Immunobinders directed against TNF

Information

  • Patent Grant
  • 9803009
  • Patent Number
    9,803,009
  • Date Filed
    Wednesday, October 24, 2012
    11 years ago
  • Date Issued
    Tuesday, October 31, 2017
    6 years ago
Abstract
Isolated binding proteins, e.g., antibodies or antigen binding portions thereof, which bind to tumor necrosis factor-alpha (TNF-α), e.g., human TNF-α, and related antibody-based compositions and molecules are disclosed. Also disclosed are pharmaceutical compositions comprising the antibodies, as well as therapeutic and diagnostic methods for using the antibodies.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


TNF-α binding proteins and their uses in the prevention and/or treatment of acute and chronic immunological diseases are provided.


Background of the Invention


There is a need in the art for improved binding proteins capable of binding TNF-α (also referred to as tumor necrosis factor, tumor necrosis factor-alpha, tumor necrosis factor-α, TNF, and cachectin). Provided are a novel family of binding proteins, CDR grafted binding proteins, humanized binding proteins, and fragments thereof, capable of binding TNF-α with high affinity and neutralizing TNF-α.


BRIEF SUMMARY OF THE INVENTION

TNF-α binding proteins, or antigen-binding portions thereof, that bind TNF-α are provided. In an embodiment, the antigen binding domain comprises the VH region chosen from any one of SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom. In another embodiment, the antigen binding domain comprises the VL region chosen from any one of SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom. In a particular embodiment, the antigen binding domain comprises a VH region and a VL region, for example, wherein the VH region comprises SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom, and the VL region comprises SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom.


In an embodiment, the binding protein binds TNF-α. In another embodiment, the binding protein modulates a biological function of TNF-α. In another embodiment, the binding protein neutralizes TNF-α. In yet another embodiment, the binding protein diminishes the ability of TNF-α to bind to its receptor, for example, the binding protein diminishes the ability of pro-human TNF-α, mature-human TNF-α, or truncated-human TNF-α to bind to its receptor. In yet another embodiment, the binding protein reduces one or more TNF-α biological activities selected from: TNF-dependent cytokine production; TNF-dependent cell killing; TNF-dependent inflammation; TNF-dependent bone erosion; and TNF-dependent cartilage damage.


In an embodiment, the binding protein has an on rate constant (Kon) selected from: at least about 102 M−1s−1; at least about 103 M−1s−1; at least about 104 M−1s−1; at least about 105 M−1s−1; and at least about 106 M−1s−1; as measured by surface plasmon resonance. In another embodiment, the binding protein has an off rate constant (Koff) selected from: at most about 10−3 s−1; at most about 10−4 s−1; at most about 10−5 s−1; and at most about 10−6 s−1, as measured by surface plasmon resonance. In yet another embodiment, the binding protein has a dissociation constant (KD) selected from: at most about 10−7 M; at most about 10−8 M; at most about 10−9 M; at most about 10−10 M; at most about 10−11 M; at most about 10−12 M; and at most 10−13 M.


In another aspect, a method for treating a mammal is provided comprising administering to the mammal an effective amount of the pharmaceutical composition disclosed herein. In another embodiment, a method for reducing human TNF-α activity is provided, the method comprising: contacting human TNF-α with the binding protein disclosed herein such that human TNF-α activity is reduced. In another embodiment, provided is a method for reducing human TNF-α activity in a human subject suffering from a disorder in which TNF-α activity is detrimental, the method comprising administering to the human subject the binding protein disclosed herein such that human TNF-α activity in the human subject is reduced. In another embodiment, provided is a method for treating a subject for a disease or a disorder in which TNF-α activity is detrimental, the method comprising administering to the subject the binding protein disclosed herein such that treatment is achieved.


In one embodiment, the method treats diseases involving immune and inflammatory elements, such as autoimmune diseases, particularly those associated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders.







DETAILED DESCRIPTION OF THE INVENTION

Provided are TNF-α binding proteins, or antigen-binding portions thereof, that bind TNF-α, pharmaceutical compositions thereof, as well as nucleic acids, recombinant expression vectors and host cells for making such binding proteins and fragments. Also provided are methods of using the binding proteins disclosed herein to detect human TNF-α, to inhibit human TNF-α either in vitro or in vivo, and to regulate gene expression or TNF-α related functions.


Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. The meaning and scope of the terms should be clear, however, in the event of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. In this application, the use of “or” means “and/or”, unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms of the term, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit unless specifically stated otherwise.


Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, pathology, oncology, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.


The term “human TNF-α” (abbreviated herein as hTNF-α) includes a trimeric cytokine protein. The term includes a homotrimeric protein comprising three 17.5 kD TNF-α proteins. The homotrimeric protein is referred to as a “TNF-α protein”. The term human “TNF-α” is intended to include recombinant human TNF-α (rhTNF-α), which can be prepared by standard recombinant expression methods. The sequence of human TNF-α is shown in Table 1.









TABLE 1







Sequence of Human TNF-α









Pro-
Sequence
Sequence


tein
Identifier
12345678901234567890123456789012





Human
SEQ ID
VRSSSRTPSDKPVAHVVANPQAEGQLQWLNDR


TNF-α
NO.: 1
ANALLANGVELRDNQLVVPSEGLYLIYSQVLF




KGQGCPSTHVLLTHTISRIAVSYQTKVNLLSA




IKSPCQRETPEGAEAKPWYEPIYLGGVFQLEK




GDRLSAEINRPDYLDFAESGQVYFGIIAL









The term “antibody”, broadly refers to any immunoglobulin (Ig) molecule, or antigen binding portion thereof, comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains, or any functional fragment, mutant, variant, or derivation thereof, which retains the essential epitope binding features of an Ig molecule. Such mutant, variant, or derivative antibody formats are known in the art.


In a full-length antibody, each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG2, IgG 3, IgG4, IgA1 and IgA2) or subclass.


The term “antigen-binding portion” or “antigen-binding region” of a binding protein (or simply “binding protein portion”), refers to one or more fragments of a binding protein that retain the ability to specifically bind to an antigen (e.g., hTNF-α). The antigen-binding function of a binding protein can be performed by fragments of a full-length binding protein. Such binding protein embodiments may also have bispecific, dual specific, or multi-specific formats; specifically binding to two or more different antigens. Examples of binding fragments encompassed within the term “antigen-binding portion” of a binding protein include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al. (1989) Nature 341:544-546, Winter et al., PCT publication WO 90/05144 A1), which comprises a single variable domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see, e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain binding proteins are also intended to be encompassed within the term “antigen-binding portion” of a binding protein. Other forms of single chain binding proteins, such as diabodies are also encompassed. Diabodies are bivalent, bispecific binding proteins in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see, e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, et al. (1994) Structure 2:1121-1123).


The term “binding protein” refers to a polypeptide comprising one or more antigen-binding portions disclosed herein optionally linked to a linker polypeptide or a constant domain. Linker polypeptides comprise two or more amino acid residues joined by peptide bonds and are used to link one or more antigen binding portions. Such linker polypeptides are well known in the art (see e.g., Holliger, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, et al. (1994) Structure 2:1121-1123). A constant domain refers to a heavy or light chain constant domain. Human IgG heavy chain and light chain constant domain amino acid sequences are known in the art and represented in Table 2.









TABLE 2







Sequence of Human IgG Heavy Chain Constant


Domain and Light Chain Constant Domain










Sequence



Pro-
Identi-
Sequence


tein
fier
12345678901234567890123456789012





Ig
SEQ ID
ASTKGPSVFFLAPSSKSTSGGTAALGCLVKDY


gamma-1
NO.: 2
FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS


constant

LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK


region

KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPP




KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL




HQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPSREEMTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLSPGK





Ig
SEQ ID
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDY


gamma-1
NO.: 3
FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS


constant

LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK


region

KVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPP


mutant

KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW




YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL




HQDWLNGKEYKCKVSNKALPAPIEKTISKAKG




QPREPQVYTLPPSREEMTKNQVSLTCLVKGFY




PSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLSPGK





Ig Kappa
SEQ ID
TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY


constant
NO.: 4
PREAKVQWKVDNALQSGNSQESVTEQDSKDST


region

YSLSSTLTLSKADYEKHKVYACEVTHQGLSSP




VTKSFNRGEC





Ig
SEQ ID
QPKAAPSVTLFPPSSEELQANKATLVCLISDF


Lambda
NO.: 5
YPGAVTVAWKADSSPVKAGVETTTPSKQSNNK


constant

YAASSYLSLTPEQWKSHRSYSCQVTHEGSTVE


region

KTVAPTECS









A binding protein, or antigen-binding portion thereof, may be part of a larger immunoadhesion molecule, formed by covalent or noncovalent association of the binding protein or binding protein portion with one or more other proteins or peptides. Examples of such immunoadhesion molecules include use of the streptavidin core region to make a tetrameric scFv molecule (Kipriyanov, et al. (1995) Hum. Antibod. Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv molecules (Kipriyanov, et al. (1994) Mol. Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab′)2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, binding proteins, binding protein portions and immunoadhesion molecules can be obtained using standard recombinant DNA techniques, as described herein.


An “isolated binding protein” refers to a binding protein, or antigen-binding portion thereof, that is substantially free of other binding proteins having different antigenic specificities (e.g., an isolated binding protein that specifically binds hTNF-α is substantially free of binding proteins that specifically bind antigens other than hTNF-α). An isolated binding protein that specifically binds hTNF-α may, however, have cross-reactivity to other antigens, such as TNF-α molecules from other species. Moreover, an isolated binding protein may be substantially free of other cellular material and/or chemicals.


The term “human binding protein” includes binding proteins, or antigen-binding portion thereof, that having variable and constant regions derived from human germline immunoglobulin sequences. The human binding proteins disclosed herein may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human binding protein”, is not intended to include binding proteins in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.


The terms “Kabat numbering”, “Kabat definitions” and “Kabat labeling” are used interchangeably herein. These terms, which are recognized in the art, refer to a system of numbering amino acid residues which are more variable (i.e., hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof (Kabat et al. (1971) Ann. NY Acad. Sci. 190:382-391 and Kabat, et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). See also, Martin, “Protein Sequence and Structure Analysis of Antibody Variable Domains,” In Kontermann and Dübel, eds., Antibody Engineering (Springer-Verlag, Berlin, 2001), Chapter 31, especially pages 432-433. For the heavy chain variable region, the hypervariable region ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 106 for CDR3. For the light chain variable region, the hypervariable region ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3.


The term “CDR” refers to the complementarity determining region within antibody variable sequences. There are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the variable regions. The term “CDR set” refers to a group of three CDRs that occur in a single variable region capable of binding the antigen. The exact boundaries of these CDRs have been defined differently according to different systems. The system described by Kabat (Kabat et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987) and (1991)) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Chothia and coworkers (Chothia and Lesk (1987) J. Mol. Biol. 196:901-917) and Chothia et al. (1989) Nature 342:877-883) found that certain sub-portions within Kabat CDRs adopt nearly identical peptide backbone conformations, despite having great diversity at the level of amino acid sequence. These sub-portions were designated as L1, L2 and L3 or H1, H2 and H3 where the “L” and the “H” designates the light chain and the heavy chains regions, respectively. These regions may be referred to as Chothia CDRs, which have boundaries that overlap with Kabat CDRs. Other boundaries defining CDRs overlapping with the Kabat CDRs have been described by Padlan (1995) FASEB J. 9:133-139 and MacCallum (1996) J. Mol. Biol. 262(5):732-745. Still other CDR boundary definitions may not strictly follow one of the above systems, but will nonetheless overlap with the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. The methods used herein may utilize CDRs defined according to any of these systems, although particular embodiments use Kabat or Chothia defined CDRs.


Human heavy chain and light chain acceptor sequences are known in the art. In one embodiment of the disclosure the human heavy chain and light chain acceptor sequences are selected from the sequences listed from V-base (hvbase.mrc-cpe.cam.ac.uk/) or from IMGT®, the international ImMunoGeneTics information System® (himgt.cines.fr/textes/IMGTrepertoire/LocusGenes/). In another embodiment of the disclosure the human heavy chain and light chain acceptor sequences are selected from the sequences described in Table 3 and Table 4, respectively.









TABLE 3







Heavy Chain Acceptor Sequences









SEQ
Protein
Sequence


ID No.
region
12345678901234567890123456789012





SEQ ID
VH4-59 FR1
QVQLQESGPGLVKPSETLSLTCTVSGGSISS


NO: 6







SEQ ID
VH4-59 FR2
WIRQPPGKGLEWIG


NO: 7







SEQ ID
VH4-59 FR3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR


NO: 8







SEQ ID
VH3-53 FR1
EVQLVESGGGLIQPGGSLRLSCAASGFTVSS


NO: 9







SEQ ID
VH3-53 FR2
WVRQAPGKGLEWVS


NO: 10







SEQ ID
VH3-53 FR3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR


NO: 11







SEQ ID
JH1/JH4/
WGQGTLVTVSS


NO: 12
JH5 FR4






SEQ ID
JH2 FR4
WGRGTLVTVSS


NO: 13







SEQ ID
JH6 FR4
WGQGTTVTVSS


NO: 14
















TABLE 4







Light Chain Acceptor Sequences









SEQ
Protein
Sequence


ID No.
region
12345678901234567890123456789012





SEQ ID
1-39/O12
DIQMTQSPSSLSASVGDRVTITC


NO: 15
FR1






SEQ ID
1-39/O12
WYQQKPGKAPKLLIY


NO: 16
FR2






SEQ ID
1-39/O12
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC


NO: 17
FR3






SEQ ID
3-15/L2 FR1
EIVMTQSPATLSVSPGERATLSC


NO: 18







SEQ ID
3-15/L2 FR2
WYQQKPGQAPRLLIY


NO: 19







SEQ ID
3-15/L2 FR3
GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC


NO: 20







SEQ ID
JK2 FR4
FGQGTKLEIKR


NO: 21









The term “multivalent binding protein” is used in this specification to denote a binding protein comprising two or more antigen binding sites. The multivalent binding protein may be engineered to have the three or more antigen binding sites, and is generally not a naturally occurring antibody. The term “multispecific binding protein” refers to a binding protein capable of binding two or more related or unrelated targets. Dual variable domain (DVD) binding proteins or immunoglobulins (DVD-Ig) as used herein, are binding proteins that comprise two or more antigen binding sites and are tetravalent or multivalent binding proteins. Such DVD-binding proteins may be monospecific, i.e., capable of binding one antigen or multispecific, i.e., capable of binding two or more antigens. DVD-binding proteins comprising two heavy chain DVD-Ig polypeptides and two light chain DVD-Ig polypeptides are referred to a DVD-Ig. Each half of a DVD-Ig comprises a heavy chain DVD-Ig polypeptide, and a light chain DVD-Ig polypeptide, and two antigen binding sites. Each binding site comprises a heavy chain variable domain and a light chain variable domain with a total of 6 CDRs involved in antigen binding per antigen binding site. DVD binding proteins and methods of making DVD binding proteins are disclosed in U.S. Pat. No. 7,612,181.


One aspect of the disclosure pertains to a DVD binding protein comprising binding proteins capable of binding TNF-α. In a particular embodiment, the DVD binding protein is capable of binding TNF-α and a second target.


The term “neutralizing” refers to neutralization of a biological activity of a cytokine when a binding protein specifically binds the cytokine. In a particular embodiment, binding of a neutralizing binding protein to hTNF-α results in inhibition of a biological activity of hTNF-α, e.g., the neutralizing binding protein binds hTNF-α and reduces a biologically activity of hTNF-α by at least about 20%, 40%, 60%, 80%, 85% or more Inhibition of a biological activity of hTNF-α by a neutralizing binding protein can be assessed by measuring one or more indicators of hTNF-α biological activity well known in the art. For example neutralization of the cytoxicity of TNF-α on L929 cells.


In another embodiment, the terms “agonist” or “agonizing” refer to an increase of a biological activity of TNF-α when a binding protein specifically binds TNF-α, e.g., hTNF-α. In a particular embodiment, binding of an agonizing binding protein to TNF-α results in the increase of a biological activity of TNF-α. In a particular embodiment, the agonistic binding protein binds TNF-α and increases a biologically activity of TNF-α by at least about 20%, 40%, 60%, 80%, 85%, 90%, 95, 96%, 97%, 98%, 99%, and 100%. An inhibition of a biological activity of TNF-α by an agonistic binding protein can be assessed by measuring one or more indicators of TNF-α biological activity well known in the art.


The term “activity” includes activities such as the binding specificity/affinity of a binding protein for an antigen, for example, a hTNF-α binding protein that binds to a TNF-α antigen and/or the neutralizing potency (or agonizing potency) of a binding protein, for example, a hTNF-α binding protein whose binding to hTNF-α inhibits the biological activity of hTNF-α, e.g., neutralization of the cytoxicity of TNF-α on L929 cells.


The term “surface plasmon resonance” refers to an optical phenomenon that allows for the analysis of real-time bio specific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).


The term “Kon” refers to the on rate constant for association of a binding protein (e.g., an antibody) to the antigen to form, e.g., the antibody/antigen complex as is known in the art. The “Kon” also is known by the terms “association rate constant”, or “ka”, as used interchangeably herein. This value indicating the binding rate of an antibody to its target antigen or the rate of complex formation between an antibody and antigen also is shown by the equation below:

Antibody(“Ab”)+Antigen(“Ag”)→Ab−Ag


The term “Koff” refers to the off rate constant for dissociation, or “dissociation rate constant”, of a binding protein (e.g., an antibody), from the, e.g., antibody/antigen complex as is known in the art. This value indicates the dissociation rate of an antibody from its target antigen or separation of Ab−Ag complex over time into free antibody and antigen as shown by the equation below:

Ab+Ag←Ab−Ag


The term “KD” refers to the “equilibrium dissociation constant” and refers to the value obtained in a titration measurement at equilibrium, or by dividing the dissociation rate constant (Koff) by the association rate constant (Kon). The association rate constant, the dissociation rate constant and the equilibrium dissociation constant are used to represent the binding affinity of an antibody to an antigen. Methods for determining association and dissociation rate constants are well known in the art. Using fluorescence-based techniques offers high sensitivity and the ability to examine samples in physiological buffers at equilibrium. Other experimental approaches and instruments such as a BIAcore® (biomolecular interaction analysis) assay can be used (e.g., instrument available from BIAcore International AB, a GE Healthcare company, Uppsala, Sweden). Additionally, a KinExA® (Kinetic Exclusion Assay) assay, available from Sapidyne Instruments (Boise, Id.) can also be used.


I. Binding Proteins that Bind Human TNF-α


One aspect of the present disclosure provides isolated fully-human anti-human TNF binding proteins, such as monoclonal antibodies, or antigen-binding portions thereof, that bind to TNF-α with high affinity, a slow off rate and high neutralizing capacity. A second aspect of the disclosure provides affinity-matured fully-human anti-TNF binding proteins, such as monoclonal antibodies, or antigen-binding portions thereof, that bind to TNF-α with high affinity, a slow off rate and high neutralizing capacity.


A. Method of Making TNF-α Binding Proteins


The binding proteins disclosed herein may be made by any of a number of techniques known in the art.


1. Anti-TNF-α Monoclonal Antibodies Using Transgenic Animals


In another embodiment of the disclosure, binding proteins are produced by immunizing a non-human animal comprising some, or all, of the human immunoglobulin locus with a TNF-α antigen. In a particular embodiment, the non-human animal is a XENOMOUSE transgenic mouse, an engineered mouse strain that comprises large fragments of the human immunoglobulin loci and is deficient in mouse antibody production. See, e.g., Green et al. (1994) Nature Genet. 7:13-21 and U.S. Pat. Nos. 5,916,771; 5,939,598; 5,985,615; 5,998,209; 6,075,181; 6,091,001; 6,114,598 and 6,130,364. See also PCT Publications WO 91/10741, published Jul. 25, 1991; WO 94/02602, published Feb. 3, 1994; WO 96/34096 and WO 96/33735, both published Oct. 31, 1996; WO 98/16654, published Apr. 23, 1998; WO 98/24893, published Jun. 11, 1998; WO 98/50433, published Nov. 12, 1998; WO 99/45031, published Sep. 10, 1999; WO 99/53049, published Oct. 21, 1999; WO 00/09560, published Feb. 24, 2000; and WO 00/37504, published Jun. 29, 2000. The XENOMOUSE transgenic mouse produces an adult-like human repertoire of fully human antibodies, and generates antigen-specific human Mabs. The XENOMOUSE transgenic mouse contains approximately 80% of the human antibody repertoire through introduction of megabase sized, germline configuration YAC fragments of the human heavy chain loci and x light chain loci. See, Mendez et al. (1997) Nature Genet. 15:146-156; Green and Jakobovits (1998) J. Exp. Med. 188:483-495.


2. Anti-TNF-α Monoclonal Antibodies Using Recombinant Antibody Libraries


In vitro methods also can be used to make the binding protein disclosed herein, wherein an antibody library is screened to identify an antibody having the desired binding specificity. Methods for such screening of recombinant antibody libraries are well known in the art and include methods described in, for example, U.S. Pat. No. 5,223,409; PCT Publications WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; and WO 97/29131; Fuchs et al. (1991) Bio/Technology 9:1369-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; McCafferty et al. (1990) Nature 348:552-554; Griffiths et al. (1993) EMBO J. 12:725-734; Hawkins et al. (1992) J. Mol. Biol. 226:889-896; Clackson et al. (1991) Nature 352:624-628; Gram et al. (1992) Proc. Natl. Acad. Sci. USA 89:3576-3580; Garrard et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nucl. Acid Res. 19:4133-4137; and Barbas et al. (1991) Proc. Natl. Acad. Sci. USA 88:7978-7982; and U.S. Patent Publication No. 2003.0186374.


The recombinant antibody library may be from a subject immunized with TNF-α, or a portion of TNF-α. Alternatively, the recombinant antibody library may be from a naïve subject, i.e., one who has not been immunized with TNF-α, such as a human antibody library from a human subject who has not been immunized with human TNF-α. Antibodies disclosed herein are selected by screening the recombinant antibody library with the peptide comprising human TNF-α to thereby select those antibodies that recognize TNF-α. Methods for conducting such screening and selection are well known in the art, such as described in the references in the preceding paragraph. To select antibodies disclosed herein having particular binding affinities for hTNF-α, such as those that dissociate from human TNF-α with a particular koff rate constant, the art-known method of surface plasmon resonance can be used to select antibodies having the desired koff rate constant. To select antibodies disclosed herein having a particular neutralizing activity for hTNF-α, such as those with a particular an IC50, standard methods known in the art for assessing the inhibition of hTNF-α activity may be used.


In one aspect, provided is an isolated binding protein, or an antigen-binding portion thereof, that binds TNF-α, e.g., human TNF-α. In a particular embodiment, the binding protein is a neutralizing binding protein. In various embodiments, the binding protein is a recombinant binding protein or a monoclonal antibody.


For example, the binding proteins disclosed herein can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular, such phage can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the binding proteins disclosed herein can be found in the art.


As described in the above references, after phage selection, the binding protein coding regions from the phage can be isolated and used to generate whole binding proteins including human binding protein or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab′ and F(ab′)2 fragments can also be employed using methods known in the art such as those disclosed in PCT Publication WO 92/22324; Mullinax et al. (1992) BioTechniques 12(6):864-869; and Sawai et al. (1995) Am. J. Reprod. Immunol. 34:26-34; and Better et al. (1998) Science 240:1041-1043. Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Pat. Nos. 4,946,778 and 5,258,498; Huston et al. (1991) Methods Enzymol. 203:46-88; Shu et al. (1993) Proc. Natl. Acad Sci. USA 90:7995-7999; and Skerra et al. (1998) Science 240:1038-1041.


Alternative to screening of recombinant antibody libraries by phage display, other methodologies known in the art for screening large combinatorial libraries can be applied to the identification of dual specificity binding protein disclosed herein. One type of alternative expression system is one in which the recombinant antibody library is expressed as RNA-protein fusions, as described in PCT Publication No. WO 98/31700 and in Roberts and Szostak (1997) Proc. Natl. Acad. Sci. USA 94:12297-12302. In this system, a covalent fusion is created between an mRNA and the peptide or protein that it encodes by in vitro translation of synthetic mRNAs that carry puromycin, a peptidyl acceptor antibiotic, at their 3′ end. Thus, a specific mRNA can be enriched from a complex mixture of mRNAs (e.g., a combinatorial library) based on the properties of the encoded peptide or protein, e.g., antibody, or portion thereof, such as binding of the antibody, or portion thereof, to the dual specificity antigen. Nucleic acid sequences encoding antibodies, or portions thereof, recovered from screening of such libraries can be expressed by recombinant means as described above (e.g., in mammalian host cells) and, moreover, can be subjected to further affinity maturation by either additional rounds of screening of mRNA-peptide fusions in which mutations have been introduced into the originally selected sequence(s), or by other methods for affinity maturation in vitro of recombinant antibodies, as described above.


In another approach the binding proteins disclosed herein can also be generated using yeast display methods known in the art. In yeast display methods, genetic methods are used to tether antibody domains to the yeast cell wall and display them on the surface of yeast. In particular, such yeast can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Examples of yeast display methods that can be used to make the binding proteins disclosed herein include those disclosed Wittrup et al. U.S. Pat. No. 6,699,658 and Frenken et al., U.S. Pat. No. 6,114,147.


