Electronic devices have temperature requirements. Heat from the use of the electronic device is controlled using cooling systems, because devices may be damaged if they overheat. Thus, heat is typically siphoned away from electronic devices using cooling systems. Examples of cooling systems include air, liquid, and immersion cooling.
Some examples of the present application are described with respect to the following figures:
In immersion cooling, cooling fluid may flow through or around electronic devices to prevent overheating of the devices. The heat produced by the components may be transferred to the cooling fluid to regulate the temperature of the devices. Conventional cooling systems include standard racks that are placed on their back in a tank and completely immersed in cooling fluid (i.e., submerged as a whole unit). To service or replace parts, entire rack may need to be shut down or powered down and servers lifted out of the tank which may be several inches deep. Such cooling systems may create space limitations, difficulties in accessing and servicing the hardware components, and may also lead to inefficiencies due to increased down time (i.e., from shutting down the entire rack).
Examples disclosed herein address the above needs and challenges by providing a plurality of servers in a top-loading modular form factor (i.e., a top-loading computing cartridge) that can be installed or removed from an immersion cooled tank/chassis without disrupting the operation of other servers. For example, a particular computing cartridge can be insertable or removable from a slot in the chassis, via the top, without powering down other computing cartridges in the chassis or powering down the chassis. This allows for better serviceability and less down time.
In one example, a multi-tiered cooling structure includes multiple tanks on each tier of the cooling structure. Each tank includes a plurality of top-loading computing cartridges insertable from a top of the tank. Each tank also includes a supply inlet on a first side of the tanks to direct cooling fluid from the first side to a second side, and a return outlet on the second side of the tanks to expel the cooling fluid from the tanks. The plurality of computing cartridges are immersed in the cooling fluid.
In another example, a chassis includes a plurality of slots to receive a plurality of top-loading computing cat fridges from a top of the chassis. The chassis also includes a supply inlet on a first side of the chassis to direct cooling fluid from the first side to a second side of the chassis, and a return outlet on the second side of the chassis to expel the cooling fluid from the chassis. The plurality of computing cartridges are immersed in the cooling fluid.
In another example, a method includes pumping a cooling fluid into a chassis, where the chassis includes a plurality of slots to receive a plurality of top-loading computing cartridges insertable from a top of the chassis. The method includes directing the cooling fluid through a supply inlet on a first side of the chassis, and expelling the cooling fluid through a return outlet on a second side of the chassis. The plurality of computing cartridges are immersed in the cooling fluid.
Referring now to the figures,
Tank 104 includes a supply inlet 116 on a first side 106 (e.g., the front side) to receive the cooling fluid and direct the cooling fluid to a second side 126 (e.g., the backside/opposite side) of the tank 104. Tank 104 also includes a return outlet (not shown) on the second side 126 to direct an outflow of the cooling liquid and expel the cooling liquid from the tank 104. In one example, the expelled cooling fluid enters a heat exchanger 130 to transfer the heat from the cooling fluid so that the cooling fluid may be pumped back into the tanks 104a-104d. In some examples, the cooling fluid can be a dielectric fluid or mineral oil that is not electrically conductive and has better heat properties than water, for example.
The plurality of computing cartridges are immersed in the cooling fluid as the cooling fluid is directed into and expelled from the tank 104. The heat generated by the computing cartridges are removed by the cooling fluid. Although
In some examples, chassis 204 also includes other devices 260 such as power components that may not be immersed in the cooling fluid. In other examples, chassis 204 can include switches 280 (or similar devices) that may be immersed in the cooling fluid and collocated with the computing cartridges 220.
Computing cartridges 220 can be server cartridges, microservers, servers and/or other type of electrical component in which the temperature may be regulated by immersion cooling, for example. As described above, computing cartridges 220 are top-loading computing cartridges. Further computing cartridges 220 are hot pluggable into the chassis 204. As used herein, “hot-pluggable” or “hot-plug” means a computing cartridge 220 can be inserted or removed from the chassis 204 without disrupting the operation of another cartridge.
Accordingly, in some examples, a computing cartridge 220 is insertable/removable from the chassis (via the top) without powering down or shutting down any other computing cartridge 220 or the chassis 204, thereby improving serviceability and reducing downtime.
