vapor is condensed in a heat exchanger which is cooled by another fluid, usually air. In some designs a submerged condenser is used as a part of the vessel side walls and removes heat directly from the liquid.
For boiling to occur on a surface, that surface must be raised above the saturation temperature defined by the vessel pressure. This temperature excess, called “overshoot” can result in thermal damage to the windings or the core. The overshoot is a function of the heat flux and surface condition.
The excess heat involved in bringing the dielectric cooling liquid above the saturation temperature can damage the inductor. Furthermore, when an event (such as vibration) causes the cooling liquid to begin boiling above the saturation temperature, the body of cooling liquid all begins to vaporize almost instantaneously resulting in a violent boiling effect causing a rapid pressurization. The rapid pressurization produces large transient forces that can damage the inductor, the mounting features or containment vessel.
Disclosed is an immersion cooled inductor having a hermetically sealed immersion tank at least partially filled with a dielectric cooling liquid, a plurality of inductor windings wound around a core, wherein the inductor windings and the core are at least partially submerged within the dielectric cooling liquid, a plurality of leads extending out of the immersion tank, wherein the leads are connected to the inductor windings, and at least one localized boiling feature operable to begin boiling of the dielectric cooling liquid prior to the temperature of the cooling liquid significantly exceeding the saturation temperature of the dielectric cooling liquid.
Also disclosed is a method for cooling an inductor having the steps of: at least partially submerging an inductor in a dielectric cooling liquid within a hermetically sealed tank and instigating boiling within the dielectric cooling liquid using a localized boiling feature, such that the dielectric cooling liquid begins boiling without significantly exceeding a saturation temperature.
These and other features of this application will be best understood from the following specification and drawings, the following of which is a brief description.
Multiple leads 50 are connected to the inductor windings 32 via connector pins 54 and a localized boiling feature 52. The leads 50 provide power inputs and outputs to the inductor 30. In the example of
The tank 20 includes a vapor portion 62 above the dielectric cooling liquid 60. For an overhead condenser, the vapor portion 62 is in contact with a condenser that is integrated with the cap 22 or on other walls of the vessel. The vapor space provides a condensing area where heated vapors condense and return to the dielectric cooling liquid 60. The dielectric cooling liquid 60 cools the inductor through the state change of the cooling liquid 60 to a gas. While the example illustrated in
Under normal conditions, when the dielectric cooling liquid 60 is heated to a certain temperature excess above the saturation point, the dielectric cooling liquid 60 begins to boil. The conversion of the dielectric cooling liquid 60 into a vapor absorbs heat energy from the inductor 30. The vapors then rise (normally in the form of bubbles) to the top of the cooling tank 20 into the vapor portion 62. The vapors in the vapor portion 62 condense and return as cooling liquid 60. The process of converting to a vapor and then back into a liquid removes energy from the system thereby cooling the inductor 30. The choice of the dielectric fluid and the condenser temperature dictate the pressure level at which a hermetically sealed tank 20 operates. In steady operation, the dielectric liquid is under saturation conditions and the conductors surfaces are slightly hotter to support boiling. However, a transient condition can occur during startup where the heating surfaces reach temperatures beyond the normal boiling values and the fluid is significantly above the saturation temperature for that pressure. That is to say, the temperature of the fluid exceeds the boiling temperature at that pressure by more than a marginal amount. This condition is referred to as over saturation.
Each of the leads 50 are connected to the inductor windings 32 via a localized boiling feature 52 and a connector pin 54. In systems constructed without the localized boiling feature 52, the dielectric cooling liquid 60 temperature can over saturate the cooling liquid 60. In such a case, the initial boiling event is violent and can damage the inductor 30, its support structure or containment vessel due to sudden, possibly unbalanced, pressure forces, or the resultant vibration as all of the cooling liquid 60 attempts to vaporize almost instantaneously.
In order to prevent over saturation and violent boiling, localized boiling features 52 are included below the inductor 30. In alternate examples, localized boiling features 52 can be intermixed with the inductor windings 32, depending on the specific type of localized boiling feature 52 used. The illustrated localized boiling features 52 of
An alternate to the “necked down” region of higher heat generation as a localized boiling feature 52 of
The inductor 130 includes a core 134 about which inductor windings 132, 152 are wound. Each of the leads 150 is connected to a localized boiling winding 152 via a connector pin 154. Each of the localized boiling windings 152 also function as inductor windings. As can be seen in the two cross-sectional views of
The particular diameters D and D′ of the windings 132, 152 are exaggerated for illustrative effect and can be determined by one of skill in the art according to known principles for any particular application. The particular location of the localized boiling winding 152 relative to the locations of the standard inductor windings 132 can be determined by one of skill in the art.
In the example inductor 130 of
In embodiments utilizing the connector pin 210, another alternative localized boiling feature 52 can be implemented on the surface 214 of the connector pin 210. The surface 214 of the connector pin 210 is roughened by rubbing the surface 214 with an abrasive substance prior to installation of the connector pin 210. The roughened surface 214 boils with less surface temperature overshoot and transfers more heat per unit area to the dielectric cooling liquid than a smooth surface. Therefore, the roughened surface of the connector pin 210 operates as the localized boiling feature 52. Other commercially available surface coatings and treatments, like a PBS (Porous Boiling Surface) or an organic metal powered mixture are available to enhance boiling and can be used on the localized boiling feature 52.
The increased heat flux at the connector pin 210 increases the surface 214 temperature and the surface 214 of the connector pin 210 becomes a localized boiling feature 52. This feature therefore initiates boiling before the wetted surface of the inductor windings 32. As with the localized boiling feature 52 illustrated in
With continued reference to
Although an example of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
This application is a continuation of U.S. patent application No. 13/467957, which was filed May 9, 2012.
Number | Name | Date | Kind |
---|---|---|---|
4145679 | Mitchell, Jr. | Mar 1979 | A |
4321421 | Pierce | Mar 1982 | A |
4467305 | Ando | Aug 1984 | A |
4543446 | Foss et al. | Sep 1985 | A |
4609900 | Bachhofer | Sep 1986 | A |
5346750 | Hatakeyama et al. | Sep 1994 | A |
6144278 | Nishida et al. | Nov 2000 | A |
6301127 | Kobayashi | Oct 2001 | B1 |
7283378 | Clemmons | Oct 2007 | B2 |
7471181 | MacLennan | Dec 2008 | B1 |
7473628 | Seto et al. | Jan 2009 | B2 |
7710228 | Feng et al. | May 2010 | B2 |
7855629 | MacLennan | Dec 2010 | B2 |
7973632 | MacLennan et al. | Jul 2011 | B2 |
8009008 | MacLennan | Aug 2011 | B2 |
8154372 | Feng et al. | Apr 2012 | B2 |
20030080841 | Nishimizu et al. | May 2003 | A1 |
20030186020 | Kasahara | Oct 2003 | A1 |
20040066608 | Takagi et al. | Apr 2004 | A1 |
20070080769 | Thiel et al. | Apr 2007 | A1 |
20110140820 | Guentert, III et al. | Jun 2011 | A1 |
20110227681 | MacLennan | Sep 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20140159843 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13467957 | May 2012 | US |
Child | 14182424 | US |