B. Production of Recombinant TNF-α Binding Proteins


Binding proteins disclosed herein may be produced by any of a number of techniques known in the art. For example, expression from host cells, wherein expression vector(s) encoding the heavy and light chains is (are) transfected into a host cell by standard techniques. The various forms of the term “transfection” are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, calcium-phosphate precipitation, DEAE-dextran transfection and the like. Although it is possible to express the binding proteins disclosed herein in either prokaryotic or eukaryotic host cells, expression of binding protein in eukaryotic cells is contemplated, for example, in mammalian host cells, because such eukaryotic cells (and in particular mammalian cells) are more likely than prokaryotic cells to assemble and secrete a properly folded and immunologically active binding protein.


Mammalian host cells for expressing the recombinant binding proteins disclosed herein include Chinese Hamster Ovary (CHO cells) (including dhfr-CHO cells, described in Urlaub and Chasin (1980) Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman and Sharp (1982) J. Mol. Biol. 159:601-621), NS0 myeloma cells, COS cells and SP2 cells. When recombinant expression vectors encoding binding protein genes are introduced into mammalian host cells, the binding proteins are produced by culturing the host cells for a period of time sufficient to allow for expression of the binding protein in the host cells or, in particular, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods.


Host cells can also be used to produce functional binding protein fragments, such as Fab fragments or scFv molecules. It will be understood that variations on the above procedure are within the scope of the present disclosure. For example, it may be desirable to transfect a host cell with DNA encoding functional fragments of either the light chain and/or the heavy chain of a binding protein disclosed herein. Recombinant DNA technology may also be used to remove some, or all, of the DNA encoding either or both of the light and heavy chains that is not necessary for binding to the antigens of interest. The molecules expressed from such truncated DNA molecules are also encompassed by the binding proteins disclosed herein. In addition, bifunctional binding proteins may be produced in which one heavy and one light chain are a binding protein disclosed herein and the other heavy and light chain are specific for an antigen other than the antigens of interest by crosslinking a binding protein disclosed herein to a second binding protein by standard chemical crosslinking methods.


In an exemplary system for recombinant expression of a binding protein, or antigen-binding portion thereof, disclosed herein, a recombinant expression vector encoding both the heavy chain and the light chain is introduced into dhfr CHO cells by calcium phosphate-mediated transfection. Within the recombinant expression vector, the heavy and light chain genes are each operatively linked to CMV enhancer/AdMLP promoter regulatory elements to drive high levels of transcription of the genes. The recombinant expression vector also carries a DHFR gene, which allows for selection of CHO cells that have been transfected with the vector using methotrexate selection/amplification. The selected transformant host cells are cultured to allow for expression of the heavy and light chains and intact binding protein is recovered from the culture medium. Standard molecular biology techniques are used to prepare the recombinant expression vector, transfect the host cells, select for transformants, culture the host cells and recover the binding protein from the culture medium. Still further a method of synthesizing a recombinant binding protein disclosed herein is provided by culturing a host cell disclosed herein in a suitable culture medium until a recombinant binding protein disclosed herein is synthesized. The method can further comprise isolating the recombinant binding protein from the culture medium.


II. hTNF-α Binding Proteins


A. Individual Clone Sequences


Table 5 provides the VH and VL sequences of fully human anti-human TNF binding proteins, including CDRs from each VH and VL sequence.









TABLE 5







Individual Fully Human Anti-TNF-α VH Sequences











Sequence


Protein region

123456789012345678901234567890













AE11-1 VH

SEQ ID NO.: 22
EVQLVQSGAEVKKPGASVKVSCKASGYTFT






SYDVNWVRQATGQGLEWMGWMNPNSGNTGY







AQKFQGRVTITADESTSTAYMELSSLRSED






TAVYYCAIFDSDYMDVWGKGTLVTVSS


AE11-1 VH
CDR-
Residues 31-35

SYDVN




H1
of SEQ ID





NO.: 22



AE11-1 VH
CDR-
Residues 50-66

WMNPNSGNTGYAQKFQG




H2
of SEQ ID





NO.: 22



AE11-1 VH
CDR-
Residues 99-106

FDSDYMDV




H3
of SEQ ID





NO.: 22






AE11-1 VL

SEQ ID NO.: 23
SYELTQPPSVSLSPGQTARITCSGDALPKQ






YAYWYQQKPGQAPVLVIYKDTERPSGIPER






FSGSSSGTTVTLTISGAQAEDEADYYCQSA






DSSGTSWVFGGGTKLTVL



AE11-1 VL
CDR-
Residues 23-33

SGDALPKQYAY




L1
of SEQ ID





NO.: 23



AE11-1 VL
CDR-
Residues 49-55

KDTERPS




L2
of SEQ ID





NO.: 23



AE11-1 VL
CDR-
Residues 89-98

SADSSGTSWV




L3
of SEQ ID





NO.: 23






AE11-5 VH

SEQ ID NO.: 24
EVQLVQSGAEVKKPGSSAKVSCKASGGTFS






SYAISWVRQAPGQGLEWMGGIIPILGTANY







AQKFLGRVTITADESTSTVYMELSSLRSED






TAVYYCARGLYYDPTRADYWGQGTLVTVSS


AE11-5 VH
CDR-
Residues 31-35

SYAIS




H1
of SEQ ID





NO.: 24



AE11-5 VH
CDR-
Residues 50-66

GIIPILGTANYAQKFLG




H2
of SEQ ID





NO.: 24



AE11-5 VH
CDR-
Residues 99-109

GLYYDPTRADY




H3
of SEQ ID





NO.: 24






AE11-5 VL

SEQ ID NO.: 25
DIVMTQSPDFHSVTPKEKVTITCRASQSIG






SSLHWYQQKPDQSPKLLIRHASQSISGVPS






RFSGSGSGTDFTLTIHSLEAEDAATYYCHQ






SSSSPPPTFGQGTQVEIK



AE11-5 VL
CDR-
Residues 24-34

RASQSIGSSLH




L1
of SEQ ID





NO.: 25



AE11-5 VL
CDR-
Residues 50-56

HASQSIS




L2
of SEQ ID





NO.: 25



AE11-5 VL
CDR-
Residues 89-98

HQSSSSPPPT




L3
of SEQ ID





NO.: 25






TNF-JK1 VH

SEQ ID NO.: 26
EVQLVESGGGLVQPGGSLRLSCATSGFTFN






NYWMSWVRQAPGKGLEWVANINHDESEKYY







VDSAKGRFTISRDNAEKSLFLQMNSLRAED






TAVYYCARIIRGRVGFDYYNYAMDVWGQGT





LVTVSS


TNF-JK1 VH
CDR-
Residues 31-35

NYWMS




H1
of SEQ ID





NO.: 26



TNF-JK1 VH
CDR-
Residues 50-66

NINHDESEKYYVDSAKG




H2
of SEQ ID





NO.: 26



TNF-JK1 VH
CDR-
Residues 99-115

IIRGRVGFDYYNYAMDV




H3
of SEQ ID





NO.: 26






TNF-JK1 VL

SEQ ID NO.: 27
DIRLTQSPSPLSASVGDRVTITCRASQSIG






NYLNWYQHKPGKAPKLLIYAASSLQSGVPS






RFSGTGSGTDFTLTISSLQPEDFATYYCQE






SYSLIFAGGTKVEIK



TNF-JK1 VL
CDR-
Residues 24-34

RASQSIGNYLN




L1
of SEQ ID





NO.: 27



TNF-JK1 VL
CDR-
Residues 50-56

AASSLQS




L2
of SEQ ID





NO.: 27



TNF-JK1 VL
CDR-
Residues 89-95

QESYSLI




L3
of SEQ ID





NO.: 27






TNF-Y7C VH

SEQ ID NO.: 28
EVQLVQSGAEVKKPGASVKVSCKTSGYTFS






NYDINWVRQPTGQGLEWMGWMDPNNGNTGY







AQKFVGRVTMTRDTSKTTAYLELSGLKSED






TAVYYCARSSGSGGTWYKEYFQSWGQGTMV





TVSS


TNF-Y7C VH
CDR-
Residues 31-35

NYDIN




H1
of SEQ ID





NO.: 28



TNF-Y7C VH
CDR-
Residues 50-66

WMDPNNGNTGYAQKFVG




H2
of SEQ ID





NO.: 28



TNF-Y7C VH
CDR-
Residues 99-112

KSSGSGGTWYKEYFQS




H3
of SEQ ID





NO.: 28






TNF-Y7C VL

SEQ ID NO.: 29
DIVMTQSPLSLPVTPGEPASISCRSSQSLL






HSNGYNYLDWYLQKPGQFPQLLIYLGSYRA







SGVPDRFSGSGSGTDFTLKISRVEAEDVGV






YYCMQRIEFPPGTFGQGTKLGIK


TNF-Y7C VL
CDR-
Residues 24-39

RSSQSLLHSNGYNYLD




L1
of SEQ ID





NO.: 29



TNF-Y7C VL
CDR-
Residues 55-61

LGSYRAS




L2
of SEQ ID





NO.: 29



TNF-Y7C VL
CDR-
Residues 94-103

MQRIEFPPGT




L3
of SEQ ID





NO.: 29






AE11-7 VH

SEQ ID NO.: 30
EVQLVQSGAEVKKPGASVKVSCKTSGYSLT






QYPIHWVRQAPGQRPEWMGWISPGNGNTKL







SPKFQGRVTLSRDASAGTVFMDLSGLTSDD






TAVYFCTSVDLGDHWGQGTLVTVSS


AE11-7 VH
CDR-
Residues 31-35

QYPIH




H1
of SEQ ID





NO.: 30



AE11-7 VH
CDR-
Residues 50-66

WISPGNGNTKLSPKFQG




H2
of SEQ ID





NO.: 30



AE11-7 VH
CDR-
Residues 99-104

VDLGDH




H3
of SEQ ID





NO.: 30






AE11-7 VL

SEQ ID NO.: 31
DIVMTQSPEFQSVTPKEKVTITCRASQSIG






SSLHWYQQKPDQSPKLLINYASQSFSGVPS






RFSGGGSGTDFTLTINSLEAEDAATYYCHQ






SSNLPITFGQGTRLEIK



AE11-7 VL
CDR-
Residues 24-34

RASQSIGSSLH




L1
of SEQ ID





NO.: 31



AE11-7 VL
CDR-
Residues 50-56

YASQSFS




L2
of SEQ ID





NO.: 31



AE11-7 VL
CDR-
Residues 89-97

HQSSNLPIT




L3
of SEQ ID





NO.: 31






AE11-13 VH

SEQ ID NO.: 32
EVQLVESGGGLVQPGRSLRLSCAASGFTFD






DYPMHWVRQAPGEGLEWVSGISSNSASIGY







ADSVKGRFTISRDNAQNTLYLQMNSLGDED






TAVYYCVSLTLGIGQGTLVTVSS


AE11-13 VH
CDR-
Residues 31-35

DYPMH




H1
of SEQ ID





NO.: 32



AE11-13 VH
CDR-
Residues 50-66

GISSNSASIGYADSVKG




H2
of SEQ ID





NO.: 32



AE11-13 VH
CDR-
Residues 99-102

LTLG




H3
of SEQ ID





NO.: 32






AE11-13 VL

SEQ ID NO.: 33
DIRLTQSPSSLSASVGDRVTITCRASQSIG






NYLHWYQQKPGKAPKLLIYAASSLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






SYSTLYSFGQGTKLEIK



AE11-13 VL
CDR-
Residues 24-34

RASQSIGNYLH




L1
of SEQ ID





NO.: 33



AE11-13 VL
CDR-
Residues 50-56

AASSLQS




L2
of SEQ ID





NO.: 33



AE11-13 VL
CDR-
Residues 89-97

QQSYSTLYS




L3
of SEQ ID





NO.: 33









B. IgG Converted Clones


Table 6 provides the VH sequence of humanized anti-TNF MAK-195 antibodies that were converted into IgG clones as discussed in detail in Example 2.









TABLE 6







Humanized anti-TNF MAK-195 Ab VH sequences of


IgG converted clones











Sequence


Protein region

123456789012345678901234567890













A8

SEQ ID NO.: 34
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVNWVRQAPGKGLEWVSMIAADGFTDYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWHHGPVAYWGQGTLVTVSS


A8
CDR-H1
Residues 31-35

NYGVN



VH

of SEQ ID





NO.: 34



A8
CDR-H2
Residues 50-65

MIAADGFTDYASSVKG



VH

of SEQ ID





NO.: 34



A8
CDR-H3
Residues 98-106

EWHHGPVAY



VH

of SEQ ID





NO.: 34






B5

SEQ ID NO.: 35
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSLIRGDGSTDYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWHHGPVAYWGQGTLVTVSS


B5
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID





NO.: 35



B5
CDR-H2
Residues 50-65

LIRGDGSTDYASSLKG



VH

of SEQ ID





NO.: 35



B5
CDR-H3
Residues 98-106

EWHHGPVAY



VH

of SEQ ID





NO.: 35






rHC44

SEQ ID NO.: 36
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSMIWADGSTHYA







DTLKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC44
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID





NO.: 36



rHC44
CDR-H2
Residues 50-65

MIWADGSTHYADTLKS



VH

of SEQ ID





NO.: 36



rHC44
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 36






rHC22

SEQ ID NO.: 37
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTDYA







DTVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC22
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 37



rHC22
CDR-H2
Residues 50-65

MIWADGSTDYADTVKG



VH

of SEQ ID





NO.: 37



rHC22
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 37






rHC81

SEQ ID NO.: 38
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







DSVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


rHC81
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 38



rHC81
CDR-H2
Residues 50-65

MIWADGSTHYADSVKS



VH

of SEQ ID





NO.: 38



rHC81
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID





NO.: 38






rHC18

SEQ ID NO.: 39
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWSDGSTDYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC18
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 39



rHC18
CDR-H2
Residues 50-65

MIWSDGSTDYASSVKG



VH

of SEQ ID





NO.: 39



rHC18
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 39






rHC14

SEQ ID NO.: 40
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPAAYWGQGTLVTVSS


rHC14
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 40



rHC14
CDR-H2
Residues 50-65

MIWADGSTHYASSLKG



VH

of SEQ ID





NO.: 40



rHC14
CDR-H3
Residues 98-106

EWQHGPAAY



VH

of SEQ ID





NO.: 40






rHC3

SEQ ID NO.: 41
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSMIWADGSTHYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC3
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID





NO.: 41



rHC3
CDR-H2
Residues 50-65

MIWADGSTHYASSLKG



VH

of SEQ ID





NO.: 41



rHC3
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 41






rHC19

SEQ ID NO.: 42
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPAAYWGQGTLVTVSS


rHC19
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 42



rHC19
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 42



rHC19
CDR-H3
Residues 98-106

EWQHGPAAY



VH

of SEQ ID





NO.: 42






rHC34

SEQ ID NO.: 43
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPSAYWGQGTLVTVSS


rHC34
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 43



rHC34
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 43



rHC34
CDR-H3
Residues 98-106

EWQHGPSAY



VH

of SEQ ID





NO.: 43






rHC83

SEQ ID NO.: 44
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC83
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 44



rHC83
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 44



rHC83
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 44






S4-19

SEQ ID NO.: 45
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVEWVRQAPGKGLEWVSGIWADGSTHYA







DTVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-19
CDR-H1
Residues 31-35

NYGVE



VH

of SEQ ID





NO.: 45



S4-19
CDR-H2
Residues 50-65

GIWADGSTHYADTVKS



VH

of SEQ ID





NO.: 45



S4-19
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 45






S4-50

SEQ ID NO.: 46
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVEWVRQAPGKGLEWVSGIWADGSTHYA







DTVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVGYWGQGTLVTVSS


S4-50
CDR-H1
Residues 31-35

NYGVE



VH

of SEQ ID





NO.: 46



S4-50
CDR-H2
Residues 50-65

GIWADGSTHYADTVKS



VH

of SEQ ID





NO.: 46



S4-50
CDR-H3
Residues 98-106

EWQHGPVGY



VH

of SEQ ID





NO.: 46






S4-63

SEQ ID NO.: 47
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVEWVRQAPGKGLEWVSGIWADGSTHYA







DTVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVGYWGQGTLVTVSS


S4-63
CDR-H1
Residues 31-35

NYGVE



VH

of SEQ ID





NO.: 47



S4-63
CDR-H2
Residues 50-65

GIWADGSTHYADTVKS



VH

of SEQ ID





NO.: 47



S4-63
CDR-H3
Residues 98-106

EWQHGPVGY



VH

of SEQ ID





NO.: 47






S4-55

SEQ ID NO.: 48
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTDYA







STVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVGYWGQGTLVTVSS


S4-55
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 48



S4-55
CDR-H2
Residues 50-65

MIWADGSTDYASTVKG



VH

of SEQ ID





NO.: 48



S4-55
CDR-H3
Residues 98-106

EWQHGPVGY



VH

of SEQ ID





NO.: 48






S4-6

SEQ ID NO.: 49
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-6
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 49



S4-6
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 49



S4-6
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 49






S4-18

SEQ ID NO.: 50
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







DSVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


S4-18
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 50



S4-18
CDR-H2
Residues 50-65

MIWADGSTHYADSVKS



VH

of SEQ ID





NO.: 50



S4-18
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID





NO.: 50






S4-31

SEQ ID NO.:51
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVQWVRQAPGKGLEWVSGIGADGSTAYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHSGLAYWGQGTLVTVSS


S4-31
CDR-H1
Residues 31-35

NYGVQ



VH

of SEQ ID





NO.: 51



S4-31
CDR-H2
Residues 50-65

GIGADGSTAYASSLKG



VH

of SEQ ID





NO.: 51



S4-31
CDR-H3
Residues 98-106

EWQHSGLAY



VH

of SEQ ID





NO.: 51






S4-34

SEQ ID NO.: 52
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSMIWADGSTHYA







DTVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


S4-34
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID





NO.: 52



S4-34
CDR-H2
Residues 50-65

MIWADGSTHYADTVKG



VH

of SEQ ID





NO.: 52



S4-34
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID





NO.: 52






S4-74

SEQ ID NO.: 53
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







DTVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


S4-74
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 53



S4-74
CDR-H2
Residues 50-65

MIWADGSTHYADTVKG



VH

of SEQ ID





NO.: 53



S4-74
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID





NO.: 53






S4-12

SEQ ID NO.: 54
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-12
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 54



S4-12
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 54



S4-12
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 54






S4-54

SEQ ID NO.: 55
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-54
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 55



S4-54
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 55



S4-54
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 55






S4-17

SEQ ID NO.: 56
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-17
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 56



S4-17
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 56



S4-17
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 56






S4-40

SEQ ID NO.: 57
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-40
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 57



S4-40
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 57



S4-40
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 57






S4-24

SEQ ID NO.: 58
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-24
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID





NO.: 58



S4-24
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID





NO.: 58



S4-24
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID





NO.: 58









Table 7 provides VL sequences of IgG converted clones for Humanized anti-TNF MAK-195 antibodies as discussed in detail in Example 2.









TABLE 7







Humanized anti-TNF MAK-195 Ab VL sequences of


IgG converted clones











Sequence


Protein region

123456789012345678901234567890













hMAK195

SEQ ID NO.: 59
DIQMTQSPSSLSASVGDRVTITCKASQAVS


VL.1



SAVAWYQQKPGKAPKLLIYWASTRHTGVPS



VL


RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSTPFTFGQGTKLEIKR



hMAK195
CDR-L1
Residues 24-34

KASQAVSSAVA



VL.1

of SEQ ID



VL

NO.: 59



hMAK195
CDR-L2
Residues 50-56

WASTRHT



VL.1

of SEQ ID



VL

NO.: 59



hMAK195
CDR-L3
Residues 89-97

QQHYSTPFT



VL.1

of SEQ ID



VL

NO.: 59






S4-24

SEQ ID NO.: 60
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-24
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 60



S4-24
CDR-L2
Residues 50-56

WASTLHT



VL

of SEQ ID





NO.: 60



S4-24
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID





NO.: 60






S4-40

SEQ ID NO.: 61
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFSFGQGTKLEIKR



S4-40
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 61



S4-40
CDR-L2
Residues 50-56

WASTRHS



VL

of SEQ ID





NO.: 61



S4-40
CDR-L3
Residues 89-97

QQHYRTPFS



VL

of SEQ ID





NO.: 61






S4-17

SEQ ID NO.: 62
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-17
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 62



S4-17
CDR-L2
Residues 50-56

WASTRHS



VL

of SEQ ID





NO.: 62



S4-17
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID





NO.: 62






S4-54

SEQ ID NO.: 63
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASARHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYKTPFSFGQGTKLEIKR



S4-54
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 63



S4-54
CDR-L2
Residues 50-56

WASARHT



VL

of SEQ ID





NO.: 63



S4-54
CDR-L3
Residues 89-97

QQHYKTPFS



VL

of SEQ ID





NO.: 63






S4-12

SEQ ID NO.: 64
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASARHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYKTPFTFGQGTKLEIKR



S4-12
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 64



S4-12
CDR-L2
Residues 50-56

WASARHT



VL

of SEQ ID





NO.: 64



S4-12
CDR-L3
Residues 89-97

QQHYKTPFT



VL

of SEQ ID





NO.: 64






S4-74

SEQ ID NO.: 65
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASARHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-74
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 65



S4-74
CDR-L2
Residues 50-56

WASARHT



VL

of SEQ ID





NO.: 65



S4-74
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID





NO.: 65






S4-34

SEQ ID NO.: 66
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-34
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 66



S4-34
CDR-L2
Residues 50-56

WASTRHT



VL

of SEQ ID





NO.: 66



S4-34
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID





NO.: 66






S4-31

SEQ ID NO.: 67
DIQMTQSPSSLSASVGDRVTITCRASQGVS


VL



SALAWYQQKPGKAPKLLIYWASALHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSAPFTFGQGTKLEIKR



S4-31
CDR-L1
Residues 24-34

RASQGVSSALA



VL

of SEQ ID





NO.: 67



S4-31
CDR-L2
Residues 50-56

WASALHS



VL

of SEQ ID





NO.: 67



S4-31
CDR-L3
Residues 89-97

QQHYSAPFT



VL

of SEQ ID





NO.: 67






S4-18

SEQ ID NO.: 68
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSTPFTFGQGTKLEIKR



S4-18
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID





NO.: 68



S4-18
CDR-L2
Residues 50-56

WASTLHS



VL

of SEQ ID





NO.: 68



S4-18
CDR-L3
Residues 89-97

QQHYSTPFT



VL

of SEQ ID





NO.: 68






S4-6

SEQ ID NO.: 69
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSTPFTFGQGTKLEIKR



S4-6
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID





NO.: 69



S4-6
CDR-L2
Residues 50-56

WASTRHT



VL

of SEQ ID





NO.: 69



S4-6
CDR-L3
Residues 89-97

QQHYSTPFT



VL

of SEQ ID





NO.: 69






S4-55

SEQ ID NO.: 70
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-55
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID





NO.: 70



S4-55
CDR-L2
Residues 50-56

WASTLHT



VL

of SEQ ID





NO.: 70



S4-55
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID





NO.: 70






S4-63

SEQ ID NO.: 71
DIQMTQSPSSLSASVGDRVTITCKASQKVS


VL



SALAWYQQKPGKAPKLLIYWASALHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRPPFTFGQGTKLEIKR



S4-63
CDR-L1
Residues 24-34

KASQKVSSALA



VL

of SEQ ID





NO.: 71



S4-63
CDR-L2
Residues 50-56

WASALHS



VL

of SEQ ID





NO.: 71



S4-63
CDR-L3
Residues 89-97

QQHYRPPFT



VL

of SEQ ID





NO.: 71






S4-50

SEQ ID NO.: 72
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASALHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSSPYTFGQGTKLEIKR



S4-50
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID





NO.: 72



S4-50
CDR-L2
Residues 50-56

WASALHT



VL

of SEQ ID





NO.: 72



S4-50
CDR-L3
Residues 89-97

QQHYSSPYT



VL

of SEQ ID





NO.: 72






S4-19

SEQ ID NO.: 73
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-19
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID





NO.: 73



S4-19
CDR-L2
Residues 50-56

WASTLHT



VL

of SEQ ID





NO.: 73



S4-19
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID





NO.: 73









C. Individual hMAK-199 Sequences from Converted Clones


Table 8 provides VH sequences of humanized anti-TNF MAK-199 converted clones as discussed in detail in Example 3.









