Claims
- 1. The process of constructing an aqueous repellent barrier interlocked to and over a material, comprising the following steps, step (c) being optional when steps (a) and (b) are combined, and step (b) being optional when steps (a) and (c) are combined:
- (a) exposing a porous surface of a first material having a pore size capable of being penetrated by a second particulate material made from silicon dioxide reacted with an organo silane, said second particulate material having an average diameter of between about 7 and 45 nanometers, said first material being free of surface contaminants preventing contact of said second particulate material with said surface and/or pores,
- (b) impacting said surface and/or pores with second particulate material and partly-porous implement with a force sufficient to cause second particulate material to impregnate said pores and to interlock to and over said surface and within said pores thereby forming a matrix of said second particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier over said surface, and providing a fire, mold, and decay resistant final surface finish composition
- (c) applying said second particulate material onto said first material and said surface and/or pores by brushing, with a bristled brush, or rubbing with a partly-porous implement, the said second particulate material onto the first material and said surface and/or pores, utilizing sufficient pressure, agitation, and frictional force to cause second particulate material to impregnate said pores and to interlock to and over said surface and within said pores thereby forming a matrix of said second particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier over said surface, and providing an instantly-dry and not-slippery final surface composition.
- 2. The process of claim 1 including a first step of removing said surface contaminants from said surface and pores and/or abrading said surface and pores.
- 3. The process of claim 1 in which partly-porous implement contains second particulate material.
- 4. The process of claim 3 in which said implement contains a third material having an average diameter larger than said second particulate material, said third material adding weight to promote the impact of said second particulate material on said surface.
- 5. The process of claim 4 in which said implement contains a sieve preventing third material from impregnating said surface.
- 6. The process of claim 1 in which said implement is flexible and hand operated.
- 7. The process of claim 1 in which said surface is pretreated to remove contaminants from said surface and in said pores.
- 8. The process of claim 1 in which silicon dioxide is replaced by silicates of alumina.
- 9. The process of claim 7 in which said pretreated includes optional abrasive cleaning of said surface and said pores.
- 10. A product having a surface processed in accordance with the process of claim 1.
- 11. The process of constructing an aqueous repellent barrier interlocked to and over a material, comprising the following steps, steps (c) and/or (d) being optional when steps (a) and (b) are combined, and steps (b) and/or (d) being optional when steps (a) and (c) are combined, and steps (b) and/or (c) being optional when steps (a) and (d) are combined:
- (a) treating a porous surface of a first material to remove contaminants from the surface and pores of said first material, said first material having a pore size capable of being penetrated by a second particulate material made from silicon dioxide and/or other silicates reacted with an organo silane and having an average diameter of about 7 to 45 nanometers,
- (b) impacting said surface and/or pores with second particulate material and partly-porous implement with a force sufficient to cause second particulate material to impregnate said pores and to interlock to and over said surface and within said pores thereby forming a matrix of said second particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier over said surface, and providing a fire, mildew, and freeze-thaw resistant finish composition
- (c) applying said second particulate material onto said first material and said surface and/or pores by brushing, with a bristled brush, or rubbing with a partly-porous implement, the said second particulate material onto the first material and said surface and/or pores, utilizing sufficient agitation and frictional force to simultaneously cause displacement of aqueous and other content of said first material surface and/or pores, and to cause second particulate material to impregnate said pores and to interlock to and over said surface and within said pores thereby forming a matrix of said second particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier over said surface, and providing an instantly-dry and not-slippery final surface composition finish
- (d) impacting said surface and/or pores with second particulate material by driving said second particulate material into contact with said surface and/or pores using s liquid-free gaseous stream containing said second particulate material, said impacting with force sufficient to cause second particulate material to impregnate said pores and to interlock to and over said surface and within said pores thereby forming a matrix of said second particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier over said surface, and providing an instantly dry and fire resistant surface finish composition.
- 12. The process of claim 11 in which said organo silane is selected from the group consisting of dimethyl dichlorosilane, hexamethyl-disilazane, dimethylsiloxane, and mixtures thereof.
- 13. A product or article having a surface processed in accordance with the process of claim 11.
- 14. The process of claim 11 in which partly-porous implement is flexible and hand-operated, and contains second particulate material.
- 15. The process of constructing an aqueous repellent barrier interlocked within and over a substrate, comprising the following steps, steps (c) and/or (d) being optional when steps (a) and (b) are combined, and steps (b) and/or (d) being optional when steps (a) and (c) are combined, and steps (b) and/or (c) being optional when steps (a) and (d) are combined:
- (a) exposing a porous surface of a substrate having a pore size capable of being penetrated by a particulate material made from silicon dioxide and/or other silicates reacted with an organo silane and having an average diameter of about 7 to 45 nanometers,
- (b) impacting said surface and/or pores with said particulate material and partly-porous implement with a force sufficient to cause said particulate material to impregnate said pores and to interlock within and over said surface and within said pores thereby forming a matrix of said particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier within and over said surface, and providing a fire, mold, and decay resistant finish
- (c) applying said particulate material onto said substrate and said surface and/or pores by brushing, with a bristled brush, or rubbing with a partly-porous implement, the said particulate material onto the substrate and said surface and/or pores, utilizing sufficient agitation and frictional force to simultaneously cause displacement of aqueous and other content of said substrate surface and/or pores and to interlock within and over said surface and within said pores thereby forming a matrix of said particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier within and over said surface, and providing an instantly dry flame resistant composition finish
- (d) impacting said surface and/or pores with said particulate material by driving said particulate material within said surface and/or pores using a liquid-free airstream containing said particulate material, said impacting with force sufficient to cause said particulate material to impregnate said pores and to interlock within and over said surface and within said pores thereby forming a matrix of said particulate material and said surface and said pores, said matrix serving as an aqueous repellent barrier within and over said surface, and providing an instantly dry and fire retardant surface finish composition.
- 16. The process of claim 15 in which partly-porous implement is flexible and/or hand-operated, and contains said particulate material.
- 17. A product or article having a surface processed in accordance with the process of claim 15.
- 18. The process of claim 15 in which said organo silane is selected from the group consisting of dimethyl dichlorosilane, hexamethyl-disilazane, dimethylsiloxane, and mixtures thereof.
- 19. The process of claim 15 in which said surface is pretreated to remove contaminants from said surface and in said pores.
- 20. The process of claim 15 including a first step of removing said surface contaminants from said surface and pores and/or abrading said surface and pores.
- 21. The process of claim 16 in which partly-porous implement contains a second particulate material having an average diameter larger than said particulate material, said second particulate material adding weight to promote the impact of said particulate material on said surface.
- 22. The process of claim 16 in which said partly-porous implement contains a sieve preventing said second particulate material from impregnating said surface.
- 23. The process of claim 15 in which silicon dioxide is replaced by silicates of alumina.
Parent Case Info
This application is a continuation of application Ser. No. 08/241,394, filed May 11, 1994, now U.S. Pat. No. 5,460,849, patented Oct. 24, 1995.
US Referenced Citations (19)
Non-Patent Literature Citations (2)
Entry |
Trademark Reg. No. 1,746,645. |
Tulco Chemical Company Brochure. No date shown. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
241394 |
May 1994 |
|