Computing cartridge 320 can be a server cartridge, a microserver, a server and/or other type of electrical component in which the temperature may be regulated by immersion cooling, for example. Computing cartridge 320 can include additional elements thereon. For example, computing cartridge 320 can include a first electronic device 322, second electronic device 324, third electronic device 326, and fourth electronic device 328 to perform the functionalities of computing cartridge 320.
In one example, electronic devices 322, 324, 326, 328 may be a set of electronic devices configured to optimize performance of a specific application. By way of illustration, if computing cartridge 320 is designed to serve as a web server, first electronic device 322 may serve as a data store (e.g., hard disk, solid state drive, etc.) on which web content is stored, and electronic devices 322, 324, and 326 may be processors that receive and/or respond to incoming requests for system resources.
The electronic devices 322, 324, 326, 328 of computing cartridge 320 are immersed into the cooling fluid and cooled as the cooling fluid flows from the front side 206 (via inlet 216) to the backside 226 (via an outlet) of the chassis 204. Computing cartridge 320 is removable from the chassis 204 without disrupting the operation of other computing cartridges within the chassis 204. For example, computing cartridge 320 can be powered down and removed from the slot 302 (via the top of the chassis) while maintaining power to the other computing cartridges of the chassis 204.
Method 400 includes pumping a cooling fluid into a chassis, where the chassis includes a plurality of top-loading computing cartridges insertable from a top of the chassis, at 410. For example, cooling fluid is pumped into chassis 204. A pump may be included as part of the cooling structure 100 of
Method 400 includes directing the cooling fluid through a supply inlet on a first side of the chassis, at 420. For example, by directing the cooling fluid through the supply inlet, the cooling fluid may flow from the front side to the backside (i.e., the opposite side) of the chassis. In this example, the cooling fluid may be directed across the plurality of computing cartridges in a horizontal manner.
Method 400 includes expelling the cooling fluid through a return outlet on a second side of the chassis, where the plurality of computing cartridges are immersed in the cooling fluid, at 430. The second side of the chassis is located opposite from the first side of the chassis. In this example, the cooling fluid may flow through the inlet on the first side to the outlet on the opposite side of the chassis. In some examples, method 400 of
Method 500 includes inserting a first computing cartridge into a first slot without disrupting operation of other computing cartridges in the chassis, at 510. For example, a computing cartridge may be inserted into a slot within the chassis without removing power from the other computing cartridges within the chassis.
Method 500 includes receiving a second computing cartridge from a second slot without disrupting operation of the other computing cartridges in the chassis, at 520. For example, a computing cartridge may be powered down and removed from a slot within the chassis without removing power from the other computing cartridges within the chassis.
Method 500 also includes receiving the expelled cooling fluid at a heat exchanger coupled to the chassis, at 530. For example, upon expelling the cooling fluid from the chassis, a heat exchanger may accept the expelled cooling fluid. The heat exchanger may transfer heat from the cooling fluid to another medium within the heat exchanger. In this example, the cooling fluid may be pumped back into the chassis. In this manner, the cooling fluid remains in a continuous loop from the chassis into the heat exchanger and back to the chassis. Looping the cooling fluid through the chassis and the heat exchanger, the chassis includes a continuous flow of the cooling fluid to regulate the temperature of the plurality of computing cartridges within the chassis. In some examples, method 500 of
The techniques described above may be embodied in a computer-readable medium for configuring a computing system to execute the method. The computer-readable media may include, for example and without limitation, any number of the following non-transitive mediums: magnetic storage media including disk and tape storage media; optical storage media such as compact disk media (e.g., CD-ROM, CD-R, etc.) and digital video disk storage media; holographic memory; nonvolatile memory storage media including semiconductor-based memory units such as FLASH memory, EEPROM, EPROM, ROM; ferromagnetic digital memories; volatile storage media including registers, buffers or caches, main memory, RAM, etc.; and the Internet, just to name a few. Other new and obvious types of computer-readable media may be used to store the software modules discussed herein. Computing systems may be found in many forms including but not limited to mainframes, minicomputers, servers, workstations, personal computers, notepads, personal digital assistants, tablets, smartphones, various wireless devices and embedded systems, just to name a few.
In the foregoing description, numerous details are set forth to provide art understanding of the present disclosure. However, it will be understood by those skilled in the art that the present disclosure may be practiced without these details. While the present disclosure has been disclosed with respect to a limited number of examples, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/058140 | 9/29/2014 | WO | 00 |