TABLE 8







Humanized Anti-TNF MAK-199 Ab VH sequences of


IgG converted clones











Sequence


Protein region

123456789012345678901234567890













J662M2S3

SEQ ID NO.: 74
EVQLVQSGAEVKKPGASVKVSCKASGYTFA


#10 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



10 VH

of SEQ ID





NO.: 74



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



10 VH

of SEQ ID





NO.: 74



J662M2S3#
CDR-H3
Residues 99-112

RASQDISQYLN



10 VH

of SEQ ID





NO.: 74






J662M2S3#

SEQ ID NO.: 75
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


13 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKLQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFNTVDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



13 VH

of SEQ ID





NO.: 75



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKLQG



13 VH

of SEQ ID





NO.: 75



J662M2S3#
CDR-H3
Residues 99-112

KLFNTVDVTDNAMD



13 VH

of SEQ ID





NO.: 75






J662M2S3#

SEQ ID NO.: 76
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


15 VH



NYGIIWVRQAPGQGLEWMGWINTYTGVPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFNTVDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



15 VH

of SEQ ID





NO.: 76



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGVPTYAQKFQG



15 VH

of SEQ ID





NO.: 76



J662M2S3#
CDR-H3
Residues 99-112

KLFNTVDVTDNAMD



15 VH

of SEQ ID





NO.: 76






J662M2S3#

SEQ ID NO.: 77
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


16 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFNTVAVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



16 VH

of SEQ ID





NO.: 77



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



16 VH

of SEQ ID





NO.: 77



J662M2S3#
CDR-H3
Residues 99-112

KLFNTVAVTDNAMD



16 VH

of SEQ ID





NO.: 77






J662M2S3#

SEQ ID NO.: 78
EVQLVQSGAEVKKPGASVKVSCKASGYTFR


21 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFTTVDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



21 VH

of SEQ ID





NO.: 78



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



21 VH

of SEQ ID





NO.: 78



J662M2S3#
CDR-H3
Residues 99-112

KLFTTVDVTDNAMD



21 VH

of SEQ ID





NO.: 78






J662M2S3#

SEQ ID NO.: 79
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


34 VH



NYGINWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKFRNTVAVTDYAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGIN



34 VH

of SEQ ID





NO.: 79



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



34 VH

of SEQ ID





NO.: 79



J662M2S3#
CDR-H3
Residues 99-112

KFRNTVAVTDYAMD



34 VH

of SEQ ID





NO.: 79






J662M2S3#

SEQ ID NO.: 80
EVQLVQSGAEVKKPGASVKVSCKASGYTFR


36 VH



NYGITWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGIT



36 VH

of SEQ ID





NO.: 80



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



36 VH

of SEQ ID





NO.: 80



J662M2S3#
CDR-H3
Residues 99-112

KLFTTMDVTDNAMD



36 VH

of SEQ ID





NO.: 80






J662M2S3#

SEQ ID NO.: 81
EVQLVQSGAEVKKPGASVKVSCKASGYTFA


45 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



45 VH

of SEQ ID





NO.: 81



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



45 VH

of SEQ ID





NO.: 81



J662M2S3#
CDR-H3
Residues 99-112

KLFTTMDVTDNAMD



45 VH

of SEQ ID





NO.: 81






J662M2S3#

SEQ ID NO.: 82
EVQLVQSGAEVKKPGASVKVSCKASGYTFS


58 VH



NYGINWVRQAPGQGLEWMGWINTYTGQPSY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFKTEAVTDYAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGIN



58 VH

of SEQ ID





NO.: 82



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGQPSYAQKFQG



58 VH

of SEQ ID





NO.: 82



J662M2S3#
CDR-H3
Residues 99-112

KLFKTEAVTDYAMD



58 VH

of SEQ ID





NO.: 82






J662M2S3#

SEQ ID NO.: 83
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


72 VH



NYGIIWVRQAPGQGLEWMGWINTYSGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



72 VH

of SEQ ID





NO.: 83



J662M2S3#
CDR-H2
Residues 50-66

WINTYSGKPTYAQKFQG



72 VH

of SEQ ID





NO.: 83



J662M2S3#
CDR-H3
Residues 99-112

KLFTTMDVTDNAMD



72 VH

of SEQ ID





NO.: 83









Table 9 provides VL sequences of humanized anti-TNF MAK-199 converted clones as discussed in detail in Example 3.









TABLE 9







Humanized Anti-TNF MAK-199 Ab VL sequences of


IgG converted clones











Sequence


Protein region

123456789012345678901234567890













J662M2S3#

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIS


10 VL

NO.: 84

QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#10
CDR-L1
Residues 24-34

RASQDISQYLN



VL

of SEQ ID





NO.: 84



J662M2S3#10
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 84



J662M2S3#10
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 84






J662M2S3#13

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL

NO.: 85

NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNSWPPTFGQGTKLEIK



J662M2S3#13
CDR-L1
Residues 24-34

RASQDISNYLN



VL

of SEQ ID





NO.: 85



J662M2S3#13
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 85



J662M2S3#13
CDR-L3
Residues 89-97

QQGNSWPPT



VL

of SEQ





ID NO.: 85






J662M2S3#15

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIY


VL

NO.: 86

NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTQPPTFGQGTKLEIK



J662M2S3#15
CDR-L1
Residues 24-34

RASQDIYNYLN



VL

of SEQ ID





NO.: 86



J662M2S3#15
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 86



J662M2S3#15
CDR-L3
Residues 89-97

QQGNTQPPT



VL

of SEQ





ID NO.: 86






J662M2S3#16

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIE


VL

NO.: 87

NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTQPPTFGQGTKLEIK



J662M2S3#16
CDR-L1
Residues 24-34

RASQDIENYLN



VL

of SEQ ID





NO.: 87



J662M2S3#16
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 87



J662M2S3#16
CDR-L3
Residues 89-97

QQGNTQPPT



VL

of SEQ





ID NO.: 87






J662M2S3#21

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL

NO.: 88

NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#21
CDR-L1
Residues 24-34

RASQDISNYLN



VL

of SEQ ID





NO.: 88



J662M2S3#21
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 88



J662M2S3#21
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 88






J662M2S3#34

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIY


VL

NO.: 89

DVLNWYQQKPGKAPKLLIYYASRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






GITLPPTFGQGTKLEIK



J662M2S3#34
CDR-L1
Residues 24-34

RASQDIYDVLN



VL

of SEQ ID





NO.: 89



J662M2S3#34
CDR-L2
Residues 50-56

YASRLQS



VL

of SEQ ID





NO.: 89



J662M2S3#34
CDR-L3
Residues 89-97

QQGITLPPT



VL

of SEQ





ID NO.: 89






J662M2S3#36

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL

NO.: 90

NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#36
CDR-L1
Residues 24-34

RASQDISNYLN



VL

of SEQ ID





NO.: 90



J662M2S3#36
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 90



J662M2S3#36
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 90






J662M2S3#45

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL

NO.: 91

QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#45
CDR-L1
Residues 24-34

RASQDISQYLN



VL

of SEQ ID





NO.: 91



J662M2S3#45
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 91



J662M2S3#45
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 91






J662M2S3#58

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQNIY


VL

NO.: 92

NVLNWYQQKPGKAPKLLIYYASRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTMPPTFGQGTKLEIK



J662M2S3#58
CDR-L1
Residues 24-34

RASQNIYNVLN



VL

of SEQ ID





NO.: 92



J662M2S3#58
CDR-L2
Residues 50-56

YASRLQS



VL

of SEQ ID





NO.: 92



J662M2S3#58
CDR-L3
Residues 89-97

QQGNTMPPT



VL

of SEQ





ID NO.: 92






J662M2S3#72

SEQ ID
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL

NO.: 93

NFLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTQPPTFGQGTKLEIK



J662M2S3#72
CDR-L1
Residues 24-34

RASQDISNFLN



VL

of SEQ ID





NO.: 93



J662M2S3#72
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 93



J662M2S3#72
CDR-L3
Residues 89-97

QQGNTQPPT



VL

of SEQ





ID NO.: 93









In an embodiment, the antigen binding domain comprises the VH region chosen from any one of SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom. In another embodiment, the antigen binding domain comprises the VL region chosen from any one of SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom. In a particular embodiment, the antigen binding domain comprises a VH region and a VL region, for example, wherein the VH region comprises SEQ ID NOs: 22, 24, 26, 28, 30, 32, 34-58, 74-83, 94-266, 478-486, 496-675, 738-762, 778-956, 1053-1062, 1073, 1075, and 1077, or one, two, or three CDRs therefrom, and the VL region comprises SEQ ID NOs: 23, 25, 27, 29, 31, 33, 59-73, 84-93, 267-477, 487-495, 676-737, 763-777, 957-1052, 1063-1072, 1074, 1076, and 1078, or one, two, or three CDRs therefrom.


In an embodiment where the VH and/or the VL CDR sequences are provided above, the human acceptor framework comprises at least one amino acid sequence selected from: SEQ ID NOs: 6-21. In a particular embodiment, the human acceptor framework comprises an amino acid sequence selected from: SEQ IN NOs: 9, 10, 11, 12, 15, 16, 17, and 21. In another embodiment, the human acceptor framework comprises at least one framework region amino acid substitution, wherein the amino acid sequence of the framework is at least 65% identical to the sequence of the human acceptor framework and comprises at least 70 amino acid residues identical to the human acceptor framework. In another embodiment, the human acceptor framework comprises at least one framework region amino acid substitution at a key residue. The key residue selected from: a residue adjacent to a CDR; a glycosylation site residue; a rare residue; a residue capable of interacting with human TNF-α; a residue capable of interacting with a CDR; a canonical residue; a contact residue between heavy chain variable region and light chain variable region; a residue within a Vernier zone; and a residue in a region that overlaps between a Chothia-defined variable heavy chain CDR1 and a Kabat-defined first heavy chain framework. In an embodiment, the key residue is selected from: H1, H12, H24, H27, H29, H37, H48, H49, H67, H71, H73, H76, H78, L13, L43, L58, L70, and L80. In an embodiment, the VH mutation is selected from: Q1E, I12V, A24V, G27F, I29L, V29F F29L I37V, I48L, V48L, S49G, V67L, F67L, V71K, R71K, T73N, N76S, L78I, and F78I. In another embodiment, the VL mutation is selected from: V13L, A43S, I58V, E70D, and S80P. In an embodiment, the binding protein comprises two variable domains, wherein the two variable domains have amino acid sequences selected from: SEQ ID NOS: 22 and 23; 23 and 24; 24 and 25; 26 and 27; 28 and 29; 30 and 31; or 32 and 33.


III. Production of Binding Proteins and Binding Protein-Producing Cell Lines


In an embodiment, TNF-α binding proteins disclosed herein exhibit a high capacity to reduce or to neutralize TNF-α activity, e.g., as assessed by any one of several in vitro and in vivo assays known in the art. Alternatively, TNF-α binding proteins disclosed herein, also exhibit a high capacity to increase or agonize TNF-α activity.


In particular embodiments, the isolated binding protein, or antigen-binding portion thereof, binds human TNF-α, wherein the binding protein, or antigen-binding portion thereof, dissociates from human TNF-α with a koff rate constant of about 0.1 s−1 or less, as determined by surface plasmon resonance, such as 1×10−2 s−1 or less, 1×10−3 s−1 or less, 1×10−4 s−1 or less, 1×10−5 s−1 or less and 1×10−6 s−1 or less; or which inhibits human TNF-α activity with an IC50 of about 1×10−6 M or less, such as 1×10−7 M or less, 1×10−8 M or less, 1×10−9 M or less, 1×10−10 M or less and 1×10−11 M or less. In certain embodiments, the binding protein comprises a heavy chain constant region, such as an IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD constant region. In an embodiment, the heavy chain constant region is an IgG1 heavy chain constant region or an IgG4 heavy chain constant region. Furthermore, the binding protein can comprise a light chain constant region, either a kappa light chain constant region or a lambda light chain constant region. In another embodiment, the binding protein comprises a kappa light chain constant region. Alternatively, the binding protein portion can be, for example, a Fab fragment or a single chain Fv fragment.


Replacements of amino acid residues in the Fc portion to alter binding protein effector function are known in the art (See U.S. Pat. Nos. 5,648,260 and 5,624,821). The Fc portion of a binding protein mediates several important effector functions, e.g., cytokine induction, ADCC, phagocytosis, complement dependent cytotoxicity (CDC) and half-life/clearance rate of antibody and antigen-antibody complexes. In some cases these effector functions are desirable for therapeutic antibody but in other cases might be unnecessary or even deleterious, depending on the therapeutic objectives. Certain human IgG isotypes, particularly IgG1 and IgG3, mediate ADCC and CDC via binding to FcγRs and complement C1q, respectively. Neonatal Fc receptors (FcRn) are the critical components determining the circulating half-life of antibodies. In still another embodiment at least one amino acid residue is replaced in the constant region of the binding protein, for example the Fc region of the binding protein, such that effector functions of the binding protein are altered.


One embodiment provides a labeled binding protein wherein an antibody or antibody portion disclosed herein is derivatized or linked to another functional molecule (e.g., another peptide or protein). For example, a labeled binding protein disclosed herein can be derived by functionally linking an antibody or antibody portion disclosed herein (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate associate of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).


Useful detectable agents with which an antibody or antibody portion disclosed herein may be derivatized include fluorescent compounds. Exemplary fluorescent detectable agents include fluorescein, fluorescein isothiocyanate, rhodamine, 5-dimethylamine-1-napthalenesulfonyl chloride, phycoerythrin and the like. An antibody may also be derivatized with detectable enzymes, such as alkaline phosphatase, horseradish peroxidase, glucose oxidase and the like. When an antibody is derivatized with a detectable enzyme, it is detected by adding additional reagents that the enzyme uses to produce a detectable reaction product. For example, when the detectable agent horseradish peroxidase is present, the addition of hydrogen peroxide and diaminobenzidine leads to a colored reaction product, which is detectable. An antibody may also be derivatized with biotin, and detected through indirect measurement of avidin or streptavidin binding.


Another embodiment of the disclosure provides a crystallized binding protein. In an embodiment, provided are crystals of whole TNF-α binding proteins and fragments thereof as disclosed herein, and formulations and compositions comprising such crystals. In one embodiment the crystallized binding protein has a greater half-life in vivo than the soluble counterpart of the binding protein. In another embodiment the binding protein retains biological activity after crystallization.


Crystallized binding protein disclosed herein may be produced according methods known in the art and as disclosed in PCT Publication WO 02/72636.


Another embodiment of the disclosure provides a glycosylated binding protein wherein the binding protein or antigen-binding portion thereof comprises one or more carbohydrate residues. Nascent in vivo protein production may undergo further processing, known as post-translational modification. In particular, sugar (glycosyl) residues may be added enzymatically, a process known as glycosylation. The resulting proteins bearing covalently linked oligosaccharide side chains are known as glycosylated proteins or glycoproteins. Protein glycosylation depends on the amino acid sequence of the protein of interest, as well as the host cell in which the protein is expressed. Different organisms may produce different glycosylation enzymes (e.g., glycosyltransferases and glycosidases), and have different substrates (nucleotide sugars) available. Due to such factors, protein glycosylation pattern, and composition of glycosyl residues, may differ depending on the host system in which the particular protein is expressed. Glycosyl residues useful in the disclosure may include, but are not limited to, glucose, galactose, mannose, fucose, n-acetylglucosamine and sialic acid. In an embodiment, the glycosylated binding protein comprises glycosyl residues such that the glycosylation pattern is human.


It is known to those skilled in the art that differing protein glycosylation may result in differing protein characteristics. For instance, the efficacy of a therapeutic protein produced in a microorganism host, such as yeast, and glycosylated utilizing the yeast endogenous pathway may be reduced compared to that of the same protein expressed in a mammalian cell, such as a CHO cell line. Such glycoproteins may also be immunogenic in humans and show reduced half-life in vivo after administration. Specific receptors in humans and other animals may recognize specific glycosyl residues and promote the rapid clearance of the protein from the bloodstream. Other adverse effects may include changes in protein folding, solubility, susceptibility to proteases, trafficking, transport, compartmentalization, secretion, recognition by other proteins or factors, antigenicity, or allergenicity. Accordingly, a practitioner may prefer a therapeutic protein with a specific composition and pattern of glycosylation, for example glycosylation composition and pattern identical, or at least similar, to that produced in human cells or in the species-specific cells of the intended subject animal.


Expressing glycosylated proteins different from that of a host cell may be achieved by genetically modifying the host cell to express heterologous glycosylation enzymes. Using techniques known in the art a practitioner may generate antibodies or antigen-binding portions thereof exhibiting human protein glycosylation. For example, yeast strains have been genetically modified to express non-naturally occurring glycosylation enzymes such that glycosylated proteins (glycoproteins) produced in these yeast strains exhibit protein glycosylation identical to that of animal cells, especially human cells (U.S. Pat. Nos. 7,449,308 and 7,029,872).


Further, it will be appreciated by one skilled in the art that a protein of interest may be expressed using a library of host cells genetically engineered to express various glycosylation enzymes, such that member host cells of the library produce the protein of interest with variant glycosylation patterns. A practitioner may then select and isolate the protein of interest with particular novel glycosylation patterns. In an embodiment, the protein having a particularly selected novel glycosylation pattern exhibits improved or altered biological properties.


IV. Uses of TNF-α Binding Proteins


Given their ability to bind to human TNF-α, e.g., the human TNF-α binding proteins, or portions thereof, disclosed herein can be used to detect TNF-α (e.g., in a biological sample, such as serum or plasma), using a conventional immunoassay, such as an enzyme linked immunosorbent assays (ELISA), an radioimmunoassay (RIA) or tissue immunohistochemistry. A method for detecting TNF-α in a biological sample is provided comprising contacting a biological sample with a binding protein, or binding protein portion, disclosed herein and detecting either the binding protein (or binding protein portion) bound to TNF-α or unbound binding protein (or binding protein portion), to thereby detect TNF-α in the biological sample. The binding protein is directly or indirectly labeled with a detectable substance to facilitate detection of the bound or unbound antibody. Suitable detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include 3H, 14C, 35S, 90Y, 99Tc, 111In, 125I, 131I, 177Lu, 166Ho, or 153Sm.


Alternative to labeling the binding protein, human TNF-α can be assayed in biological fluids by a competition immunoassay utilizing rhTNF-α standards labeled with a detectable substance and an unlabeled human TNF-α binding protein. In this assay, the biological sample, the labeled rhTNF-α standards and the human TNF-α binding protein are combined and the amount of labeled rhTNF-α standard bound to the unlabeled binding protein is determined. The amount of human TNF-α in the biological sample is inversely proportional to the amount of labeled rhTNF-α standard bound to the TNF-α binding protein. Similarly, human TNF-α can also be assayed in biological fluids by a competition immunoassay utilizing rhTNF-α standards labeled with a detectable substance and an unlabeled human TNF-α binding protein.


In an embodiment, the binding proteins and binding protein portions disclosed herein are capable of neutralizing TNF-α activity, e.g., human TNF-α activity, both in vitro and in vivo. In another embodiment, the binding proteins and binding protein portions disclosed herein are capable of increasing or agonizing human TNF-α activity, e.g., human TNF-α activity. Accordingly, such binding proteins and binding protein portions disclosed herein can be used to inhibit or increase hTNF-α activity, e.g., in a cell culture containing hTNF-α, in human subjects or in other mammalian subjects having TNF-α with which a binding protein disclosed herein cross-reacts. In one embodiment, a method for inhibiting or increasing hTNF-α activity is provided comprising contacting hTNF-α with a binding protein or binding protein portion disclosed herein such that hTNF-α activity is inhibited or increased. For example, in a cell culture containing, or suspected of containing hTNF-α, a binding protein or binding protein portion disclosed herein can be added to the culture medium to inhibit or increase hTNF-α activity in the culture.


In another embodiment, a method is provided for reducing or increasing hTNF-α activity in a subject, advantageously from a subject suffering from a disease or disorder in which TNF-α-activity is detrimental or, alternatively, beneficial. Methods for reducing or increasing TNF-α activity in a subject suffering from such a disease or disorder is provided, which method comprises administering to the subject a binding protein or binding protein portion disclosed herein such that TNF-α activity in the subject is reduced or increased. In a particular embodiment, the TNF-α is human TNF-α, and the subject is a human subject. Alternatively, the subject can be a mammal expressing a TNF-α to which a binding protein provided is capable of binding. Still further the subject can be a mammal into which TNF-α has been introduced (e.g., by administration of TNF-α or by expression of a TNF-α transgene). A binding protein disclosed herein can be administered to a human subject for therapeutic purposes. Moreover, a binding protein disclosed herein can be administered to a non-human mammal expressing a TNF-α with which the binding protein is capable of binding for veterinary purposes or as an animal model of human disease. Regarding the latter, such animal models may be useful for evaluating the therapeutic efficacy of binding proteins disclosed herein (e.g., testing of dosages and time courses of administration).


The term “a disorder in which TNF-α activity is detrimental” includes diseases and other disorders in which the presence of TNF-α activity in a subject suffering from the disorder has been shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Accordingly, a disorder in which TNF-α activity is detrimental is a disorder in which reduction of TNF-α activity is expected to alleviate the symptoms and/or progression of the disorder. Such disorders may be evidenced, for example, by an increase in the concentration of TNF-α in a biological fluid of a subject suffering from the disorder (e.g., an increase in the concentration of TNF-α in serum, plasma, synovial fluid, etc. of the subject), which can be detected, for example, using an anti-TNF-α antibody as described above. Non-limiting examples of disorders that can be treated with the binding proteins disclosed herein include those disorders discussed in the section below pertaining to pharmaceutical compositions of the antibodies disclosed herein.


Alternatively, the term “a disorder in which TNF-α activity is beneficial” include diseases and other disorders in which the presence of TNF-α activity in a subject suffering from the disorder has been shown to be or is suspected of being either beneficial for treating the pathophysiology of the disorder or a factor that contributes to a treatment of the disorder. Accordingly, a disorder in which TNF-α activity is beneficial is a disorder in which an increase of TNF-α activity is expected to alleviate the symptoms and/or progression of the disorder. Non-limiting examples of disorders that can be treated with the antibodies disclosed herein include those disorders discussed in the section below pertaining to pharmaceutical compositions of the antibodies disclosed herein.


V. Pharmaceutical Compositions


Pharmaceutical compositions are also provided comprising a binding protein, or antigen-binding portion thereof, disclosed herein and a pharmaceutically acceptable carrier. The pharmaceutical compositions comprising binding protein disclosed herein are for use in, but not limited to, diagnosing, detecting, or monitoring a disorder, in preventing, treating, managing, or ameliorating of a disorder or one or more symptoms thereof, and/or in research. In a specific embodiment, a composition comprises one or more binding proteins disclosed herein. In another embodiment, the pharmaceutical composition comprises one or more binding proteins disclosed herein and one or more prophylactic or therapeutic agents other than binding proteins disclosed herein for treating a disorder in which TNF-α activity is detrimental. In a particular embodiment, the prophylactic or therapeutic agents known to be useful for or having been or currently being used in the prevention, treatment, management, or amelioration of a disorder or one or more symptoms thereof. In accordance with these embodiments, the composition may further comprise of a carrier, diluent or excipient.


The binding proteins and binding protein-portions disclosed herein can be incorporated into pharmaceutical compositions suitable for administration to a subject. Typically, the pharmaceutical composition comprises a binding protein or binding protein portion disclosed herein and a pharmaceutically acceptable carrier. The term “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. In many cases, isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition, may be included. Pharmaceutically acceptable carriers may further comprise minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the binding protein or binding protein portion.


Various delivery systems are known and can be used to administer one or more binding proteins disclosed herein or the combination of one or more binding proteins disclosed herein and a prophylactic agent or therapeutic agent useful for preventing, managing, treating, or ameliorating a disorder or one or more symptoms thereof, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the binding protein or binding protein fragment, receptor-mediated endocytosis (see, e. g., Wu and Wu (1987) J. Biol. Chem. 262:4429-4432), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of administering a prophylactic or therapeutic agent disclosed herein include, but are not limited to, parenteral administration (e.g., intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural administration, intratumoral administration, and mucosal administration (e.g., intranasal and oral routes). In addition, pulmonary administration can be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. In one embodiment, a binding protein disclosed herein, combination therapy, or a composition disclosed herein is administered using Alkermes AIR® pulmonary drug delivery technology (Alkermes, Inc., Cambridge, Mass.). In a specific embodiment, prophylactic or therapeutic agents disclosed herein are administered intramuscularly, intravenously, intratumorally, orally, intranasally, pulmonary, or subcutaneously. The prophylactic or therapeutic agents may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.


In a specific embodiment, it may be desirable to administer the prophylactic or therapeutic agents disclosed herein locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion, by injection, or by means of an implant, said implant being of a porous or non-porous material, including membranes and matrices, such as sialastic membranes, polymers, fibrous matrices (e.g., Tissuel®), or collagen matrices. In one embodiment, an effective amount of one or more binding proteins disclosed herein antagonists is administered locally to the affected area to a subject to prevent, treat, manage, and/or ameliorate a disorder or a symptom thereof. In another embodiment, an effective amount of one or more binding proteins disclosed herein is administered locally to the affected area in combination with an effective amount of one or more therapies (e.g., one or more prophylactic or therapeutic agents) other than an antibody disclosed herein of a subject to prevent, treat, manage, and/or ameliorate a disorder or one or more symptoms thereof.


In a specific embodiment, where the composition disclosed herein is a nucleic acid encoding a prophylactic or therapeutic agent, the nucleic acid can be administered in vivo to promote expression of its encoded prophylactic or therapeutic agent, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, DuPont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see, e.g., Joliot et al. (1991) Proc. Natl. Acad. Sci. USA 88:1864-1868). Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression by homologous recombination.


The method disclosed herein may comprise administration of a composition formulated for parenteral administration by injection (e.g., by bolus injection or continuous infusion). Formulations for injection may be presented in unit dosage form (e.g., in ampoules or in multi-dose containers) with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle (e.g., sterile pyrogen-free water) before use.


The methods disclosed herein may additionally comprise of administration of compositions formulated as depot preparations. Such long acting formulations may be administered by implantation (e.g., subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compositions may be formulated with suitable polymeric or hydrophobic materials (e.g., as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives (e.g., as a sparingly soluble salt).


The methods disclosed herein encompass administration of compositions formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.


Generally, the ingredients of compositions are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the mode of administration is infusion, composition can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the mode of administration is by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.


In particular, it is also provided that one or more of the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein is packaged in a hermetically sealed container such as an ampoule or sachette indicating the quantity of the agent. In one embodiment, one or more of the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted (e.g., with water or saline) to the appropriate concentration for administration to a subject. In an embodiment, one or more of the prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein is supplied as a dry sterile lyophilized powder in a hermetically sealed container at a unit dosage of at least 5 mg, at least 10 mg, at least 15 mg, at least 25 mg, at least 35 mg, at least 45 mg, at least 50 mg, at least 75 mg, or at least 100 mg. The lyophilized prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein should be stored at between 2° C. and 8° C. in its original container and the prophylactic or therapeutic agents, or pharmaceutical compositions disclosed herein should be administered within 1 week, within 5 days, within 72 hours, within 48 hours, within 24 hours, within 12 hours, within 6 hours, within 5 hours, within 3 hours, or within 1 hour after being reconstituted. In an alternative embodiment, one or more of the prophylactic or therapeutic agents or pharmaceutical compositions disclosed herein is supplied in liquid form in a hermetically sealed container indicating the quantity and concentration of the agent. In an embodiment, the liquid form of the administered composition is supplied in a hermetically sealed container at least 0.25 mg/ml, at least 0.5 mg/ml, at least 1 mg/ml, at least 2.5 mg/ml, at least 5 mg/ml, at least 8 mg/ml, at least 10 mg/ml, at least 15 mg/kg, at least 25 mg/ml, at least 50 mg/ml, at least 75 mg/ml or at least 100 mg/ml. The liquid form should be stored at between 2° C. and 8° C. in its original container.


The binding proteins and binding protein-portions disclosed herein can be incorporated into a pharmaceutical composition suitable for parenteral administration. In an embodiment, the binding protein or binding protein-portions will be prepared as an injectable solution containing 0.1-250 mg/ml binding protein. The injectable solution can be composed of either a liquid or lyophilized dosage form in a flint or amber vial, ampoule or pre-filled syringe. The buffer can be L-histidine (1-50 mM), optimally 5-10 mM, at pH 5.0 to 7.0 (optimally pH 6.0). Other suitable buffers include but are not limited to, sodium succinate, sodium citrate, sodium phosphate or potassium phosphate. Sodium chloride can be used to modify the toxicity of the solution at a concentration of 0-300 mM (optimally 150 mM for a liquid dosage form). Cryoprotectants can be included for a lyophilized dosage form, principally 0-10% sucrose (optimally 0.5-1.0%). Other suitable cryoprotectants include trehalose and lactose. Bulking agents can be included for a lyophilized dosage form, principally 1-10% mannitol (optimally 2-4%). Stabilizers can be used in both liquid and lyophilized dosage forms, principally 1-50 mM L-Methionine (optimally 5-10 mM). Other suitable bulking agents include glycine, arginine, can be included as 0-0.05% polysorbate-80 (optimally 0.005-0.01%). Additional surfactants include but are not limited to polysorbate 20 and BRIJ surfactants.


Typical compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for passive immunization of humans with other antibodies. Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the active compound (i.e., binding protein or binding protein portion) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile, lyophilized powders for the preparation of sterile injectable solutions, the methods of preparation include vacuum drying and spray-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including, in the composition, an agent that delays absorption, for example, monostearate salts and gelatin.


As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results. In certain embodiments, the active compound may be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.


Supplementary active compounds can also be incorporated into the compositions. In certain embodiments, a binding protein or binding protein portion disclosed herein is coformulated with and/or coadministered with one or more additional therapeutic agents that are useful for treating disorders in which TNF-α activity is detrimental. For example, an anti-hTNF-α antibody or antibody portion disclosed herein may be coformulated and/or coadministered with one or more additional antibodies that bind other targets (e.g., antibodies that bind other cytokines or that bind cell surface molecules). Furthermore, one or more binding proteins disclosed herein may be used in combination with two or more of the foregoing therapeutic agents. Such combination therapies may advantageously utilize lower dosages of the administered therapeutic agents, thus avoiding possible toxicities or complications associated with the various monotherapies.


In certain embodiments, a binding protein to TNF-α or fragment thereof is linked to a half-life extending vehicle known in the art. Such vehicles include, but are not limited to, the Fc domain, polyethylene glycol, and dextran. Such vehicles are described, e.g., in U.S. Pat. No. 6,660,843.


In a specific embodiment, nucleic acid sequences comprising nucleotide sequences encoding a binding protein disclosed herein or another prophylactic or therapeutic agent disclosed herein are administered to treat, prevent, manage, or ameliorate a disorder or one or more symptoms thereof by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the disclosure, the nucleic acids produce their encoded binding protein or prophylactic or therapeutic agent disclosed herein that mediates a prophylactic or therapeutic effect.


Any of the methods for gene therapy available in the art can be used according to the present disclosure.


TNF-α plays a critical role in the pathology associated with a variety of diseases involving immune and inflammatory elements, such as autoimmune diseases, particularly those assocated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, systemic lupus erythematosus, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders. In another embodiment, the disorder is a respiratory disorder; asthma; allergic and nonallergic asthma; asthma due to infection; asthma due to infection with respiratory syncytial virus (RSV); chronic obstructive pulmonary disease (COPD); a condition involving airway inflammation; eosinophilia; fibrosis and excess mucus production; cystic fibrosis; pulmonary fibrosis; an atopic disorder; atopic dermatitis; urticaria; eczema; allergic rhinitis; allergic enterogastritis; an inflammatory and/or autoimmune condition of the skin; an inflammatory and/or autoimmune condition of gastrointestinal organs; inflammatory bowel diseases (IBD); ulcerative colitis; an inflammatory and/or autoimmune condition of the liver; liver cirrhosis; liver fibrosis; liver fibrosis caused by hepatitis B and/or C virus; scleroderma; tumors or cancers; hepatocellular carcinoma; glioblastoma; lymphoma; Hodgkin's lymphoma; a viral infection; a bacterial infection; a parasitic infection; HTLV-1 infection; suppression of expression of protective type 1 immune responses, suppression of expression of a protective type 1 immune response during vaccination, neurodegenerative diseases, neuronal regeneration, and spinal cord injury.


It will be readily apparent to those skilled in the art that other suitable modifications and adaptations of the methods disclosed herein may be made using suitable equivalents without departing from the scope of the invention or the embodiments disclosed herein. Having now described the present disclosure in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting of the invention.


EXAMPLES
Example 1: Identification of Fully Human Antibodies to TNF by in Vitro Display Systems
1.1: Antibody Selections

Fully human anti-human TNF monoclonal antibodies were isolated by in vitro display technologies from human antibody libraries by their ability to bind recombinant human TNF proteins. The amino acid sequences of the variable heavy (VH) and variable light (VL) chains were determined from DNA sequencing and listed in Table 10.









TABLE 10







Individual clones sequences









Protein

Sequence


region
SEQ ID NO:
123456789012345678901234567890













AE11-1 VH

22
EVQLVQSGAEVKKPGASVKVSCKASGYTFT







SYDVN
WVRQATGQGLEWMGMNPNSGNTGY








AQKFQG
RVTITADESTSTAYMELSSLRSED






TAVYYCAIFDSDYMDVWGKGTLVTVSS


AE11-1 VH
CDR-
Residues 31-35

SYDVN




H1
of SEQ ID





NO.: 22



AE11-1 VH
CDR-
Residues 50-66

WMNPNSGNTGYAQKFQG




H2
of SEQ ID





NO.: 22



AE11-1 VH
CDR-
Residues 99-106

FDSDYMDV




H3
of SEQ ID





NO.: 22






AE11-1 VL

23
SYELTQPPSVSLSPGQTARITCSGDALPKQ







YAY
WYQQKPGQAPVLVIYKDTERPSGIPER






FSGSSSGTTVTLTISGAQAEDEADYYCQSA







DSSGTSWV
FGGGTKLTVL



AE11-1 VL
CDR-
Residues 23-33

SGDALPKQYAY




L1
of SEQ ID





NO.: 23



AE11-1 VL
CDR-
Residues 49-55

KDTERPS




L2
of SEQ ID





NO.: 23



AE11-1 VL
CDR-
Residues 89-98

SADSSGTSWV




L3
of SEQ ID





NO.: 23






AE11-5 VH

24
EVQLVQSGAEVKKPGSSAKVSCKASGGTFS







SYAIS
WVRQAPGQGLEWMGGIIPILGTANY








AQKFLG
RVTITADESTSTVYMELSSLRSED






TAVYYCARGLYYDPTRADYWGQGTLVTVSS


AE11-5 VH
CDR-
Residues 31-35

SYAIS




H1
of SEQ ID





NO.: 24



AE11-5 VH
CDR-
Residues 50-66

GIIPILGTANYAQKFLG




H2
of SEQ ID





NO.: 24



AE11-5 VH
CDR-
Residues 99-109

GLYYDPTRADY




H3
of SEQ ID





NO.: 24






AE11-5 VL

25
DIVMTQSPDFHSVTPKEKVTITCRASQSIG







SSLH
WYQQKPDQSPKLLIRHASQSISGVPS






RFSGSGSGTDFTLTIHSLEAEDAATYYCHQ







SSSSPPPT
FGQGTQVEIK



AE11-5 VL
CDR-
Residues 24-34

RASQSIGSSLH




L1
of SEQ ID





NO.: 25



AE11-5 VL
CDR-
Residues 50-56

HASQSIS




L2
of SEQ ID





NO.: 25



AE11-5 VL
CDR-
Residues 89-98

HQSSSSPPPT




L3
of SEQ ID





NO.: 25






TNF-JK1 VH

26
EVQLVESGGGLVQPGGSLRLSCATSGFTFN







NYWMS
WVRQAPGKGLEWVANINHDESEKYY








VDSAKG
RFTISRDNAEKSLFLQMNSLRAED






TAVYYCARIIRGRVGFDYYNYAMDVWGQGT





LVTVSS


TNF-JK1 VH
CDR-
Residues 31-35

NYWMS




H1
of SEQ ID





NO.: 26



TNF-JK1 VH
CDR-
Residues 50-66

NINHDESEKYYVDSAKG




H2
of SEQ ID





NO.: 26



TNF-JK1 VH
CDR-
Residues 99-115

IIRGRVGFDYYNYAMDV




H3
of SEQ ID





NO.: 26






TNF-JK1 VL

27
DIRLTQSPSPLSASVGDRVTITCRASQSIG







NYLN
WYQHKPGKAPKLLIYAASSLQSGVPS






RFSGTGSGTDFTLTISSLQPEDFATYYCQE







SYSLI
FAGGTKVEIK



TNF-JK1 VL
CDR-
Residues 24-34

RASQSIGNYLN




L1
of SEQ ID





NO.: 27



TNF-JK1 VL
CDR-
Residues 50-56

AASSLQS




L2
of SEQ ID





NO.: 27



TNF-JK1 VL
CDR-
Residues 89-95

QESYSLI




L3
of SEQ ID





NO.: 27






TNF-Y7C VH

28
EVQLVQSGAEVKKPGASVKVSCKTSGYTFS







NYDIN
WVRQPTGQGLEWMGWMDPNNGNTGY








AQKFVG
RVTMTRDTSKTTAYLELSGLKSED






TAVYYCARSSGSGGTWYKEYFQSWGQGTMV





TVSS


TNF-Y7C VH
CDR-
Residues 31-35

NYDIN




H1
of SEQ ID





NO.: 28



TNF-Y7C VH
CDR-
Residues 50-66

WMDPNNGNTGYAQKFVG




H2
of SEQ ID





NO.: 28



TNF-Y7C VH
CDR-
Residues 99-112

KSSGSGGTWYKEYFQS




H3
of SEQ ID





NO.: 28






TNF-Y7C VL

29
DIVMTQSPLSLPVTPGEPASISCRSSQSLL







HSNGYNYLD
WYLQKPGQFPQLLIYLGSYRA








S
GVPDRFSGSGSGTDFTLKISRVEAEDVGV






YYCMQRIEFPPGTFGQGTKLGIK


TNF-Y7C VL
CDR-
Residues 24-39

RSSQSLLHSNGYNYLD




L1
of SEQ ID





NO.: 29



TNF-Y7C VL
CDR-
Residues 55-61

LGSYRAS




L2
of SEQ ID





NO.: 29



TNF-Y7C VL
CDR-
Residues 94-103

MQRIEFPPGT




L3
of SEQ ID





NO.: 29






AE11-7 VH

30
EVQLVQSGAEVKKPGASVKVSCKTSGYSLT







QYPIH
WVRQAPGQRPEWMGWISPGNGNTKL








SPKFQG
RVTLSRDASAGTVFMDLSGLTSDD






TAVYFCTSVDLGDHWGQGTLVTVSS


AE11-7 VH
CDR-
Residues 31-35

QYPIH




H1
of SEQ ID





NO.: 30



AE11-7 VH
CDR-
Residues 50-66

WISPGNGNTKLSPKFQG




H2
of SEQ ID





NO.: 30



AE11-7 VH
CDR-
Residues 99-104

VDLGDH




H3
of SEQ ID





NO.: 30






AE11-7 VL

31
DIVMTQSPEFQSVTPKEKVTITCRASQSIG







SSLH

WYQQKPDQSPKLLIN

YASQSFS
GVPS






RFSGGGSGTDFTLTINSLEAEDAATYYCHQ







SSNLPIT
FGQGTRLEIK



AE11-7 VL
CDR-
Residues 24-34

RASQSIGSSLH




L1
of SEQ ID





NO.: 31



AE11-7 VL
CDR-
Residues 50-56

YASQSFS




L2
of SEQ ID





NO.: 31



AE11-7 VL
CDR-
Residues 89-97

HQSSNLPIT




L3
of SEQ ID





NO.: 31






AE11-13 VH

32
EVQLVESGGGLVQPGRSLRLSCAASGFTFD







DYPMH
WVRQAPGEGLEWVSGISSNSASIGY








ADSVKG
RFTISRDNAQNTLYLQMNSLGDED






TAVYYCVSLTLGIGQGTLVTVSS


AE11-13 VH
CDR-
Residues 31-35

DYPMH




H1
of SEQ ID





NO.: 32



AE11-13 VH
CDR-
Residues 50-66

GISSNSASIGYADSVKG




H2
of SEQ ID





NO.: 32



AE11-13 VH
CDR-
Residues 99-102

LTLG




H3
of SEQ ID





NO.: 32






AE11-13 VL

33
DIRLTQSPSSLSASVGDRVTITCRASQSIG







NYLH
WYQQKPGKAPKLLIYAASSLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ







SYSTLYS
FGQGTKLEIK



AE11-13 VL
CDR-
Residues 24-34

RASQSIGNYLH




L1
of SEQ ID





NO.: 33



AE11-13 VL
CDR-
Residues 50-56

AASSLQS




L2
of SEQ ID





NO.: 33



AE11-13 VL
CDR-
Residues 89-97

QQSYSTLYS




L3
of SEQ ID





NO.: 33









1.2: Affinity Maturation of the Fully Human Anti-Human TNF Antibody AE11-5

The AE11-5 human antibody to human TNF was affinity matured by in vitro display technology. One light chain library was constructed to contain limited mutagenesis at the following residues: 28, 31, 32, 51, 55, 91, 92, 93, 95a and 96 (Kabat numbering). This library also contained framework germline back-mutations D1E, M4L, H11Q, R49K, H76N and Q103K as well as toggled residues at position 50(R/K) and 94(S/L) to allow for framework germlining during library selections. Two heavy chain libraries were made to contain limited mutagenesis in CDRH1 and CDRH2 at residues 30, 31, 33, 50, 52, and 55 to 58 (Kabat numbering) or in CDRH3 at residues 95 to 100b. The library containing CDRH1 and CDRH2 diversities also had framework germline back-mutations Al8V and L64Q and toggled residue at 54(L/F) and 78(V/A). The CDRH3 library has an additional toggled residue at 100c(A/F).


All three libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.


Table 11 provides a list of amino acid sequences of VH regions of affinity matured fully human TNF antibodies derived from AE11-5. Amino acid residues of individual CDRs of each VH sequence are indicated in bold.









TABLE 11







List of amino acid sequences of affinity


matured AE11-5 VH variants









Clone
SEQ ID NO:
VH












J685M2S2-10VH
94
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-12VH
95
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYS





ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-13VH
96
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-14VH
97
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-16VH
98
EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYS





ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-18VH
99
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSFYA





ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-1VH
100
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA





ISWVRQAPGQGLEWMGGITPILGAAVYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-21VH
101
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-23VH
102
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGVAVYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-25VH
103
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-27VH
104
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSAHYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-28VH
105
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-29VH
106
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-31VH
107
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYT





ISWVRQAPGQGLEWMGGIIPILRNPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-32VH
108
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA





ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-35VH
109
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYT





ISWVRQAPGQGLEWMGGIIPILGAPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-37VH
110
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-38VH
111
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS





ISWVRQAPGQGLEWMGGIMPILGSASYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-43VH
112
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGTASYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-44VH
113
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS





ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-45VH
114
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIMPILGTATYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-46VH
115
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSFYT





ISWVRQAPGQGLEWMGGIMPILGSPHYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-47VH
116
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-48VH
117
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIMPILGSATYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-4VH
118
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIIPILGTPTYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-50VH
119
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J685M2S2-51VH
120
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSLYT





ISWVRQAPGQGLEWMGGIMPILGAPRYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-52VH
121
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA





ISWVRQAPGQGLEWMGGIMPILGSPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-53VH
122
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA





ISWVRQAPGQGLEWMGGILPILGSPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-55VH
123
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA





ISWVRQAPGQGLEWMGGIIPILGSPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-56VH
124
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIVPILGAPLYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-58VH
125
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA





ISWVRQAPGQGLEWMGGIMPILGAPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-5VH
126
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYT





ISWVRQAPGQGLEWMGGIMPILGTPAYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-61VH
127
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS





ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-62VH
128
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIIPILGTPTYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-63VH
129
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIIPILGTPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-64VH
130
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGIGNYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-66VH
131
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA





ISWVRQAPGQGLEWMGGIVPILGAATYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-67VH
132
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSSTYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-68VH
133
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-6VH
134
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGNSIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-70VH
135
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-71VH
136
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-72VH
137
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA





ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-73VH
138
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAAIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-75VH
139
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTATYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-76VH
140
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS





ISWVRQAPGQGLEWMGGITPILGSAHYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-77VH
141
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-78VH
142
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILRSAVYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-7VH
143
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYS





ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-80VH
144
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTASYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-81VH
145
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTAIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-82VH
146
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSPAYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-83VH
147
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSRYA





ISWVRQAPGQGLEWMGGIIPILGPASYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-84VH
148
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILDAAIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-86VH
149
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGIPNYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-87VH
150
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYA





ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-88VH
151
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSYYA





ISWVRQAPGQGLEWMGGIMPILGTATYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-89VH
152
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYFDPKRADYWGQGTLVTVSS






J685M2S2-8VH
153
EVQLVQSGAEVKKPGSSVKVSCKASGGTFNWYT





ISWVRQAPGQGLEWMGGIMPILGTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-90VH
154
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYFDFTRADYWGQGTLVTVSS






J685M2S2-91VH
155
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIIPILRFPTYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-92VH
156
EVQLVQSGAEVKKPGSSVKVSCKVSGGTFSWYS





ISWVRQAPGQGLEWMGGILPILDTANYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-93VH
157
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIMPILGTAVYAQKFQG





RVTITADESTSTAYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J685M2S2-94VH
158
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSIYS





ISWVRQAPGQGLEWMGGILPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J688M2-11VH
159
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPTRADYWGQGTLVTVSS






J688M2-13VH
160
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPSRADYWGQGTLVTVSS






J688M2-14VH
161
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYFNPTRADYWGQGTLVTVSS






J688M2-16VH
162
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPARFDYWGQGTLVTVSS






J688M2-20VH
163
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYNPSRADYWGQGTLVTVSS






J688M2-21VH
164
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPKRADYWGQGTLVTVSS






J688M2-22VH
165
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPRRADYWGQGTLVTVSS






J688M2-28VH
166
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





FYYDPTRADYWGQGTLVTVSS






J688M2-29VH
167
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDFTRADYWGQGTLVTVSS






J688M2-2VH
168
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYFDPKRADYWGQGTLVTVSS






J688M2-37VH
169
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYFDPTRADYWGQGTLVTVSS






J688M2-3VH
170
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPSRADYWGQGTLVTVSS






J688M2-46VH
171
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARS





LYYERTRADYWGQGTLVTVSS






J688M2-48VH
172
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARW





RFYIPIRFDYWGQGTLVTVSS






J688M2-4VH
173
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDFTRADYWGQGTLVTVSS






J688M2-50VH
174
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LFYDPSRADYWGQGTLVTVSS






J688M2-52VH
175
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPVRADYWGQGTLVTVSS






J688M2-56VH
176
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPIRADYWGQGTLVTVSS






J688M2-57VH
177
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J688M2-58VH
178
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYNPIRFDYWGQGTLVTVSS






J688M2-64VH
179
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYFDPARADYWGQGTLVTVSS






J688M2-65VH
180
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VFFDPTRADYWGQGTLVTVSS






J688M2-68VH
181
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VFYNPTRADYWGQGTLVTVSS






J688M2-69VH
182
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYEGPSADYWGQGTLVTVSS






J688M2-6VH
183
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYAPNRADYWGQGTLVTVSS






J688M2-73VH
184
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LFYDPTRADYWGQGTLVTVSS






J688M2-74VH
185
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYNPTRADYWGQGTLVTVSS






J688M2-75VH
186
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPARADYWGQGTLVTVSS






J688M2-7VH
187
EVQLVQSGAEVKKSGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPGRADYWGQGTLVTVSS






J688M2-81VH
188
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYFDPSRADYWGQGTLVTVSS






J688M2-82VH
189
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYFDPSRFDYWGQGTLVTVSS






J688M2-83VH
190
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYFDFTRADYWGQGTLVTVSS






J688M2-84VH
191
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPTRADYWGQGTLVTVSS






J688M2-88VH
192
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYFDPSRADYWGQGTLVTVSS






J688M2-89VH
193
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPSRFDYWGQGTLVTVSS






J688M2-8VH
194
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





QYYDTSRADYWGQGTLVTVSS






J688M2-90VH
195
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARS





LYYDTTRFDYWGQGTLVTVSS






J688M2-92VH
196
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VFYDPTRADYWGQGTLVTVSS






J688M2-94VH
197
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPARADYWGQGTLVTVSS






J688M2-95VH
198
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LFYDPRRADYWGQGTLVTVSS






J688M2-96VH
199
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDTTRADYWGQGTLVTVSS






J693FRM2S2L-
200
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA


32VH


ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPARADYWGQGTLVTVSS






J693FRM2S2L-
201
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA


40VH


ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCSRG





LYYDPTRADYWGQGTLVTVSS






J693FRM2S2L-
202
EVQLVQSGAEVMKPGSSVKVSCKASGGTFSSYA


70VH


ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCTRG





LYYDPTRADYWGQGTLVTVSS






J693FRM2S2R-
203
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYA


29VH


ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693FRM2S2R-
204
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA


46VH


ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCTRG





LYYDPTRADYWGQGTLVTVSS






J693FRM2S2R-
205
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA


65VH


ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCTRG





IYYDPTRADYWGQGTLVTVSS






J693M2S2L-17VH
206
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQEFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2L-32VH
207
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCVRG





LYYDPTRADYWGQGTLVTVSS






J693M2S2L-67VH
208
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTASYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2L-75VH
209
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCAKG





LYYDPTRADYWGQGTLVTVSS






J693M2S2L-78VH
210
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCERG





LYYDPTRADYWGQGTLVTVSS






J693M2S2L-79VH
211
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSNYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2L-94VH
212
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAHKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2R-22VH
213
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADCWGQGTLVTVSS






J693M2S2R-24VH
214
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVQQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2R-2VH
215
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2R-31VH
216
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2R-71VH
217
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA




TSWVRQAPGQGLEWMGGIIPILGTANYAQKFQG




RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2R-84VH
218
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFLG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J693M2S2R-89VH
219
EVQLVQSGAEVKKPGSSVKVSCKASGGTSSSYA





ISWVRQAPGQGLEWMGGIIPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPTRADYWGQGTLVTVSS






J703M1S3-10VH
220
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPKRADYWGQGTLVTVSS






J703M1S3-11VH
221
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAASYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPTRADYWGQGTLVTVSS






J703M1S3-12VH
222
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAASYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPARADYWGQGTLVTVSS






J703M1S3-13VH
223
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-14VH
224
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGSPTYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPRRADYWGQGTLVTVSS






J703M1S3-16VH
225
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSATYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-17VH
226
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIVPILGTPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-18VH
227
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPARADYWGQGTLVTVSS






J703M1S3-19VH
228
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSPTYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-1VH
229
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGTPVYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDFRRANYWGQGTLVTVSS






J703M1S3-20VH
230
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-21VH
231
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGDPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-22VH
232
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDYKRADYWGQGTLVTVSS






J703M1S3-25VH
233
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LFYDFRRADYWGQGTLVTVSS






J703M1S3-28VH
234
EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYA





ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-29VH
235
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-2VH
236
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





TSWVRQAPGQGLEWMGGITPILGSPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDHRRADYWGQGTLVTVSS






J703M1S3-34VH
237
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDYKRADYWGQGTLVTVSS






J703M1S3-37VH
238
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-38VH
239
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDFKRADYWGQGTLVTVSS






J703M1S3-3VH
240
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGTPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPRRADYWGQGTLVTVSS






J703M1S3-41VH
241
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-42VH
242
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAPVYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-45VH
243
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-46VH
244
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-47VH
245
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGSANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-4VH
246
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGNAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-50VH
247
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-51VH
248
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDYRRADYWGQGTLVTVSS






J703M1S3-53VH
249
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIMPILGIPTYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPARADYWGQGTLVTVSS






J703M1S3-54VH
250
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-57VH
251
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSAVYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-5VH
252
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDYKRADYWGQGTLVTVSS






J703M1S3-62VH
253
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGYPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-6VH
254
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAATYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDFRRADYWGQGTLVTVSS






J703M1S3-72VH
255
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYP





ISWVRQAPGQGLEWMGGITPILGSAIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDFRRADYWGQGTLVTVSS






J703M1S3-78VH
256
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGTANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-79VH
257
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGSAVYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-7VH
258
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGNPIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPARADYWGQGTLVTVSS






J703M1S3-81VH
259
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGAPNYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDYTRADYWGQGTLVTVSS






J703M1S3-83VH
260
EVQLVQSGAEVKKPGSSVKVSCKASGGTFAWYA





ISWVRQAPGQGLEWMGGITPILGSPTYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-86VH
261
EVQLVQSGAEVKKPGSSVKVSCKASGGTFGWYA





TSWVRQAPGQGLEWMGGIIPILGTPNYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-87VH
262
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGTPTYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDPKRADYWGQGTLVTVSS






J703M1S3-88VH
263
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYT





ISWVRQAPGQGLEWMGGIMPILGSPNYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





IYYDPKRADYWGQGTLVTVSS






J703M1S3-91VH
264
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGIMPILGSATYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYFDPKRADYWGQGTLVTVSS






J703M1S3-93VH
265
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYA





ISWVRQAPGQGLEWMGGITPILGAANYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





LYYDPKRADYWGQGTLVTVSS






J703M1S3-9VH
266
EVQLVQSGAEVKKPGSSVKVSCKASGGTFSWYP





ISWVRQAPGQGLEWMGGITPILGAGIYAQKFQG





RVTITADESTSTVYMELSSLRSEDTAVYYCARG





VYYDFKRADYWGQGTLVTVSS










Table 12 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from AE11-5. Amino acid residues of individual CDRs of each VH sequence are indicated in bold.









TABLE 12







List of amino acid sequences of affinity matured


AE11-5 VL variants









Clone
SEQ ID NO:
VL





J685M2S2-17Vk
267
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG




TKVEIK





J685M2S2-94Vk
268
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQW





TKVEIK






J688M2-37Vk
269
EIVLTQSPDFQSVTPKEKVTITCRARQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TNFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG




TKVEIK





J688M2-90Vk
270
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG




TKVEIK





J693FRM2S2L-
271
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH


26Vk

WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNRSSPPSTFGQG




TKVEIK





J693FRM2S2L-
272
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH


27Vk

WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPPVTFGQG




TKVEIK





J693FRM2S2L-
273
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


29Vk

WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSNLPAPTFGQG




TKVEIK





J693FRM2S2L-
274
EIVLTQSPDFQSVTPKEKVTITCRASQIIGGSLH


39Vk

WYQQKPDQSPKLLIKYASQSFSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQPICSPPRTFGQG




TKVEIK





J693FRM2S2L-
275
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNLH


3Vk

WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSISPPATFGQG




TKVEIK





J693FRM2S2L-
276
EIVLTQSPDFQSVTPKEKVTITCRASQCIGTSLH


40Vk

WYQQKPDQSPKLLIKYDSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSSPPPTFGQG




TKVEIK





J693FRM2S2L-
277
EIVLTQSPDFQSVTPKEKVTITCRASQNIGNSLH


42Vk

WYQQKPDQSPKLLIKYTSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTSSLPLPTFGQG




TKVEIK





J693FRM2S2L-
278
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


43Vk

WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQISDLPTSTFGQG




TKVEIK





J693FRM2S2L-
279
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSNLH


45Vk

WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSSLPPPTFGQG




TKVEIK





J693FRM2S2L-
280
EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH


46Vk

WYQQKPDQSPKLLIKHTSQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSNSSPLSTFGQG




TKVEIK





J693FRM2S2L-
281
EIVLTQSPDFQSVTPKEKVTITCRASQNIGGSLH


47Vk

WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSLPLPTFGQG




TKVEIK





J693FRM2S2L-
282
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH


48Vk

WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSKSPPPTFGQG




TKVEIK





J693FRM2S2L-
283
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH


52Vk

WYQQKPDQSPKLLIKYASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSSLPTPTFGQG




TKVEIK





J693FRM2S2L-
284
EIVLTQSPDFQSVTPKEKVTITCRASQSIGGRLH


53Vk

WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQASSSPSTTFGQG




TKVEIK





J693FRM2S2L-
285
EIVLTQSPDFQSVTPKEKVTITCRASQRIGPSLH


54Vk

WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSCLPSTTFGQG




TKVEIK





J693FRM2S2L-
286
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH


58Vk

WYQQKPDQSPKLLIKYASQSRSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGISPPTTFGQG




TKVEIK





J693FRM2S2L-
287
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH


59Vk

WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGMSSPAPTFGQG




TKVEIK





J693FRM2S2L-
288
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


5Vk

WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRRNSPPPTFGQG




TKVEIK





J693FRM2S2L-
289
EIVLTQSPDFQSVTPKEKVTITCRASQKIGSGLH


88Vk

WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNNSSPHKTFGQG




TKVEIK





J693FRM2S2L-
290
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNLH


89Vk

WYQQKPDQSPKLLIKHSSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSSPLPTFGQG




TKVEIK





J693FRM2S2L-
291
EIVLTQSPDFQSVTPKEKVTITCRASQNIGRSLH


8Vk

WYQQKPDQSPKLLIKYASQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRSSPPPTFGQG




TKVEIK





J693FRM2S2L-
292
EIVLTQSPDFQSVTPKEKVTITCRASQCIGKSLH


90Vk

WYQQKPDQSPKLLIKHPSQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSIGLPPTTFGQG




TKVEIK





J693FRM2S2L-
293
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH


91Vk

WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSISPPATFGQG




TKVEIK





J693FRM2S2L-
294
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH


92Vk

WYQQKPDQSPKLLIKYESQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRCCSPTQTFGQG




TKVEIK





J693FRM2S2L-
295
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRKLH


94Vk

WYQQKPDQSPKLLIKYSSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSRSPPTTFGQG




TKVEIK





J693FRM2S2R-
296
EIVLTQSPDFQSVTPKEKVTITCRASQTIGTSLH


10Vk

WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPSPTFGQG




TKVEIK





J693FRM2S2R-
297
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


11Vk

WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRGSSPPRTFGQG




TKVEIK





J693FRM2S2R-
298
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSTLH


12Vk

WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSSSPPPTFGQG




TKVEIK





J693FRM2S2R-
299
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH


14Vk

WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRHSSPRATFGQG




TKVEIK





J693FRM2S2R-
300
EIVLTQSPDFQSVTPKEKVTITCRASQKIGSNLH


15Vk

WYQQKPDQSPKLLIKYASQSFSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSSPPATFGQG




TKVEIK





J693FRM2S2R-
301
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH


16Vk

WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSRSPFRTFGQG




TKVEIK





J693FRM2S2R-
302
EIVLTQSPDFQSVTPKEKVTITCRASQCIGRRLH


34Vk

WYQQKPDQSPKLLIKHASQSRSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCTSSPPPTFGQG




TKVEIK





J693FRM2S2R-
303
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSNLH


36Vk

WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSLRLPPQTFGQG




TKVEIK





J693FRM2S2R-
304
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


39Vk

WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNRSLPRLTFGQG




TKVEIK





J693FRM2S2R-
305
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH


3Vk

WYQQKPDQSPKLLIKYASQSISGVPSSSVASGSG




TDFTLTINSLEAEDAATYYCHQRSSLPQPTFGQG




TKVEIK





J693FRM2S2R-
306
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH


42Vk

WYQQKPDQSPKLLIKHPSQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSIDSPPPTFGQG




TKVEIK





J693FRM2S2R-
307
EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSLH


45Vk

WYQQKPDQSPKLLIKYKSQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRWGLPMPTFGQG




TKVEIK





J693FRM2S2R-
308
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSMLH


48Vk

WYQQKPDQSPKLLIKHSSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTNSLPPRTFGQG




TKVEIK





J693FRM2S2R-
309
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH


50Vk

WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSRSPLDTFGQG




TKVEIK





J693FRM2S2R-
310
EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSLH


51Vk

WYQQKPDQSPKLLIKYASQSVSVVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSTLPPPTFGQG




TKVEIK





J693FRM2S2R-
311
EIVLTQSPDFQSVTPKEKVTITCRASQGIGTSLH


52Vk

WYQQKPDQSPKLLIKHDSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTSSLPPPTFGQG




TKVEIK





J693FRM2S2R-
312
EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH


56Vk

WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPLPTFGQG




TKVEIK





J693FRM2S2R-
313
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


58Vk

WYQQKPDQSPKLLIKYTSQSKSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGNRSPSTTFGQG




TKVEIK





J693FRM2S2R-
314
EIVLTQSPDFQSVTPKEKVTITCRASKRIGSSLH


59Vk

WYQQKPDQSPKLLIKHKSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSASPPPTFGQG




TKVEIK





J693FRM2S2R-
315
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH


5Vk

WYQQKPDQSPKLLIKHPSQSMSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSTSPPATFGQG




TKVEIK





J693FRM2S2R-
316
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


60Vk

WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSSLPTPTFGQG




TKVEIK





J693FRM2S2R-
317
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH


61Vk

WYQQKPDQSPKLLIKHASQSFSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSNCSPAHTFGQG




TKVEIK





J693FRM2S2R-
318
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSRLH


62Vk

WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSRLPPPTFGQG




TKVEIK





J693FRM2S2R-
319
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSTLH


63Vk

WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSCSPQATFGQG




TKVEIK





J693FRM2S2R-
320
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH


64Vk

WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGRSPPHTFGQG




TKVEIK





J693FRM2S2R-
321
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


65Vk

WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSILPPPTFGQG




TKVEIK





J693FRM2S2R-
322
EIVLTQSPDFQSVTPKEKVTITCRASQCIGSYLH


92Vk

WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPTLTFGQG




TKVEIK





J693FRM2S2R-
323
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH


93Vk

WYQQKPDQSPKLLIKHASQSMSGVPSGFSGSGSG




TDFTLTINSLEAEDAATYYCHQTNRSPPPTFGQG




TKVEIK





J693FRM2S2R-
324
EIVLTQSPDFQSVTPKEKVTITCRASQNIGTSLH


9Vk

WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG




TDFTLNINSLEAEDAATYYCHQSSCLPRPTFGQG




TKVEIK





J693M2S2L-10Vk
325
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSPLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSSSPPPTFGQG




TKVEIK





J693M2S2L-11Vk
326
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH




WYQQKPDQSPKLLIKHDSQSKSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSDSPAPTFGQG




TKVEIK





J693M2S2L-12Vk
327
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH




WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRISPLPTFGQG




TKVEIK





J693M2S2L-13Vk
328
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH




WYQQKPDQSPKLLIKHSSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSSLPHPTFGQG




TKVEIK





J693M2S2L-14Vk
329
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSRLH




WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSCSSPLVTFGQG




TKVEIK





J693M2S2L-16Vk
330
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKHASQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGSSPQATFGQG




TKVEIK





J693M2S2L-17Vk
331
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNRGSPPQTFGQG




TKVEIK





J693M2S2L-18Vk
332
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSILH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNTSLPPPTFGQG




TKVEIK





J693M2S2L-19Vk
333
EIVLTQSPDFQSVTPKEKVTITCRASQSIGNSLH




WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSRLPVPTFGQG




TKVEIK





J693M2S2L-1Vk
334
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKHTSQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPAPTFGQG




TKVEIK





J693M2S2L-20Vk
335
EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH




WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSNSLPAPTFGQG




TKVEIK





J693M2S2L-21Vk
336
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSMSLPSATFGQG




TKVEIK





J693M2S2L-22Vk
337
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHLSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQPCRLPPSTFGQG




TKVEIK





J693M2S2L-23Vk
338
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSLLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSCSSPRHTFGQG




TKVEIK





J693M2S2L-24Vk
339
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHPSQSKSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSRSPAPTFGQG




TKVEIK





J693M2S2L-25Vk
340
EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSLH




WYQQKPDQSPKLLIKYSSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSILPSLTFGQG




TKVEIK





J693M2S2L-26Vk
341
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRNLPPRTFGQG




TKVEIK





J693M2S2L-27Vk
342
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSILH




WYQQKPDQSPKLLIKYGSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNGSSPPRTFGQG




TKVEIK





J693M2S2L-28Vk
343
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYFSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSCLPMQTFGQG




TKVEIK





J693M2S2L-29Vk
344
EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH




WYQQKPDQSPKLLIKYSSQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSISPPATFGQG




TKVEIK





J693M2S2L-2Vk
345
EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH




WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSTCLPPRTFGQG




TKVEIK





J693M2S2L-30Vk
346
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKYVSQSMSGVLSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQPSTSPRPTFGQG




TKVEIK





J693M2S2L-31Vk
347
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSLPPSTFGQG




TKVEIK





J693M2S2L-32Vk
348
EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSLH




WYQQKPDQSPKLLIKYASQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPSSTFGQG




TKVEIK





J693M2S2L-33Vk
349
EIVLTQSPDFQSVTPKEKVTITCRASQIIGTSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSRSPPRTFGQG




TKVEIK





J693M2S2L-34Vk
350
EIVLTQSPDFQSVTPKEKVTITCRASQKIGTSLH




WYQQKPDQSPKLLIKHESQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSGSPPPTFGQG




TKVEIK





J693M2S2L-35Vk
351
EIVLTQSPDFQSVTPKEKVTITCRASQTIGGSLH




WYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSISPPPTFGQG




TKVEIK





J693M2S2L-36Vk
352
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSDLH




WYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSCMSPSLTFGQG




TKVEIK





J693M2S2L-37Vk
353
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPNTTFGQG




TKVEIK





J693M2S2L-38Vk
354
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSILH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGRISPSSTFGQG




TKVEIK





J693M2S2L-39Vk
355
EIVLTQSPDFQSVTPKEKVTITCRASQSIGNRLH




WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGSLPTLTFGQG




TKVEIK





J693M2S2L-3Vk
356
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH




WYQQKPDQSPKLLIKHDSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSLPTHTFGQG




TKVEIK





J693M2S2L-40Vk
357
EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSLH




WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRSSPPSTFGQG




TKVEIK





J693M2S2L-41Vk
358
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNCSSPPPTFGQG




TKVEIK





J693M2S2L-44Vk
359
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYESQSDSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRRNSPPSTFGQG




TKVEIK





J693M2S2L-45Vk
360
EIVLTQSPDFQSVTPKEKVTITCRASQGIGSRLH




WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNRGLPAPTFGQG




TKVEIK





J693M2S2L-46Vk
361
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNHTSPPPTFGQG




TKVEIK





J693M2S2L-47Vk
362
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGRLPPPTFGQG




TKVEIK





J693M2S2L-4Vk
363
EIVLTQSPDFQSVTPKEKVTITCRASQYIGKRLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSNISPPPTFGQG




TKVEIK





J693M2S2L-51Vk
364
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHESQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG




TKVEIK





J693M2S2L-52Vk
365
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSSLPPSTFGQG




TKVEIK





J693M2S2L-54Vk
366
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH




WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSSSPAQTFGQG




TKVEIK





J693M2S2L-55Vk
367
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH




WYQQKPDQSPKLLIKHTSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSSLPLPTFGQG




TKVEIK





J693M2S2L-56Vk
368
EIVLTQSPDFQSVTPKEKVTITCRASQWIGSSLH




WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPPQTFGQG




TKVEIK





J693M2S2L-58Vk
369
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH




WYQQKPDQSPKLLIKYSSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSSSPPPTFGQG




TKVEIK





J693M2S2L-59Vk
370
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSRLPPSTFGQG




TKVEIK





J693M2S2L-5Vk
371
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNWSLPLPTFGQG




TKVEIK





J693M2S2L-62Vk
372
EIVLTQSPDFQSVTPKEKVTITCRASQRIGTSLH




WYQQKPDQSPKLLIKYASQSKSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSCSPTPTFGQG




TKVEIK





J693M2S2L-64Vk
373
EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSLH




WYQQKPDQSPKLLIKYGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRCVSPSPTFGQG




TKVEIK





J693M2S2L-65Vk
374
EIVLTQSPDFQSVTPKEKVTITCRASQSIGGTLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPARTFGQG




TKVEIK





J693M2S2L-66Vk
375
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCGSSPLHTFGQG




TKVEIK





J693M2S2L-67Vk
376
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH




WYQQKPDQSPKLLIKHPSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSTSSPPPTFGQG




TKVEIK





J693M2S2L-68Vk
377
EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSGLPLPTFGQG




TKVEIK





J693M2S2L-69Vk
378
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSSSPSPTFGQG




TKVEIK





J693M2S2L-6Vk
379
EIVLTQSPDFQSVTPKEKVTITCRASQRIGGNLH




WYQQKPDQSPKLLIKHESQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPSHTFGQG




TKVEIK





J693M2S2L-70Vk
380
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSSSPSHTFGQG




TKVEIK





J693M2S2L-71Vk
381
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSMSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRNSPPTTFGQG




TKVEIK





J693M2S2L-72Vk
382
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSRLH




WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSSPPPTFGQG




TKVEIK





J693M2S2L-74Vk
383
EIVLTQSPDFQSVTPKEKVTITCRASQNIGSSLH




WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSLLPAPTFGQG




TKVEIK





J693M2S2L-75Vk
384
EIVLTQSPDFQSVTPKEKVTITCRASQIIGTTLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSNLPPSTFGQG




TKVEIK





J693M2S2L-76Vk
385
EIVLTQSPDFQSVTPKEKVTITCRASQNIGGNLH




WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSNLPPPTFGQG




TKVEIK





J693M2S2L-77Vk
386
EIVLTQSPDFQSVTPKEKVTITCRASQGIGGSLH




WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSACLPTRTFGQG




TKVEIK





J693M2S2L-78Vk
387
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH




WYQQKPDQSPKLLIKYASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQIGSLPPPTFGQG




TKVEIK





J693M2S2R-13Vk
388
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH




WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSRLPPPTFGQG




TKVEIK





J693M2S2R-14Vk
389
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHNSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSSSPPLTFGQG




TKVEIK





J693M2S2R-15Vk
390
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRNLH




WYQQKPDQSPKLLIKHVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSRSPPSTFGQG




TKVEIK





J693M2S2R-16Vk
391
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSSLPAPTFGQG




TKVEIK





J693M2S2R-17Vk
392
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSRLPPQTFGQG




TKVEIK





J693M2S2R-18Vk
393
EIVLTQSPDFQSVTPKEKVTITCRASQCIGSRLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRGRLPPRTFGQG




TKVEIK





J693M2S2R-19Vk
394
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSTSLPRLTFGQG




TKVEIK





J693M2S2R-20Vk
395
EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRSSPQQTFGQG




TKVEIK





J693M2S2R-21Vk
396
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG




TKVEIK





J693M2S2R-22Vk
397
EIVLTQSPDFQSVTPKEKVTITCRASQSIGNSLH




WYQQKPDQSPKLLIKHGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRRSSPRHTFGQG




TKVEIK





J693M2S2R-27Vk
398
EIVLTQSPDFQSVTPKEKVTITCRASQRIGRRLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSIGSPPLTFGQG




TKVEIK





J693M2S2R-29Vk
399
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRGLH




WYQQKPDQSPKLLIKYGSQSMSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG




TKVEIK





J693M2S2R-2Vk
400
EIVLTQSPDFQSVTPKEKVTITCRASQSIGCSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCTSLPLPTFGQG




TKVEIK





J693M2S2R-30Vk
401
EIVLTQSPDFQSVTPKEKVTITCRASQGIGSSLH




WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSSLPTPTFGQG




TKVEIK





J693M2S2R-31Vk
402
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH




WYQQKPDQSPKLLIKHASQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSRLPPLTFGQG




TKVEIK





J693M2S2R-32Vk
403
EIVLTQSPDFQSVTPKEKVTITCRASQVIGGVLH




WYQQKPDQSPKLLIKYTSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPRPTFGQG




TKVEIK





J693M2S2R-33Vk
404
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHSSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSNSPHRTFGQG




TKVEIK





J693M2S2R-36Vk
405
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRTLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSISPQPTFGQG




TKVEIK





J693M2S2R-37Vk
406
EIVLTQSPDFQSVTPKEKVTITCRASQRIGNTLH




WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGSSPPPTFGQG




TKVEIK





J693M2S2R-39Vk
407
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKYISQSMSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSCGLPPPTFGQG




TKVEIK





J693M2S2R-3Vk
408
EIVLTQSPDFQSVTPKEKVTITCRASQNIGTRLH




WYQQKPDQSPKLLIKYGSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRISPPPTFGQG




TKVEIK





J693M2S2R-40Vk
409
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH




WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSRLPPPTFGQG




TKVEIK





J693M2S2R-44Vk
410
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSNLPSPTFGQG




TKVEIK





J693M2S2R-45Vk
411
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH




WYQQKPDQSPKLLIKHASQSMSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPRPTFGQG




TKVEIK





J693M2S2R-46Vk
412
EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSISSPSPTFGQG




TKVEIK





J693M2S2R-47Vk
413
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSFSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSNCLPPPTFGQG




TKVEIK





J693M2S2R-48Vk
414
EIVLTQSPDFQSVTPKEKVTITCRASQSIGKSLH




WYQQKPDQSPKLLIKHESQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQANSLPPPTFGQG




TKVEIK





J693M2S2R-4Vk
415
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRRLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSSSPPSTFGQG




TKVEIK





J693M2S2R-52Vk
416
EIVLTQSPDFQSVTPKEKVTITCRASQIIGHSLH




WYQQKPDQSPKLLIKHASQSILGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSIKSPPATFGQG




TKVEIK





J693M2S2R-54Vk
417
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTSLH




WYQQKPDQSPKLLIKHTSQSKSGVPSRFSGSGSG




TDFALTINSLEAEDAATYYCHQSSNSPRYTFGQG




TKVEIK





J693M2S2R-55Vk
418
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSHSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGGSPPWTFGQG




TKVEIK





J693M2S2R-56Vk
419
EIVLTQSPDFQSVTPKEKVTITCRASQGIGRSLH




WYQQKPDQSPKLLIKYASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSNRSPPPTFGQG




TKVEIK





J693M2S2R-5Vk
420
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTTLH




WYQQKPDQSPKLLIKHVSQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPHPTFGQG




TKVEIK





J693M2S2R-60Vk
421
EIVLTQSPDFQSVTPKEKVTITCRASQIIGSSLH




WYQQKPDQSPKLLIKYPSQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSWSSPLMTFGQG




TKVEIK





J693M2S2R-61Vk
422
EIVLTQSPDFQSVTPKEKVTITCRASQSIGNTLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG




TKVEIK





J693M2S2R-62Vk
423
EIVLTQSPDFQSVTPKEKVTITCRASQRIGICLH




WYQQKPDQSPKLLIKYASQSMSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGFSLPPATFGQG




TKVEIK





J693M2S2R-63Vk
424
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH




WYQQKPDQSPKLLIKYPSQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSCSPTTTFGQG




TKVEIK





J693M2S2R-64Vk
425
EIVLTQSPDFQSVTPKEKVTITCRASQRIGNTLH




WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGSSPPPTFGQG




TKVEIK





J693M2S2R-65Vk
426
EIVLTQSPDFQSVTPKEKVTITCRASQTIGTSLH




WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRCSLPPPTFGQG




TKVEIK





J693M2S2R-68Vk
427
EIVLTQSPDFQSVTPKEKVTITCRASQSIGGSLH




WYQQKPDQSPKLLIKYASQSHSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCRISPRPTFGQG




TKVEIK





J693M2S2R-69Vk
428
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHPSQSKSGVPSRFSGSGSG




TDFTLSINSLEAEDAATYYCHQTSRSPLHTFGQG




TKVEIK





J693M2S2R-6Vk
429
EIVLTQSPDFQSVTPKEKVTITCRASQNIGKNLH




WYQQKPDQSPKLLIKYPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRSSPLSTFGQG




TKVEIK





J693M2S2R-70Vk
430
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKYMSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRVLPPPTFGQG




TKVEIK





J693M2S2R-71Vk
431
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYGSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSISPRRTFGQG




TKVEIK





J693M2S2R-72Vk
432
EIVLTQSPDFQSVTPKEKVTITCRASQTIGRSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRKSSPTPTFGQG




TKVEIK





J693M2S2R-75Vk
433
EIVLTQSPDFQSVTPKEKVTITCRASQRIGRQLH




WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPPQTFGQG




TKVEIK





J693M2S2R-77Vk
434
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQICRSPSPTFGQG




TKVEIK





J693M2S2R-78Vk
435
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSGSPAPTFGQG




TKVEIK





J693M2S2R-79Vk
436
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYSSQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQISSSPPPTFGQG




TKVEIK





J693M2S2R-7Vk
437
EIVLTQSPDFQSVTPKEKVTITCRASQTIGNSLH




WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTMTSPPPTFGQG




TKVEIK





J693M2S2R-80Vk
438
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRSSPSPTFGQG




TKVEIK





J693M2S2R-81Vk
439
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRRWSPPPTFGQG




TKVEIK





J693M2S2R-82Vk
440
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQISCLPLPTFGQG




TKVEIK





J693M2S2R-83Vk
441
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSISLPPPTFGQG




TKVEIK





J693M2S2R-84Vk
442
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRNLH




WYQQKPDQSPKLLIKHTSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTSTLPPQTFGQG




TKVEIK





J693M2S2R-85Vk
443
EIVLTQSPDFQSVTPKEKVTITCRASQSIGRSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRNSPQPTFGQG




TKVEIK





J693M2S2R-86Vk
444
EIVLTQSPDFQSVTPKEKVTITCRASQSIGTRLH




WYQQKPDQSPKLLIKYVSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSHSPPPTFGQG




TKVEIK





J693M2S2R-87Vk
445
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSCLH




WYQQKPDQSPKLLIKHRSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQWSSSPPPTFGQG




TKVEIK





J693M2S2R-89Vk
446
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHPSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTSGSPSHTFGQG




TKVEIK





J693M2S2R-8Vk
447
EIVLTQSPDFQSVTPKEKVTITCRASQGIGSSLH




WYQQKPDQSPKLLIKYESQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPPPTFGQG




TKVEIK





J693M2S2R-90Vk
448
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHDSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSSSPPTTFGQG




TKVEIK





J693M2S2R-91Vk
449
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSNLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRISSPPSTFGQG




TKVEIK





J693M2S2R-92Vk
450
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH




WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSCSSPPSTFGQG




TKVEIK





J693M2S2R-93Vk
451
EIVLTQSPDFQSVTPKEKVTITCRASQTIGSSLH




WYQQKPDQSPKLLIKYVSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTISSPLPTFGQG




TKVEIK





J693M2S2R-95Vk
452
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSCSPAHTFGQG




TKVEIK





J703M1S3-11Vk
453
EIVLTQSPDFQSVTPKEKVTITCRDSRCIGSNLH




WYQQKPDQSPKLLIKHASQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCSSSPPPTFGQG




TKVEIK





J703M1S3-13Vk
454
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSTLH




WYQQKPDQSPKLLIKHASQSNSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPPPTFGQG




TKVEIK





J703M1S3-16Vk
455
EIVLTQSPDFQSVTPKEKVTITCRASQSIGDSLH




WYQQKPDQSPKLLIKHASQSKSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGSTSPPRTFGQG




TKVEIK





J703M1S3-19Vk
456
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHGSQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSWSSPIPTFGQG




TKVEIK





J703M1S3-22Vk
457
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKYASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSNLPSPTFGQG




TKVEIK





J703M1S3-26Vk
458
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSGSSPPRTFGQG




TKVEIK





J703M1S3-29Vk
459
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRTSSPVRTFGQG




TKVEIK





J703M1S3-2Vk
460
EIVLTQSPDFQSVTPKEKVTITCRASQSIGNTLH




WYQQKPDQSPKLLIKHVSQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQKVSSPSPTFGQG




TKVEIK





J703M1S3-30Vk
461
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHASQSVSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSRSSPPPTFGQG




TKVEIK





J703M1S3-33Vk
462
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPPSTFGQG




TKVEIK





J703M1S3-34Vk
463
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSSPSTTFGQG




TKVEIK





J703M1S3-57Vk
464
EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH




WYQQKPDQSPKLLIKHESQSSSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRCTSPSPTFGQG




TKVEIK





J703M1S3-5Vk
465
EIVLTQSPDFQSVTPKEKVTITCRASQRIGSSLH




WYQQKPDQSPKLLIKHPSQSDSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNCSLPLPTFGQG




TKVEIK





J703M1S3-62Vk
466
EIVLTQSPDFQSVTPKEKVTITCRASQCIGSSLH




WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQGISSPPQTFGQG




TKVEIK





J703M1S3-69Vk
467
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHVSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQRSSSPSPTFGQG




TKVEIK





J703M1S3-71Vk
468
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHPSQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSIRLPPSTFGQG




TKVEIK





J703M1S3-78Vk
469
EIVLTQSPDFQSVTPKEKVTITCRANQSIGGSLH




WYQQKPDQSPKLLIKHASQSKSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQDSRSPTRTFGQG




TKVEIK





J703M1S3-79Vk
470
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSGLH




WYQQKPDQSPKLLIKHTSQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSLPHPTFGQG




TKVEIK





J703M1S3-7Vk
471
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSSSPTPTFGQG




TKVEIK





J703M1S3-81Vk
472
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSRLH




WYQQKPDQSPKLLIKYPSQSRSGVPSRFSGSGSG




TDLTLTINSLEAEDAATYYCHQNGSLPPPTFGQG




TKVEIK





J703M1S3-82Vk
473
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSSLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSSPPPTFGQG




TKVEIK





J703M1S3-86Vk
474
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSALH




WYQQKPDQSPKLLIKHASQSLSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQSSILPRPTFGQG




TKVEIK





J703M1S3-90Vk
475
EIVLTQSPDFQSVTPKEKVTITCRASQSIGSNLH




WYQQKPDQSPKLLIKHASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQTRTSPPLTFGQG




TKVEIK





J703M1S3-93Vk
476
EIVLTQSPDFQSVTPKEKVTITCRASQKIGSSLH




WYQQKPDQSPKLLIKYGSQSTSGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQCISLPTPTFGQG




TKVEIK





J703M1S3-94Vk
477
EIVLTQSPDFQSVTPKEKVAITCRASQRIGSSLH




WYQQKPDQSPKLLIKYASQSISGVPSRFSGSGSG




TDFTLTINSLEAEDAATYYCHQNSSLPPPTFGQG




TKVEIK
















TABLE 13





Amino acid residues observed in affinity matured AE11-5 antibodies







AE11-5 Heavy chain variable region (SEQ ID NO: 1073)








AE11-5VH
1234567890123456789012345678901234567890123456789012a345678901



EVQLVQSGAEVKKPGSSAKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPILGTANYAQ



                 V           NW TTT              WT   FRSPI



                             TY SV                M   TDAST



                             GI P                 L   I NGS



                             AN G                 V     P V



                              F                   N     I H



                              R                         V A



                              L                         K R



                                                        F M



                                                          L



234567890123456789012abc345678901234567890abc1234567890123





KFLG
RVTITADESTSTVYMELSSLRSEDTAVYYCARGLYYDPTRADYWGQGTLVTVSS




  Q             A                   SVFFNTSWF



                                    WIVVEFASM



                                    TFP TRKP



                                    ARH IGRA



                                     Q  ADI



                                          Y



                                          V



                                          P



                                          N



                                          G










AE11-5 Light chain variable region (SEQ ID NO: 1074)








AE11-5VL
1234567890123456789012345678901234567890123456789012345678901



DIVMTQSPDFHSVTPKEKVTITCRASQSIGSSLHWYQQKPDQSPKLLIRHASQSISGVPSR



E  L      Q                R  RR                KYV   L



                           T  TT                  P   V



                           N  GN                  T   T



                           I  NC                  G   S



                           C  KG                  S   M



                           G  CI                  E   N



                           K  HK                  D   K



                           Y  VM                      F



                           W  PL                      R



                              LY



                               P



                               V



2345678901234567890123456789012345a67890123456a



FSGSGSGTDFTLTIHSLEAEDAATYYCHQSSSSPPPTFGQGTQVEIK



              N              RRRL LS      K



                             NGI  AR



                             GIC  SL



                             TCG  RT



                             CNN  TA



                             ITT  QQ



                              MK  HH



                                   V



                                   M
















TABLE 14







Individual VH sequences from converted clones









Protein

Sequence


region
SEQ ID NO:
123456789012345678901234567890













J703M1S3

478
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#2



WYATSWVRQAPGQGLEWMGGITPILGSPIY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGVYYDHRRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYATS



#2

of SEQ ID


VH

NO.: 478


J703M1S3
CDR-H2
Residues 50-66

GITPILGSPIYAQKFQG



#2

of SEQ ID


VH

NO.: 478


J703M1S3
CDR-H3
Residues 99-109

GVYYDHRRADY



#2

of SEQ ID


VH

NO.: 478





J703M1S3

479
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#13



WYAISWVRQAPGQGLEWMGGITPILGAANY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGVYYDPKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYAIS



#13

of SEQ ID




NO.: 479


J703M1S3
CDR-H2
Residues 50-66

GITPILGAANYAQKFQG



#13

of SEQ ID


VH

NO.: 479


J703M1S3
CDR-H3
Residues 99-109

GVYYDPKRADY



#13

of SEQ ID


VH

NO.: 479





J703M1S3

480
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#26



WYAISWVRQAPGQGLEWMGGITPILGTANY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGVYYDPKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYAIS



#26

of SEQ ID


VH

NO.: 480


J703M1S3
CDR-H2
Residues 50-66

GITPILGTANYAQKFQG



#26

of SEQ ID


VH

NO.: 480


J703M1S3
CDR-H3
Residues 99-109

GVYYDPKRADY



#26

of SEQ ID


VH

NO.: 480





J703M1S3

481
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#30



WYAISWVRQAPGQGLEWMGGITPILGSPIY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGVYYDPKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYAIS



#30

of SEQ ID


VH

NO.: 481


J703M1S3
CDR-H2
Residues 50-66

GITPILGSPIYAQKFQG



#30

of SEQ ID


VH

NO.: 481


J703M1S3
CDR-H3
Residues 99-109

GVYYDPKRADY



#30

of SEQ ID


VH

NO.: 481





J703M1S3

482
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#33



WYPISWVRQAPGQGLEWMGGITPILGAGIY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGVYYDFKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYPIS



#33

of SEQ ID


VH

NO.: 482


J703M1S3
CDR-H2
Residues 50-66

GITPILGAGIYAQKFQG



#33

of SEQ ID


VH

NO.: 482


J703M1S3
CDR-H3
Residues 99-109

GVYYDFKRADY



#33

of SEQ ID


VH

NO.: 482





J703M1S3

483
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#35



WYAISWVRQAPGQGLEWMGGITPILGSATY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGIYYDPKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYAIS



#35

of SEQ ID


VH

NO.: 483


J703M1S3
CDR-H2
Residues 50-66

GITPILGSATYAQKFQG



#35

of SEQ ID


VH

NO.: 483


J703M1S3
CDR-H3
Residues 99-109

GIYYDPKRADY



#35

of SEQ ID


VH

NO.: 483





J703M1S3

484
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#38



WYAISWVRQAPGQGLEWMGGITPILGTPIY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGVYYDFKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYAIS



#38

of SEQ ID


VH

NO.: 484


J703M1S3
CDR-H2
Residues 50-66

GITPILGTPIYAQKFQG



#38

of SEQ ID


VH

NO.: 484


J703M1S3
CDR-H3
Residues 99-109

GVYYDFKRADY



#38

of SEQ ID


VH

NO.: 484





J703M1S3

485
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#69



WYAISWVRQAPGQGLEWMGGITPILGSPIY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGIYYDPKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYAIS



#69

of SEQ ID


VH

NO.: 485


J703M1S3
CDR-H2
Residues 50-66

GITPILGSPIYAQKFQG



#69

of SEQ ID


VH

NO.: 485


J703M1S3
CDR-H3
Residues 99-109

GIYYDPKRADY



#69

of SEQ ID


VH

NO.: 485





J703M1S3

486
EVQLVQSGAEVKKPGSSVKVSCKASGGTFS


#90



WYAISWVRQAPGQGLEWMGGITPILGSPIY



VH



AQKFQGRVTITADESTSTVYMELSSLRSED






TAVYYCARGVYYDYKRADYWGQGTLVTVSS


J703M1S3
CDR-H1
Residues 31-35

WYAIS



#90

of SEQ ID


VH

NO.: 486


J703M1S3
CDR-H2
Residues 50-66

GITPILGSPIYAQKFQG



#90

of SEQ ID


VH

NO.: 486


J703M1S3
CDR-H3
Residues 99-109

GVYYDYKRADY



#90

of SEQ ID


VH

NO.: 486
















TABLE 15







Individual clones VL sequences









Protein

Sequence


region

123456789012345678901234567890













J703M1S3

487
EIVLTQSPDFQSVTPKEKVTITCRASQSIG


#2



NTLHWYQQKPDQSPKLLIKHVSQSVSGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






KVSSPSPTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQSIGNTLH



#2

of SEQ ID


VL

NO.: 487


J703M1S3
CDR-L2
Residues 50-56

HVSQSVS



#2

of SEQ ID


VL

NO.: 487


J703M1S3
CDR-L3
Residues 89-98

HQKVSSPSPT



#2

of SEQ


VL

ID NO.: 487





J703M1S3

488
EIVLTQSPDFQSVTPKEKVTITCRASQSIG


#13



STLHWYQQKPDQSPKLLIKHASQSNSGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






SSSLPPPTFGQGTKVEI



J703M1S3
CDR-L1
Residues 24-34

RASQSIGSTLH



#13

of SEQ ID


VL

NO.: 488


J703M1S3
CDR-L2
Residues 50-56

HASQSNS



#13

of SEQ ID


VL

NO.: 488


J703M1S3
CDR-L3
Residues 89-98

HQSSSLPPPT



#13

of SEQ


VL

ID NO.: 488





J703M1S3

489
EIVLTQSPDFQSVTPKEKVTITCRASQSIG


#26



SRLHWYQQKPDQSPKLLIKHASQSTSGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






SGSSPPRTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQSIGSRLH



#26

of SEQ ID


VL

NO.: 489


J703M1S3
CDR-L2
Residues 50-56

HASQSTS



#26

of SEQ ID


VL

NO.: 489


J703M1S3
CDR-L3
Residues 89-98

HQSGSSPPRT



#26

of SEQ


VL

ID NO.: 489





J703M1S3

490
EIVLTQSPDFQSVTPKEKVTITCRASQRIG


#30



SSLHWYQQKPDQSPKLLIKHASQSVSGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






SRSSPPPTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQRIGSSLH



#30

of SEQ ID


VL

NO.: 490


J703M1S3
CDR-L2
Residues 50-56

HASQSVS



#30

of SEQ ID


VL

NO.: 490


J703M1S3
CDR-L3
Residues 89-98
HQSRSSPPPT


#30

of SEQ


VL

ID NO.: 490





J703M1S3

491
EIVLTQSPDFQSVTPKEKVTITCRASQSIG


#33



SSLHWYQQKPDQSPKLLIKHASQSTSGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






SSSSPPSTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQSIGSSLH



#33

of SEQ ID


VL

NO.: 491


J703M1S3
CDR-L2
Residues 50-56

HASQSTS



#33

of SEQ ID


VL

NO.: 491


J703M1S3
CDR-L3
Residues 89-98

HQSSSSPPST



#33

of SEQ


VL

ID NO.: 491





J703M1S3

492
EIVLTQSPDFQSVTPKEKVTITCRASQTIG


#35



SSLHWYQQKPDQSPKLLIKHASQSISGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






TSSLPTPTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQTIGSSLH



#35

of SEQ ID


VL

NO.: 492


J703M1S3
CDR-L2
Residues 50-56

HASQSIS



#35

of SEQ ID


VL

NO.: 492


J703M1S3
CDR-L3
Residues 89-98

HQTSSLPTPT



#35

of SEQ


VL

ID NO.: 492





J703M1S3

493
EIVLTQSPDFQSVTPKEKVTITCRASQTIG


#38



SSLHWYQQKPDQSPKLLIKHASQSISGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






SSSSPPPTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQTIGSSLH



#38

of SEQ ID


VL

NO.: 493


J703M1S3
CDR-L2
Residues 50-56

HASQSIS



#38

of SEQ ID


VL

NO.: 493


J703M1S3
CDR-L3
Residues 89-98

HQSSSSPPPT



#38

of SEQ


VL

ID NO.: 493





J703M1S3

494
EIVLTQSPDFQSVTPKEKVTITCRASQSIG


#69



SSLHWYQQKPDQSPKLLIKHVSQSLSGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






RSSSPSPTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQSIGSSLH



#69

of SEQ ID


VL

NO.: 494


J703M1S3
CDR-L2
Residues 50-56

HVSQSLS



#69

of SEQ ID


VL

NO.: 494


J703M1S3
CDR-L3
Residues 89-98

HQRSSSPSPT



#69

of SEQ


VL

ID NO.: 494





J703M1S3

495
EIVLTQSPDFQSVTPKEKVTITCRASQSIG


#90



SNLHWYQQKPDQSPKLLIKHASQSISGVPS



VL


RFSGSGSGTDFTLTINSLEAEDAATYYCHQ






TRTSPPLTFGQGTKVEIK



J703M1S3
CDR-L1
Residues 24-34

RASQSIGSNLH



#90

of SEQ ID


VL

NO.: 495


J703M1S3
CDR-L2
Residues 50-56

HASQSIS



#90

of SEQ ID


VL

NO.: 495


J703M1S3
CDR-L3
Residues 89-98

HQTRTSPPLT



#90

of SEQ


VL

ID NO.: 495
















TABLE 16







AE11-5 affinity matured scFv clones converted to full length IgG













Full length


ScFv


IgG (protein)


clone name
HC plasmid
LC plasmid
name





J703M1S3#2
pJP368; pHybE-hCg1,z,non-
pJP369; pHybE-hCk V3-
AE11-5 AM1



a,mut(234,235)-J703M1S3#2
J703M1S31#2


J703M1S3#13
pJP370; pHybE-hCg1,z,non-
pJP371; pHybE-hCk V3-
AE11-5 AM2



a,mut(234,235)-J703M1S3#13
J703M1S3#13


J703M1S3#26
pJP372; pHybE-hCg1,z,non-
pJP373; pHybE-hCk V3-
AE11-5 AM3



a,mut(234,235)-J703M1S3#26
J703M1S3#26


J703M1S3#30
pJP374; pHybE-hCg1,z,non-
pJP375; pHybE-hCk V3-
AE11-5 AM4



a,mut(234,235)-J703M1S3#30
J703M1S3#30


J703M1S3#33
pJP376; pHybE-hCg1,z,non-
pJP377; pHybE-hCk V3-
AE11-5 AM5



a,mut(234,235)-J703M1S3#33
J703M1S3#33


J703M1S3#35
pJP378; pHybE-hCg1,z,non-
pJP379; pHybE-hCk V3-
AE11-5 AM6



a,mut(234,235)-J703M1S3#35
J703M1S3#35


J703M1S3#38
pJP382; pHybE-hCg1,z,non-
pJP383; pHybE-hCk V3-
AE11-5 AM8



a,mut(234,235)-J703M1S3#38
J703M1S3#38


J703M1S3#69
pJP384; pHybE-hCg1,z,non-
pJP385; pHybE-hCk V3-
AE11-5 AM9



a,mut(234,235)-J703M1S3#69
J703M1S3#69


J703M1S3#90
pJP386; pHybE-hCg1,z,non-
pJP387; pHybE-hCk V3-
AE11-5 AM10



a,mut(234,235)-J703M1S3#90
J703M1S3#90









1.3 TNF Enzyme-Linked Immunosorbent Assay Protocol (ELISA) and Assay Result

The following protocol is used to characterize the binding of TNF antibodies to biotinylated human or cyno TNF by enzyme-linked immunosorbent assay (ELISA). An ELISA plate was coated with 50 μl per well of goat anti human IgG-Fc at 2 μg/ml, overnight at 4° C. The plate was washed 3 times with PBS/Tween. 50 μl Mab diluted to 1 μg/ml in PBS/0.1% BSA was added to appropriate wells and incubated for 1 hour at room temperature (RT). The plate was washed 3 times with PBS/Tween. 50 μl of serial diluted biotin-human TNF was added to appropriate wells and incubated for 1 hour at RT. The plate was washed 3 times with PBS/Tween. 50 μl of streptavidin-HRP diluted 1:10,000 in PBS/0.1% BSA was added to appropriate wells and incubated for 1 hour at RT. The plate was washed 3 times with PBS/Tween. 50 μl of TMB was added to appropriate wells and the reaction was allowed to proceed for 1 minute. The reaction was stopped with 50 μl/well 2N H2SO4 and the absorbance read at 450 nm. Results are shown in Table 17.













TABLE 17








EC50 in hTNF
EC50 in cynoTNF



IgG Name
ELISA (nM)
ELISA (nM)




















AE11-5-AM1
1.06
2.14



AE11-5-AM2
522.5
>845



AE11-5-AM3
1.57
1.55



AE11-5-AM4
18.32
750.3



AE11-5-AM5
17.7
2.2



AE11-5-AM6
1.37
>720



AE11-5-AM7
10.32
1.26



AE11-5-AM8
250.2
58.58



AE11-5-AM9
16.72
5.29



AE11-5-AM10
0.98
0.28










1.4 TNF Neutralization Potency of TNF Antibodies by L929 Bioassay

Human TNF was prepared at Abbott Bioresearch Center (Worcester, Mass., US) and received from the Biologics Pharmacy. Mouse TNF was prepared at Abbott Bioresearch Center and received from the Biologics Pharmacy. Rat TNF was prepared at Abbott Bioresearch Center and received from the Biologics Pharmacy. Rabbit TNF was purchased from R&D Systems. Rhesus/Macaque TNF (rhTNF) was purchased from R&D Systems. Actinomycin was purchased from Sigma Aldrich and resuspended at a stock concentration of 10 mg/mL in DMSO.


Assay Media: 10% FBS (Hyclone #SH30070.03), Gibco reagents: RPMI 1640 (#21870), 2 mM L-glutamine (#25030), 50 units/mL penicillin/50 μg/mL streptomycin (#15140), 0.1 mM MEM non-essential amino acids (#11140) and 5.5×10−5 M 2-mercaptoethanol (#21985-023).


L929 cells were grown to a semi-confluent density and harvested using 0.05% tryspin (Gibco #25300). The cells were washed with PBS, counted, and resuspended at 1E6 cells/mL in assay media containing 4 μg/mL actinomycin D. The cells were seeded in a 96-well plate (Costar #3599) at a volume of 50 μL and 5E4 cells/well. Wells received 50 μL of assay media, bringing the volume to 100 μL.


A test sample was prepared as follows. The test and control IgG proteins were diluted to a 4× concentration in assay media and serial 1:3 dilutions were performed. TNF species were diluted to the following concentrations in assay media: 400 pg/mL huTNF, 200 pg/mL muTNF, 600 pg/mL ratTNF, and 100 pg/mL rabTNF. Antibody sample (200 μL) was added to the TNF (200 μL) in a 1:2 dilution scheme and allowed to incubate for 0.5 hour at room temperature.


To measure huTNF neutralization potency in this assay, the antibody/TNF solution was added to the plated cells at 100 μL for a final concentration at 375 nM-0.019 nM. The final concentration of TNF was as follows: 100 pg/mL huTNF, 50 pg/mL muTNF, 150 pg/mL ratTNF, and 25 pg/mL rabTNF. The plates were incubated for 20 hours at 37° C., 5% CO2. To quantitate viability, 100 μL was removed from the wells and 10 μL of WST-1 reagent (Roche cat #11644807001) was added. Plates were incubated under assay conditions for 3.5 hours, centrifuged at 500×g, and 75 μL of supernatant transferred to an ELISA plate (Costar cat #3369). The plates were read at OD 420-600 nm on a Spectromax 190 ELISA plate reader. The neutralization potency of selected TNF/IL-17 DVD-Ig binding proteins is shown in Table 18.











TABLE 18






hu TNF neutralization
rhesus TNF neutralization IC50


IgG Name
IC50 (nM)
(nM)

















AE11-5 AM1
0.439
0.251


AE11-5 AM2
1.241
0.756


AE11-5 AM3
0.291
0.165


AE11-5 AM4
0.259
0.109


AE11-5 AM5
0.968
0.613


AE11-5 AM6
2.029
0.652


AE11-5 AM7
0.049
0.104


AE11-5 AM8
1.356
3.040


AE11-5 AM9
0.391
0.123


AE11-5 AM10
0.678
0.140









Example 2: Affinity Maturation of a Humanized Anti-Human TNF Antibody hMAK-195

The mouse anti-human TNF antibody MAK-195 was humanized and affinity-matured to generate a panel of humanized MAK195 variants that have cross-reactivity to cyno-TNF and improved affinity and binding kinetics against both human and cyno TNF.


To improve the affinity of hMAK195 to TNF, hypermutated CDR residues were identified from other human antibody sequences in the IgBLAST database that also shared high identity to germlines VH3-53 and IGKV1-39. The corresponding hMAK195 CDR residues were then subjected to limited mutagenesis by PCR with primers having low degeneracy at these positions to create three antibody libraries in the scFv format. The first library contained mutations at residues 31, 32, 33, 35, 50, 52, 53, 54, 56 and 58 in the VH CDR1 and 2 (Kabat numbering); the second library at residues 95 to 100, 100a, 101, and 102 in VH CDR3; and the third library at residues 28, 30, 31, 32, 50, 53, 92, 93, 94, and 95 in the three VL CDRs. To further increase the identity of hMAK195 to the human germline framework sequences, a binary degeneracy at VH positions 60 (D/A), 61 (S/D), 62 (T/S), 63 (L/V), and 65 (S/G) were introduced into the first library. Also, a binary degeneracy at VL positions 24 (K/R), 33 (V/L), 54 (R/L), 55 (H/Q), 56 (T/S), 91 (H/S) and 96 (F/Y) were introduced into the third library.


These hMAK195 variants were selected against a low concentration of biotinylated TNF for improved on-rate, off-rate, or both were carried out and antibody protein sequences of affinity-modulated hMAK195 were recovered for converting back to IgG for further characterization. All three libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.


Table 19 provides a list of amino acid sequences of VH and VL of the humanized MAK-195 which were subjected to the affinity maturation selection protocol Amino acid residues of individual CDRs of each VH and VL sequence are indicated in bold.









TABLE 19







List of amino acid sequences of affinity matured hMAK195


VH variants










SEQ ID



Clone
NO:
VH





rHC1_B8
496
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRGDGSTDYASTLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_H12
497
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E1
498
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVNWVRQAPGK




GLEWVSIIWGDGATDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_A2
499
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMISSDGFTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_H6
500
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIAADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





H1 + H2_D7
501
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_D9
502
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRDDGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_A10
503
EVQLVESGGGLVQPGGSLRLSCAASGETFSHIGVSWVRQAPGK




GLEWVSMISYAGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARLLHKGPIDYWGQGTLVTVSS





H1 + H2_A5
504
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK




GLEWVSMIWSDGSTDYADTVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_F8
505
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRADGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D1
506
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK




GLEWVSMIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARPSHHGLIDNWGQGTLVTVSS





rHC2_C2
507
EVQLVESGGGLVQPGGSLRLSCAASGFTFSELGVNWVRQAPGK




GLEWVSYISDVGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWHHGRFDYWGQGTLVTVSS





rHC1_G4
508
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSLIRADGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_F3
509
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWQHGPSVYWGQGTLVTVSS





rHC1_B4
510
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIRADGVTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_G3
511
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK




GLEWVSMIGADGYTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D7
512
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMISADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D5
513
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRSDGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR




TEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E4
514
EVQLVESGGGLVQPGGSLRLSCAASGFTFSEYGVNWVRQAPGK




GLEWVSIIWHDGSTAYADTVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_E10
515
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSLIRGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B6
516
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVSWVRQAPGK




GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_B7
517
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRDDGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS





H1 + H2_G8
518
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK




GLEWVSMIWAGGSTAYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_G5
519
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSLIGADGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQYGPLAYWGQGTLVTVSS





H1 + H2_F1
520
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIEGDGGTHYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC19
521
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS





H1 + H2_A10
522
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAXGK




GLEWVSMISADGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_B9
523
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIRGDGTTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS





H1 + H2_F7
524
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVGWVRQAPGK




GLEWVSMIWGAGSTNYADTVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B1
525
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFGVNWVRQAPGK




GLEWVSMIWADGTTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_H9
526
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSVIGGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





H1 + H2_A12
527
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGX




GLEWVSMISSDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_G8
528
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWSDGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_B4
529
EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK




GLEWVSTISDAGSTYYASSVKGRFTIIRINSKNTLYLQMNSLR




AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS





H1 + H2_G5
530
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRGDGSTYYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_C6
531
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK




GLEWVSMIRDDGSTSYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_F5
532
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIRGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





H1 + H2_B4
533
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVNWVRQAPGK




GLEWVSMISGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_F6
534
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVTWVRQAPGK




GLEWVSNIWASGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_B6
535
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





H1 + H2_A3
536
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK




GLEWVSVIWGDGSTAYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D10
537
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





rHC18
538
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWSDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





S4-18
539
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTHYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





rHC2_E6
540
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSLIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_D4
541
EVQLVESGGGLVQPGGSLRISCAASGFTFSAFGVSWVRQAPGK




GLEWVSMIWGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_F8
542
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDLGVNWVRQAPGK




GLEWVSTISDIGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWHNGRFDYWGQGTLVTVSS





rHC1_F10
543
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRGDGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_C12
544
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_C11
545
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK




GLEWVSIIWGDGSTAYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_C4
546
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK




GLEWVSKIWADGSTDYADSLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





H1 + H2_E12
547
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSLIWGDGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_C4
548
EVQLVESGGGLVQPGGSLRLSCAASGFTFSYFGVSWVRQAPGK




GLEWVSMIWGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_F9
549
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRSDGSTDYADTLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





H1 + H2_B5
550
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK




GLEWVSIIWSDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





S4-34
551
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWADGSTHYADTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





H1 + H2_C2
552
EVQLVESGGGLVQPGGSLRLSCAASGFTFSEFGVNWVRQAPGK




GLEWVSMIWGNGATDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_F11
553
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK




GLEWVSMIWGDGTTAYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_E9
554
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B2
555
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK




GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E9
556
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAXGK




GLEWVSMIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_A6
557
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIGSDGFTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





H1 + H2_C8
558
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQTPGK




GLEWVSMIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_C5
559
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVSWVRQAPGK




GLEWVSQIWGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_D5
560
EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK




GLEWVSTISDAGSTYYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS





rHC1_C7
561
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWQHGPLGYWGQGTLVTVSS





H1 + H2_C3
562
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVHWVRQAPGK




GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_G7
563
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWQHGPIGYWGQGTLVTVSS





rHC1_A5
564
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





H1 + H2_G9
565
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK




GLEWVSKIWGDGTTDYADTLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E2
566
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIGGEGRTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_C9
567
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNLGVNWVRQAPGK




GLEWVSMIWDVGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWHHGLFDYWGQGTLVTVSS





rHC1_G6
568
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIMGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_C1
569
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRDDGATDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





rHC1_C2
570
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMISGDGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





H1 + H2_C1
571
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B10
572
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGX




GLEWVSMIWADGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E3
573
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAFGVCWVRQAPGK




GLEWVSMIWADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_H4
574
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRSDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWQHGPEGYWGQGTLVTVSS





rHC2_A1
575
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIRGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_G11
576
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSLIRSDGSTHYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_D8
577
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIRGDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_A3
578
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTHYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





S4-31
579
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK




GLEWVSGIGADGSTAYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHSGLAYWGQGTLVTVSS





rHC36
580
EVQLVESGGGLVQPGGSLILSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWADGSTHYASSLKGRFTISRDNFKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC2_G3
581
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_C10
582
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIAADGSTAYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC14
583
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS





rHC1_D4
584
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_D11
585
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIISGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_E11
586
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDWGVHWMRQAPGK




GLEWVSTIWDDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARHGHHGPFVYWGQGTLVTVSS





H1 + H2_E7
587
EVQLVESGGGLVQPGGSLRLSCAASXFTFSNFGVNWVRQAPGK




GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_A8
588
EVQLVESGGGLVQPGGSLRLSCAASGFTFSVYGVNWVRQAPGK




GLEWVSMIGDEGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARHWHHGAVDYWGQGTLVTVSS





H1 + H2_B9
589
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSMIWADGSTHYADSLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





S4-19
590
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK




GLEWVSGIWADGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





S4-74
591
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTHYADTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





rHC1_H2
592
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_E3
593
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGYTSYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC34
594
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPSAYWGQGTLVTVSS





H1 + H2_F2
595
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIRADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D9
596
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGTTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





H1 + H2_E6
597
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVHWVRQAPGK




GLEWVSMIWADGSTVYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_F3
598
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIGSDGSTYYADSLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_G11
599
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS





H1 + H2_D3
600
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK




GLEWVSMIWGDGHTAYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B12
601
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSMIWAHGATHYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B11
602
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSLIRDDGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_A8
603
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWGDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





S4-24
604
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTHYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_F11
605
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMISADGYTDYADSLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





H1 + H2_D10
606
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_D6
607
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIGADGYTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_G4
608
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAFGVSWVRQAPGK




GLEWVSMIWADGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_D11
609
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSLIRGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_E9
610
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGTTYYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





rHC1_A12
611
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK




GLEWVSRISGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_A2
612
EVQLVESGGGLVQPGGSLRLSCAASGFSFSNFGVNWVRQAPGK




GLEWVSMIWADGSTNYADTVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B7
613
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVSWVRQAPGK




GLEWVSIISADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_H8
614
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_F12
615
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIGADGYTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_E5
616
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIRGDGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_A11
617
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSMIWGSGATDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D6
618
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMISADGFTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC2_G10
619
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIAADGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_H3
620
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSLIAADGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





H1 + H2_F10
621
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIRGDGSTAYADTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_C7
622
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIWGDGNTGYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_A9
623
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





H1 + H2_E5
624
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSMIWGDGSTEYADTLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC62
625
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





H1 + H2_F4
626
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVYWVRQAPGK




GLEWVSMIWDDGSTEYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_H8
627
EVQLVESGGGLVQPGGSLRLSCAASGFTFSQLGVTWVRQAPGK




GLEWVSTISDAGSTYYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARDWHHGRFAYWGQGTLVTVSS





rHC2_F4
628
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGPGVNWVRQAPGK




GLEWVSSIWDDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCARHSHDGRFDYWGQGTLVTVSS





S4-50
629
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVEWVRQAPGK




GLEWVSGIWADGSTHYADTVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





H1 + H2_F12
630
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSMIWGEGSTGYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_E6
631
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRDDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_F2
632
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIGGDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





H1 + H2_G6
633
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDFGVNWVRQAPGK




GLEWVSMIWADGTTDYDDSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC2_F5
634
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSGISADGSTAYDSSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_D6
635
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYGVSWVRQAPGK




GLEWVSLIRGDGSTYYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_A9
636
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK




GLEWVSMIWGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_A1
637
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK




GLEWVSMIWADGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC60
638
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPAAYWGQGTLVTVSS





rHC1_C8
639
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK




GLEWVSMIAGDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





rHC44
640
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWADGSTHYADTLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_G9
641
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSIIGADGATDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLGYWGQGTLVTVSS





H1 + H2_A6
642
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSGITGDGITAYASTLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_G2
643
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMISGDGFTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_G7
644
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSNIWGDGSTDYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E10
645
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIRADGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_E2
646
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_A4
647
EVQLVESGGGLVQPGGSLRLSCAASGFTFSAYGVSWVRQAPGK




GLEWVSMIWRDGSTDYADSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_H3
648
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK




GLEWVSMIWGDGSTHYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_G1
649
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVHWVRQAPGK




GLEWVSGISADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E8
650
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVNWVRQAPGK




GLEWVSMIGGDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_C9
651
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIRADGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_F7
652
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK




GLEWVSVISADGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_F6
653
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIGADGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





rHC22
654
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTDYADTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC2_G5
655
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSLIRGDGYTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_C12
656
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVSWVRQAPGK




GLEWVSVIRADGVTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





rHC3
657
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIWADGSTHYASSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVAYWGQGTLVTVSS





rHC1_F1
658
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVQWVRQAPGK




GLEWVSRINGDGSTDYASTLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_E11
659
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIRSDGFTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B8
660
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNFGVNWVRQAPGK




GLEWVSMIWVDGSTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_G1
661
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGK




GLEWVSMIWGDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_B3
662
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHYGVSWVRQAPGK




GLEWVSMIRSDGFTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D2
663
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMITGDGYTDYADTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





rHC1_E12
664
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRADGLTDYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_B5
665
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSLIRSDGSTDYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_D11
666
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGSTDYADSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPLAYWGQGTLVTVSS





H1 + H2_A7
667
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVIWVRQAPGK




GLEWVSMIGGDGSTYYDSSLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_G3
668
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVNWVRQAPGK




GLEWVSMIGSDGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_D5
669
EVQLVESGGGLVQPGGSLRLSCAASGFTFSYYGVHWVRQAPGK




GLEWVSGISGEGSTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_D1
670
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRGDGSTYYASSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWVKGTLVTVSS





rHC1_E7
671
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSIIRGDGSTDYASSLKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





rHC1_E11
672
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIRADGTTDYASSVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





S4-55
673
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVTWVRQAPGK




GLEWVSMIWADGSTDYASTVKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWQHGPVGYWGQGTLVTVSS





H1 + H2_C10
674
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGVSWVRQAPGK




GLEWVSMIRGDGSTYYADTLKGRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS





H1 + H2_G10
675
EVQLVESGGGLVQPGGSLRLSCAASGFTFSHFGVNWVRQAPGK




GLEWVSMIWADGSTSYADSVKSRFTISRDNSKNTLYLQMNSLR




AEDTAVYYCAREWHHGPVAYWGQGTLVTVSS









Table 20 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from hMAK195 Amino acid residues of individual CDRs of each VH sequence are indicated in bold.









TABLE 20







List of amino acid sequences of affinity


matured hMAK195 VL variants










SEQ




ID


Clone
NO:
VL





S3_92
676
DIQMTQSPSSLSASVGDRVTITCRASQKVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYHTPYTFGQGTKLEIK





S3_79
677
DIQMTQSPSSLSASVGDRVTITCKASQAVSTEVAWYQQK




PGKAPKLLIYCASTRQTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSAPYTFGQGTKLEIK





S3_68
678
DIQMTQSPSSLSASVGDRVTITCRASQVVSSAVAWYQQK




PGKAPKLLIYWASKRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_60
679
DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S4-63
680
DIQMTQSPSSLSASVGDRVTITCKASQKVSSALAWYQQK




PGKAPKLLIYWASALHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRPPFTFGQGTKLEIK





S3_5
681
DIQMTQSPSSLSASVGDRVTITCRASQGVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYTTPFTFGQGTKLEIK





S3_44
682
DIQMTQSPSSLSASVGDRVTITCRASQGVSRALAWYQQK




PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRAPFTFGQGTKLEIK





S3_53
683
DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYHTPFTFGQGTKLEIK





S3_91
684
DIQMTQSPSSLSASVGDRVTITCKASQGVSSALAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S3_59
685
DIQMTQSPSSLSASVGDRVTITCKASQGVSSALAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPYTFGQGTKLEIK





S3_47
686
DIQMTQSPSSLSASVGDRVTITCKASQWVSSAVAWYQQK




PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRIPFTFGQGTKLEIK





S3_70
687
DIQMTQSPSSLSASVGDRVTITCKASQAVSSALAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPYTFGQGTKLEIK





S3_56
688
DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK




PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPYTFGQGTKLEIK





S3_37
689
DIQMTQSPSSLSASVGDRVTITCKASQGVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYNTPFTFGQGTKLEIK





S3_36
690
DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK




PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_67
691
DIQMTQSPSSLSASVGDRVTITCKASQTVXRAVAWYQQK




PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPFTFGQGTKLEIK





S3_40
692
DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWSQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYTTPYTFGQGTKLEIK





S3_73
693
DIQMTQSPSSLSASVGDRVTITCKASQAVSSAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S4-50
694
DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK




PGKAPKLLIYWASALHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSSPYTFGQGTKLEIK





S4-6
695
DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_19
696
DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK




PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRSPFTFGQGTKLEIK





S3_83
697
DIQMTQSPSSLSASVGDRVTITCRASQAVSTALAWYQQK




PGKAPKLLIYSASTLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRSPFTFGQGTKLEIK





S3_78
698
DIQMTQSPSSLSASVGDRVTITCKASQYVGGAVAWYQQK




PGKAPKLLIYQASTLQTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHISKPFTFGQGTKLEIK





S4-19
699
DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK




PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S3_58
700
DIQMTQSPSSLSASVGDRVTITCKASQSVNGALAWYQQK




PGKAPKLLIYRASTRQTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSIPFTFGQGTKLEIK





S4-31
701
DIQMTQSPSSLSASVGDRVTITCRASQGVSSALAWYQQK




PGKAPKLLIYWASALHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSAPFTFGQGTKLEIK





S3_31
702
DIQMTQSPSSLSASVGDRVTITCKASQAVSSSVAWYQQK




PGKAPKLLIYGASTLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYNEPYTFGQGTKLEIK





S3_13
703
DIQMTQSPSSLSASVGDRVTITCKASQKVSSAVAWYQQK




PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPYTFGQGTKLEIK





S4-40
704
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFSFGQGTKLEIK





S3_26
705
DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK




PGKAPKLLIYWASKRQTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYISPYTFGQGTKLEIK





S3_33
706
DIQMTQSPSSLSASVGDRVTITCKASQGVRSALAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSAPYTFGQGTKLEIK





S3_28
707
DIQMTQSPSSLSASVGDRVTITCKASQTVSNAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S4-74
708
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S3_84
709
DIQMTQSPSSLSASVGDRVTITCKASQPVRSAVAWYQQK




PGKAPKLLIYSASTRQTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSIPFTFGQGTKLEIK





S4-54
710
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYKTPFSFGQGTKLEIK





S3_23
711
DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK




PGKAPKLLIYWASSRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_55
712
DIQMTQSPSSLSASVGDRVTITCKASQTVGRAVAWYQQK




PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQSYSTPFTFGQGTKLEIK





S4-34
713
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S3_76
714
DIQMTQSPSSLSASVGDRVTITCRASQKVSNAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYNSPFTFGQGTKLEIK





S4-12
715
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYKTPFTFGQGTKLEIK





S3_86
716
DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYTTPYTFGQGTKLEIK





S3_61
717
DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK




PGKAPKLLIYWASNRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_18
718
DIQMTQSPSSLSASVGDRVTITCKASQLVSSALAWYQQK




PGKAPKLLIYWASTRQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S3_72
719
DIQMTQSPSSLSASVGDRVTITCKASQLVSSALAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRNPFTFGQGTKLEIK





S3_41
720
DIQMTQSPSSLSASVGDRVTITCKASQAVSSALAWYQQK




PXKAPKLLIYWASSRQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S4-24
721
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASTLHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S4-17
722
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S3_90
723
DIQMTQSPSSLSASVGDRVTITCKASQPVSGAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRASYTFGQGTKLEIK





S3_87
724
DIQMTQSPSSLSASVGDRVTITCRASQKVSSAVAWYQQK




PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPYTFGQGTKLEIK





S3_66
725
DIQMTQSPSSLSASVGDRVTITCRASQRVSSAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYTTPYTFGQGTKLEIK





S4-18
726
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_4
727
DIQMTQSPSSLSASVGDRVTITCRASQAVSSAVAWYQQK




PGKAPKLLIYWASARHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSSPYTFGQGTKLEIK





S3_64
728
DIQMTQSPSSLSASVGDRVTITCKASQPVSSAVAWYQQK




PGKAPKLLIYWASTLHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPFTFGQGTKLEIK





S3_62
729
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPYTFGQGTNLEIK





S3_29
730
DIQMTQSPSSLSASVGDIVTITCKASQLVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRTPYTFGQGTKLEIK





S3_65
731
DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK




PGKAPKLLIYWASMRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSSPFTFGQGTKLEIK





S3_81
732
DIQMTQSPSSLSASVGDRVTITCKASQTVSSAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYRAPYTFGQGTKLEIK





S3_39
733
DIQMTQSPSSLSASVGDRVTITCKASQRVSSALAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_49
734
DIQMTQSPSSLSASVGDRVTITCRASQLVSNAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSSPFTFGQGTKLEIK





S3_85
735
DIQMTQSPSSLSASVGDRVTITCRASQLVSSAVAWYQQK




PGKAPKLLIYWASARHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK





S3_82
736
DIQMTQSPSSLSASVGDRVTITCKASQLVSSAVAWYQQK




PGKAPKLLIYWASTRHSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYTTPFTFGQGTKLEIK





S3_93
737
DIQMTQSPSSLSASVGDRVTITCKASQRVSSAVAWYQQK




PGKAPKLLIYWASTRHTGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQHYSTPFTFGQGTKLEIK
















TABLE 21





Amino acid residues observed in affinity matured hMAK-195.







hMAK195 Heavy chain variable region (SEQ ID NO: 1075)








hMAK195VH
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYGVNWVRQAPGKGLEWVSMIWGDGSTD



                              NFS T              I RAG T A



                              HLN S              V GSE F H



                              YS  H              L SDA A V



                              IR  Q              R AEV Y S



                                  Y              K LVG W N



                                                 S  NY   G






YDSTLKSRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREWHHGPVAYWGQGTLVTVSS



 ADSV G                                HSQQRTLDS



                                       QLRPASGVF



                                       LCLLVQDGC



                                       YRYNWAETN



                                       DFPYEKW P



                                       NDARS R I



                                       TYVTP P H



                                       PPDDI A



                                       AICA  I



                                       SG C



                                       R










hMAK195 Light chain variable region (SEQ ID NO: 1076)








hMAK195VL
DIQMTQSPSSLSASVGDRVTITCKASQAVSSAVAWYQQKPGKAPKLLIYWASTRHTG



                       R   S RRPL                S  SLQS



                           V TNT                 R  I T



                           G IGG                 L  L A



                           D NCV                 C  K E



                           T CTS                 Q  A F



                           P KIR                 G  R






VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHYSTPFTFGQGTKLEIK



                                 SNRSTY



                                  FGPR



                                  DTML



                                  GIIQ



                                  HCAA



                                     S









The tables below provide a list of humanized MAK-195 antibodies that were converted into IgG proteins for characterization.









TABLE 22







VH sequences of IgG converted clones









Protein




region
SEQ ID NO:
Sequence
















123456789012345678901234567890


A8

738
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVNWVRQAPGKGLEWVSMIAADGFTDYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWHHGPVAYWGQGTLVTVSS


A8
CDR-H1
Residues 31-35

NYGVN



VH

of SEQ ID




NO.: 738


A8
CDR-H2
Residues 50-65

MIAADGFTDYASSVKG



VH

of SEQ ID




NO.: 738


A8
CDR-H3
Residues 98-106

EWHHGPVAY



VH

of SEQ ID




NO.: 738





B5

739
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSLIRGDGSTDYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWHHGPVAYWGQGTLVTVSS


B5
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID




NO.: 739


B5
CDR-H2
Residues 50-65

LIRGDGSTDYASSLKG



VH

of SEQ ID




NO.: 739


B5
CDR-H3
Residues 98-106

EWHHGPVAY



VH

of SEQ ID




NO.: 739





rHC44

740
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSMIWADGSTHYA







DTLKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC44
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID




NO.: 740


rHC44
CDR-H2
Residues 50-65

MIWADGSTHYADTLKS



VH

of SEQ ID




NO.: 740


rHC44
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 740





rHC22

741
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTDYA







DTVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC22
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 741


rHC22
CDR-H2
Residues 50-65

MIWADGSTDYADTVKG



VH

of SEQ ID




NO.: 741


rHC22
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 741





rHC81

742
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







DSVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


rHC81
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 742


rHC81
CDR-H2
Residues 50-65

MIWADGSTHYADSVKS



VH

of SEQ ID




NO.: 742


rHC81
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID




NO.: 742





rHC18

743
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWSDGSTDYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC18
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 743


rHC18
CDR-H2
Residues 50-65

MIWSDGSTDYASSVKG



VH

of SEQ ID




NO.: 743


rHC18
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 743





rHC14

744
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPAAYWGQGTLVTVSS


rHC14
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 744


rHC14
CDR-H2
Residues 50-65

MIWADGSTHYASSLKG



VH

of SEQ ID




NO.: 744


rHC14
CDR-H3
Residues 98-106

EWQHGPAAY



VH

of SEQ ID




NO.: 744





rHC3

745
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSMIWADGSTHYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC3
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID




NO.: 745


rHC3
CDR-H2
Residues 50-65

MIWADGSTHYASSLKG



VH

of SEQ ID




NO.: 745


rHC3
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 745





rHC19

746
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPAAYWGQGTLVTVSS


rHC19
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 746


rHC19
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 746


rHC19
CDR-H3
Residues 98-106

EWQHGPAAY



VH

of SEQ ID




NO.: 746





rHC34

747
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC34
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 747


rHC34
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 747


rHC34
CDR-H3
Residues 98-106

EWQHGPSAY



VH

of SEQ ID




NO.: 747





rHC83

748
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


rHC83
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 748


rHC83
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 748


rHC83
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 748





S4-19

749
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVEWVRQAPGKGLEWVSGIWADGSTHYA







DTVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-19
CDR-H1
Residues 31-35

NYGVE



VH

of SEQ ID




NO.: 749


S4-19
CDR-H2
Residues 50-65

GIWADGSTHYADTVKS



VH

of SEQ ID




NO.: 749


S4-19
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 749





S4-50

750
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVEWVRQAPGKGLEWVSGIWADGSTHYA







DTVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVGYWGQGTLVTVSS


S4-50
CDR-H1
Residues 31-35

NYGVE



VH

of SEQ ID




NO.: 750


S4-50
CDR-H2
Residues 50-65

GIWADGSTHYADTVKS



VH

of SEQ ID




NO.: 750


S4-50
CDR-H3
Residues 98-106

EWQHGPVGY



VH

of SEQ ID




NO.: 750





S4-63

751
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVEWVRQAPGKGLEWVSGIWADGSTHYA







DTVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVGYWGQGTLVTVSS


S4-63
CDR-H1
Residues 31-35

NYGVE



VH

of SEQ ID




NO.: 751


S4-63
CDR-H2
Residues 50-65

GIWADGSTHYADTVKS



VH

of SEQ ID




NO.: 751


S4-63
CDR-H3
Residues 98-106

EWQHGPVGY



VH

of SEQ ID




NO.: 751





S4-55

752
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTDYA







STVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVGYWGQGTLVTVSS


S4-55
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 752


S4-55
CDR-H2
Residues 50-65

MIWADGSTDYASTVKG



VH

of SEQ ID




NO.: 752


S4-55
CDR-H3
Residues 98-106

EWQHGPVGY



VH

of SEQ ID




NO.: 752





S4-6

753
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-6
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 753


S4-6
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 753


S4-6
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 753





S4-18

754
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







DSVKSRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


S4-18
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 754


S4-18
CDR-H2
Residues 50-65

MIWADGSTHYADSVKS



VH

of SEQ ID




NO.: 754


S4-18
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID




NO.: 754





S4-31

755
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVQWVRQAPGKGLEWVSGIGADGSTAYA







SSLKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHSGLAYWGQGTLVTVSS


S4-31
CDR-H1
Residues 31-35

NYGVQ



VH

of SEQ ID




NO.: 755


S4-31
CDR-H2
Residues 50-65

GIGADGSTAYASSLKG



VH

of SEQ ID




NO.: 755


S4-31
CDR-H3
Residues 98-106

EWQHSGLAY



VH

of SEQ ID




NO.: 755





S4-34

756
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVSWVRQAPGKGLEWVSMIWADGSTHYA







DTVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


S4-34
CDR-H1
Residues 31-35

NYGVS



VH

of SEQ ID




NO.: 756


S4-34
CDR-H2
Residues 50-65

MIWADGSTHYADTVKG



VH

of SEQ ID




NO.: 756


S4-34
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID




NO.: 756





S4-74

757
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







DTVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPLAYWGQGTLVTVSS


S4-74
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 757


S4-74
CDR-H2
Residues 50-65

MIWADGSTHYADTVKG



VH

of SEQ ID




NO.: 757


S4-74
CDR-H3
Residues 98-106

EWQHGPLAY



VH

of SEQ ID




NO.: 757





S4-12

758
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-12
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 758


S4-12
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 758


S4-12
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 758





S4-54

759
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-54
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 759


S4-54
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 759


S4-54
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 759





S4-17

760
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-17
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 760


S4-17
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 760


S4-17
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 760





S4-40

761
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-40
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 761


S4-40
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 761


S4-40
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 761





S4-24

762
EVQLVESGGGLVQPGGSLRLSCAASGFTFS


VH



NYGVTWVRQAPGKGLEWVSMIWADGSTHYA







SSVKGRFTISRDNSKNTLYLQMNSLRAEDT






AVYYCAREWQHGPVAYWGQGTLVTVSS


S4-24
CDR-H1
Residues 31-35

NYGVT



VH

of SEQ ID




NO.: 762


S4-24
CDR-H2
Residues 50-65

MIWADGSTHYASSVKG



VH

of SEQ ID




NO.: 762


S4-24
CDR-H3
Residues 98-106

EWQHGPVAY



VH

of SEQ ID




NO.: 762
















TABLE 23







VL sequences of IgG converted clones









Protein




region
SEQ ID NO:
Sequence
















123456789012345678901234567890


hMAK195

763
DIQMTQSPSSLSASVGDRVTITCKASQAVS


VL.1



SAVAWYQQKPGKAPKLLIYWASTRHTGVPS



VL


RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSTPFTFGQGTKLEIKR



hMAK195
CDR-L1
Residues 24-34

KASQAVSSAVA



VL.1

of SEQ ID


VL

NO.: 763


hMAK195
CDR-L2
Residues 50-56

WASTRHT



VL.1

of SEQ ID


VL

NO.: 763


hMAK195
CDR-L3
Residues 89-97

QQHYSTPFT



VL.1

of SEQ ID


VL

NO.: 763





S4-24

764
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-24
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 764


S4-24
CDR-L2
Residues 50-56

WASTLHT



VL

of SEQ ID




NO.: 764


S4-24
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID




NO.: 764





S4-40

765
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFSFGQGTKLEIKR



S4-40
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 765


S4-40
CDR-L2
Residues 50-56

WASTRHS



VL

of SEQ ID




NO.: 765


S4-40
CDR-L3
Residues 89-97

QQHYRTPFS



VL

of SEQ ID




NO.: 765





S4-17

766
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-17
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 766


S4-17
CDR-L2
Residues 50-56

WASTRHS



VL

of SEQ ID




NO.: 766


S4-17
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID




NO.: 766





S4-54

767
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASARHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYKTPFSFGQGTKLEIKR



S4-54
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 767


S4-54
CDR-L2
Residues 50-56

WASARHT



VL

of SEQ ID




NO.: 767


S4-54
CDR-L3
Residues 89-97

QQHYKTPFS



VL

of SEQ ID




NO.: 767





S4-12

768
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASARHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYKTPFTFGQGTKLEIKR



S4-12
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 768


S4-12
CDR-L2
Residues 50-56

WASARHT



VL

of SEQ ID




NO.: 768


S4-12
CDR-L3
Residues 89-97

QQHYKTPFT



VL

of SEQ ID




NO.: 768





S4-74

769
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASARHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-74
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 769


S4-74
CDR-L2
Residues 50-56

WASARHT



VL

of SEQ ID




NO.: 769


S4-74
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID




NO.: 769





S4-34

770
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-34
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 770


S4-34
CDR-L2
Residues 50-56

WASTRHT



VL

of SEQ ID




NO.: 770


S4-34
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID




NO.: 770





S4-31

771
DIQMTQSPSSLSASVGDRVTITCRASQGVS


VL



SALAWYQQKPGKAPKLLIYWASALHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSAPFTFGQGTKLEIKR



S4-31
CDR-L1
Residues 24-34

RASQGVSSALA



VL

of SEQ ID




NO.: 771


S4-31
CDR-L2
Residues 50-56

WASALHS



VL

of SEQ ID




NO.: 771


S4-31
CDR-L3
Residues 89-97

QQHYSAPFT



VL

of SEQ ID




NO.: 771





S4-18

772
DIQMTQSPSSLSASVGDRVTITCRASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSTPFTFGQGTKLEIKR



S4-18
CDR-L1
Residues 24-34

RASQLVSSAVA



VL

of SEQ ID




NO.: 772


S4-18
CDR-L2
Residues 50-56

WASTLHS



VL

of SEQ ID




NO.: 772


S4-18
CDR-L3
Residues 89-97

QQHYSTPFT



VL

of SEQ ID




NO.: 772





S4-6

773
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTRHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSTPFTFGQGTKLEIKR



S4-6
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID




NO.: 773


S4-6
CDR-L2
Residues 50-56

WASTRHT



VL

of SEQ ID




NO.: 773


S4-6
CDR-L3
Residues 89-97

QQHYSTPFT



VL

of SEQ ID




NO.: 773





S4-55

774
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-55
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID




NO.: 774


S4-55
CDR-L2
Residues 50-56

WASTLHT



VL

of SEQ ID




NO.: 774


S4-55
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID




NO.: 774





S4-63

775
DIQMTQSPSSLSASVGDRVTITCKASQKVS


VL



SALAWYQQKPGKAPKLLIYWASALHSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRPPFTFGQGTKLEIKR



S4-63
CDR-L1
Residues 24-34

KASQKVSSALA



VL

of SEQ ID




NO.: 775


S4-63
CDR-L2
Residues 50-56

WASALHS



VL

of SEQ ID




NO.: 775


S4-63
CDR-L3
Residues 89-97

QQHYRPPFT



VL

of SEQ ID




NO.: 775





S4-50

776
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASALHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYSSPYTFGQGTKLEIKR



S4-50
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID




NO.: 776


S4-50
CDR-L2
Residues 50-56

WASALHT



VL

of SEQ ID




NO.: 776


S4-50
CDR-L3
Residues 89-97

QQHYSSPYT



VL

of SEQ ID




NO.: 776





S4-19

777
DIQMTQSPSSLSASVGDRVTITCKASQLVS


VL



SAVAWYQQKPGKAPKLLIYWASTLHTGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






HYRTPFTFGQGTKLEIKR



S4-19
CDR-L1
Residues 24-34

KASQLVSSAVA



VL

of SEQ ID




NO.: 777


S4-19
CDR-L2
Residues 50-56

WASTLHT



VL

of SEQ ID




NO.: 777


S4-19
CDR-L3
Residues 89-97

QQHYRTPFT



VL

of SEQ ID




NO.: 777
















TABLE 24







Heavy and light chain pairs of hMAK195 affinity matured clones










Clone name
HC
LC
Protein name





A8
hMAK195-A8
hMAK195 VL.1
hMAK195-AM11


B5
hMAK195-B5
hMAK195 VL.1
hMAK195-AM13


rHC3
hMAK195 rHC3
hMAK195 VL.1
hMAK195-AM14


rHC18
hMAK195 rHC18
hMAK195 VL.1
hMAK195-AM15


rHC19
hMAK195 rHC19
hMAK195 VL.1
hMAK195-AM16


rHC22
hMAK195 rHC22
hMAK195 VL.1
hMAK195-AM17


rHC34
hMAK195 rHC34
hMAK195 VL.1
hMAK195-AM18


rHC60
hMAK195 rHC60
hMAK195 VL.1
hMAK195-AM19


S4-6
hMAK195 S4-6
hMAK195 S4-6
hMAK195-AM20


S4-12
hMAK195 S4-12
hMAK195 S4-12
hMAK195-AM21


S4-17
hMAK195 S4-17
hMAK195 S4-17
hMAK195-AM22


S4-18
hMAK195 S4-18
hMAK195 S4-18
hMAK195-AM23


S4-19
hMAK195 S4-19
hMAK195 S4-19
hMAK195-AM24


S4-24
hMAK195 S4-24
hMAK195 S4-24
hMAK195-AM25


S4-34
hMAK195 S4-34
hMAK195 S4-34
hMAK195-AM26









2.1 TNF Enzyme-Linked Immunosorbent Assay Result











TABLE 25







IgG Name
EC50 in hTNFa ELISA (nM)



















hMAK195-AM11
0.2



hMAK195-AM13
0.2



hMAK195-AM14
0.051



hMAK195-AM15
0.052



hMAK195-AM16
0.056



hMAK195-AM17
0.056



hMAK195-AM18
0.052



hMAK195-AM19
0.057



hMAK195-AM20
0.043



hMAK195-AM21
0.042



hMAK195-AM22
0.052



hMAK195-AM23
0.055



hMAK195-AM24
0.053



hMAK195-AM25
0.052



hMAK195-AM26
0.061










2.2 TNF Neutralization Potency of TNF Antibodies by L929 Bioassay










TABLE 26






hu TNF neutralization
rhesus TNF neutralization


IgG Name
IC50 (nM)
IC50 (nM)

















hMAK195-AM11
0.259
>25


hMAK195-AM13
1.218
4.64


hMAK195-AM14
0.0401
4.61


hMAK195-AM15
0.036
>150


hMAK195-AM16
0.0105
0.803


hMAK195-AM17
0.0031
>25


hMAK195-AM18
0.0145
0.4412


hMAK195-AM19
0.0126
1.206


hMAK195-AM20
0.0037
0.596


hMAK195-AM21
0.009
0.09


hMAK195-AM22
0.00345
0.2705


hMAK195-AM23
0.0468
2.627


hMAK195-AM24
0.015
0.557


hMAK195-AM25
0.0114
0.262


hMAK195-AM26
0.0061
0.2495









Example 3: Affinity Maturation of a Humanized Anti-Human TNF Antibody hMAK-199

The mouse anti-human TNF antibody MAK-199 was humanized and affinity-matured to generate a panel of humanized MAK195 variants that have improved affinity and binding kinetics against both human and cyno TNF. Several libraries were made according to specifications below:

  • Three HC libraries were made after the V2I back-mutation was first introduced and confirmed that it did not impact scFv affinity to TNF.
  • H1+H2 (DDK) library:
  • Limited mutagenesis at 7 residues (T30, N31, N35, T52a, T54, E56, T58)
  • Germline toggle: M34I and F63L
  • H1+H2 (QKQ) library:
  • Limited mutagenesis at 7 residues (T30, N31, N35, T52a, T54, E56, T58)
  • Germline toggle: M34I and F63L
  • Germline back-mutations: D61Q, D62K, K64Q, F67V, F69M, L71T
  • H3 library:
  • Limited mutagenesis at 12 residues 95-100, 100a-100f
  • Germline toggle: F91Y
  • LC library: library
  • Limited mutagenesis at 11 residues 28, 30-32, 50, 53, 91-94, 96
  • Germline toggles: T51A, Y71F, F87Y, and T43A/V44P (these two co-evolve)
  • Recombined libraries:
  • VH libraries will be recombined with and without VL library after library diversity is reduced after at least 3 rounds of selection.


All four libraries were selected separately for the ability to bind human or cynomolgus monkey TNF in the presence of decreasing concentrations of biotinylated human or cynomolgus monkey TNF antigens. All mutated CDR sequences recovered from library selections were recombined into additional libraries and the recombined libraries were subjected to more stringent selection conditions before individual antibodies are identified.


Table 27 provides a list of amino acid sequences of VH of the hMAK-199 antibody which were subjected to the affinity maturation selection protocol Amino acid residues of individual CDRs of each VH sequence are indicated in bold.









TABLE 27







List of amino acid sequences of affinity matured hMAK199


VH variants









Clone
SEQ ID NO:
VH





J644M2S1-10VH
778
EVQLVQSGAEVKKPGASVKVSCKASGYTFNDYGITWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-11VH
779
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-12VH
780
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGISWVRQ




APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-13VH
781
EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGIQWVRQ




APGQGLEWMGWINTYTGAPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-14VH
782
EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ




APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-15VH
783
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGMNWVRQ




APGQGLEWMGWINTYTGESTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-16VH
784
EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGMTWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-17VH
785
EVQLVQSGAEVKKPGASVKVSCKASGYAFTDYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-18VH
786
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGEPAYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-1VH
787
EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGINWVRQ




APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-22VH
788
EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-23VH
789
EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGIIWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-24VH
790
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-25VH
791
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-27VH
792
EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-28VH
793
EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGINWVRQ




APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-2VH
794
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIXWVRQ




APGQGLEWMGWINTYXGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-31VH
795
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-33VH
796
EVQLVQSGAEVKKPGASVKVSCKASGYTFTHYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-34VH
797
EVQLVQSGAEVKKPGASVKVSCKASGYTFTHYGINWVRQ




APGQGLEWMGWINTYTGQPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-35VH
798
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGITWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-36VH
799
EVQLVQSGAEVKKPGASVKVSCKASGYTFGNYGINWVRQ




APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-37VH
800
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-38VH
801
EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ




APGQGLEWMGWINTYTGEPHYAQGFTGRVTMTTDTSTST




AYIELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-3VH
802
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGEPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-40VH
803
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-41VH
804
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIGWVRQ




APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-43VH
805
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGVPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-44VH
806
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIAWVRQ




APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-45VH
807
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGVPHYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-46VH
808
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIXWVRQ




APGQGLEWMGWINTYTGEPXYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-47VH
809
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-48VH
810
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-4VH
811
EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGITWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-50VH
812
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGVPQYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-51VH
813
EVQLVQSGAEVKKPGASVKVSCKASGYTFQNYGINWVRQ




APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-53VH
814
EVQLVQSGAEVKKPGASVKVSCKASGYTFTQYGINWVRQ




APGQGLEWMGWINTYTGDPHYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-54VH
815
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGLPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-55VH
816
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYNGKPMYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-56VH
817
EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGITWVRQ




APGQGLEWMGWINTYTGEPAYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-59VH
818
EVQLVQSGAEVKKPGASVKVSCKASGYTFNHYGINWVRQ




APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-5VH
819
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-60VH
820
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-64VH
821
EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGINWVRQ




APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-65VH
822
EVQLVQSGAEVKKPGASVKVSCKASGYTFNDYGIIWVRQ




APGQGLEWMGWINTYTGKPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-66VH
823
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-67VH
824
EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGMNWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-68VH
825
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGEPSYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-6VH
826
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGVPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-71VH
827
EVQLVQSGAEVKKPGASVKVSCKASGYTFDHYGMNWVRQ




APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-72VH
828
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIGWVRQ




APGQGLEWMGWINTYTGKPSYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-73VH
829
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-74VH
830
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGMNWVRQ




APGQGLEWMGWINTYTGKPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-75VH
831
EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGMNWVRQ




APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-76VH
832
EVQLVQSGAEVKKPGASVKVSCKASGYTFNSYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-77VH
833
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-79VH
834
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYNGQPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-7VH
835
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIIWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-81VH
836
EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-82VH
837
EVQLVQSGAEVKKPGASVKVSCKASGYTFSDYGIQWVRQ




APGQGLEWMGWINTYTGRPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-83VH
838
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGISWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-84VH
839
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGIQWVRQ




APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-85VH
840
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGVPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-87VH
841
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYSGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-88VH
842
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-8VH
843
EVQLVQSGAEVKKPGASVKVSCKASGYTFPNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-90VH
844
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGKTNYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-91VH
845
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGEPNYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-92VH
846
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGITWVRQ




APGQGLEWMGWINTYTGEPHYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-93VH
847
EVQLVQSGAEVKKPGASVKVSCKASGYTFKNYGINWVRQ




APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-94VH
848
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGIPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-95VH
849
EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-96VH
850
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYSGVPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J644M2S1-9VH
851
EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2-11VH
852
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFWRTVVGTDNAMDYWGQG




TTVTVSS





J647M2-12VH
853
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKYSTTVVVTDYAMDYWGQG




TTVTVSS





J647M2-13VH
854
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDSAMDYWGQG




TTVTVSS





J647M2-15VH
855
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFMTTMAVTDFAMDYWGQG




TTVTVSS





J647M2-16VH
856
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLTTVVATDNAMDYWGQG




TTVTVSS





J647M2-17VH
857
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLTTVIVTDNAMDYWGQG




TTVTVSS





J647M2-19VH
858
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFFTPVVVTDNAMDYWGQG




TTVTVSS





J647M2-1VH
859
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLMTTVVVTDHAMDYWGQG




TTVTVSS





J647M2-20VH
860
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKYLTTVVVTDSAMDYWGQG




TTVTVSS





J647M2-21VH
861
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFRSSVAVTDNAMDYWGQG




TTVTVSS





J647M2-22VH
862
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLFTTVVVTDSAMDYWGQG




TTVTVSS





J647M2-23VH
863
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKYLMPVVVTDYAMDYWGQG




TTVTVSS





J647M2-24VH
864
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKLLDAVMVTDYAMDYWGQG




TTVTVSS





J647M2-26VH
865
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLTTVVVNDYAMDYWGQG




TTVTVSS





J647M2-44VH
866
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLTTVAVTDYAMDYWGQG




TTVTVSS





J647M2-45VH
867
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLKTVVATDDAMDYWGQG




TTVTVSS





J647M2-47VH
868
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLNTAVVTDYAMDYWGQG




TTVTVSS





J647M2-48VH
869
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARRFLTTVDVTDNAMDYWGQG




TTVTVSS





J647M2-4VH
870
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKYLTPVVATDFAMDYWGQG




TTVTVSS





J647M2-51VH
871
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKCMTTIVETDNAMDYWGQG




TTVTVSS





J647M2-52VH
872
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFMNTVDVTDNAMDYWGQG




TTVTVSS





J647M2-53VH
873
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLFTTVVVTDDAMDYWGQG




TTVTVSS





J647M2-54VH
874
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLMTTVVVTDYAMDYWGQG




TTVTVSS





J647M2-55VH
875
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLPTVVVTDYAMDYWGQG




TTVTVSS





J647M2-56VH
876
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKLLTTVVVTDNAMDYWGQG




TTVTVSS





J647M2-58VH
877
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKILTTVVVTDNAMDYWGQG




TTVTVSS





J647M2-70VH
878
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKVMATEVVTDYAMDYWGQG




TTVTVSS





J647M2-71VH
879
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLVTTVVVTDYAMDYWGQG




TTVTVSS





J647M2-72VH
880
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFRKPVSVTDYAMDYWGQG




TTVTVSS





J647M2-73VH
881
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLWTTVVVTDNAMDYWGQG




TTVTVSS





J647M2-74VH
882
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLTPVVVTDYAMDYWGQG




TTVTVSS





J647M2-75VH
883
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFRTTVVETDYCMDYWGQG




TTVTVSS





J647M2-76VH
884
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKYFTTVAVTDYAMDYWGQG




TTVTVSS





J647M2-78VH
885
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARRFLTTVEVTDLAMDYWGQG




TTVTVSS





J647M2-79VH
886
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLRTEVMTDYAMDYWGQG




TTVTVSS





J647M2-7VH
887
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLSTVAVTDSAMDYWGQG




TTVTVSS





J647M2-80VH
888
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKVLNTVVVTDYAMDYWGQG




TTVTVSS





J647M2-83VH
889
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFMNTAMVTDYAMDYWGQG




TTVTVSS





J647M2-84VH
890
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFSTTVVVTDYAMDYWGQG




TTVTVSS





J647M2-85VH
891
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKYFTTVVVTDYAMDYWGQG




TTVTVSS





J647M2-86VH
892
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLNTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-12VH
893
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFMPTVVETDYAMDYWGQG




TTVTVSS





J647M2S1-13VH
894
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGNPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-14VH
895
EVQLVQSGAEVKKPGASVKVSCKASGYTFADYGMNWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-15VH
896
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLTTVVVTDCAMDYWGQG




TTVTVSS





J647M2S1-17VH
897
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-18VH
898
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLTTVVVTDNAMDYWGQG




TTVTVSS





J647M2S1-19VH
899
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLNTVVGTDYAMDYWGQG




TTVTVSS





J647M2S1-21VH
900
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKLLTTEAVTDYAMDYWGQG




TTVTVSS





J647M2S1-22VH
901
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKYSTPVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-23VH
902
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-26VH
903
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKCLNTVAVTEHRMDYWGQG




TTVTVSS





J647M2S1-28VH
904
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLTTVVHTDYAMDYWGQG




TTVTVSS





J647M2S1-30VH
905
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-31VH
906
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-32VH
907
EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGINWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-33VH
908
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFRTTVVLTDSAMDYWGQG




TTVTVSS





J647M2S1-35VH
909
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-36VH
910
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFQTPVVDTDYAMDYWGQG




TTVTVSS





J647M2S1-39VH
911
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFMKTRVVTDNAMDYWGQG




TTVTVSS





J647M2S1-40VH
912
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIVWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-41VH
913
EVQLVQSGAEVKKPGASVKVSCKASGYTFPNYGISWVRQ




APGQGLEWMGWINTYTGEPSYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-43VH
914
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGEPSYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-45VH
915
EVQLVQSGAEVKKPGASVKVSCKASGYTFTKYGINWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-47VH
916
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKYLTTVVATDYAMDYWGQG




TTVTVSS





J647M2S1-48VH
917
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLNTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-65VH
918
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLTPVVVTDCAMDYWGQG




TTVTVSS





J647M2S1-66VH
919
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGEPRYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-67VH
920
EVQLVQSGAEVKKPGASVKVSCKASGYTFRDYGINWVRQ




APGQGLEWMGWINTYTGLPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-69VH
921
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFWTTIVVTDYAMDYWGQG




TTVTVSS





J647M2S1-6VH
922
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKLLTTVSATDNAMDYWGQG




TTVTVSS





J647M2S1-70VH
923
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLNTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-72VH
924
EVQLVQSGAEVKKPGASVKVSCKASGYTFTDYGINWVRQ




APGQGLEWMGWINTYNGEPSYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-75VH
925
EVQLVQSGAEVKKPGASVKVSCKASGYTFATYGIAWVRQ




APGQGLEWMGWINTYSGVPKYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-76VH
926
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFRTTAVPTDNAMDYWGQG




TTVTVSS





J647M2S1-77VH
927
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFLTTVVNTDSAMDYWGQG




TTVTVSS





J647M2S1-78VH
928
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGRG





TTVTVSS






J647M2S1-79VH
929
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLKTRVVTDYAMDYWGQG




TTVTVSS





J647M2S1-7VH
930
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-80VH
931
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLTTVVATDYAMDYWGQG




TTVTVSS





J647M2S1-84VH
932
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGEPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-85VH
933
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGQPTYAQGFTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-87VH
934
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFFPTMVVTDYAMDYWGQG




TTVTVSS





J647M2S1-88VH
935
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKFVTTMVVTDYAMDYWGQG




TTVTVSS





J647M2S1-8VH
936
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYAQGLTGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQG




TTVTVSS





J647M2S1-92VH
937
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYFCARKLLTTIVATDNAMDYWGQG




TTVTVSS





J647M2S1-93VH
938
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLMSTVVETDNAMDYWGQG




TTVTVSS





J647M2S1-94VH
939
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLFTVVQTDYAMDYWGQG




TTVTVSS





J647M2S1-96VH
940
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQ




APGQGLEWMGWINTYTGEPTYADDFKGRFTFTLDTSTST




AYMELSSLRSEDTAVYYCARKLLNTVVDTDYAMDYWGQG




TTVTVSS





J662M2S3-14VH
941
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIIWVRQ




APGQGLEWMGWINTYTGEPHYAQKLQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKLFTVEDVTDCAMDYWGQG




TTVTVSS





J662M2S3-18VH
942
EVQLVQSGAEVKKPGASVKVSCKASGYTFDNYGMNWVRQ




APGQGLEWMGWINTYNGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKLFLVEAVTDYAMDYWGQG




TTVTVSS





J662M2S3-28VH
943
EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGIIWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKLFTTVDVTDNAMDYWGQG




TTVTVSS





J662M2S3-29VH
944
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ




APGQGLEWMGWINTYTGVPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKLFNTVDVTDNAMDYWGQG




TTVTVSS





J662M2S3-30VH
945
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ




APGQGLEWMGWINTYTGEPHYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKLFKTMAVTDAAMDYWGQG




TTVTVSS





J662M2S3-34VH
946
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFRNTVAVTDYAMDYWGQG




TTVTVSS





J662M2S3-3VH
947
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKLFNTVAVTDNAMDYWGQG




TTVTVSS





J662M2S3-41VH
948
EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKLFFTEDVTDYAMDYWGQG




TTVTVSS





J662M2S3-45VH
949
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGINWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKFFTPVVVTDNAMDYWGQG




TTVTVSS





J662M2S3-55VH
950
EVQLVQSGAEVKKPGASVKVSCKASGYTFRNYGITWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKLFTTMDVTDNAMDYWGQG




TTVTVSS





J662M2S3-5VH
951
EVQLVQSGAEVKKPGASVKVSCKASGYTFANYGIIWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKLFTTMDVTDNAMDYWGQG




TTVTVSS





J662M2S3-65VH
952
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ




APGQGLEWMGWINTYTGKPTYAQKLQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKLFNTVDVTDNAMDYWGQG




TTVTVSS





J662M2S3-78VH
953
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGIIWVRQ




APGQGLEWMGWINTYTGKPSYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKLFNTVDVTDNAMDYWGQG




TTVTVSS





J662M2S3-84VH
954
EVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGINWVRQ




APGQGLEWMGWINTYTGQPSYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKLFKTEAVTDYAMDYWGQG




TTVTVSS





J662M2S3-87VH
955
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ




APGQGLEWMGWINTYSGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYFCARKLFTTMDVTDNAMDYWGQG




TTVTVSS





J662M2S3-96VH
956
EVQLVQSGAEVKKPGASVKVSCKASGYTFNNYGIIWVRQ




APGQGLEWMGWINTYTGKPTYAQKFQGRVTMTTDTSTST




AYMELSSLRSEDTAVYYCARKFFTTMAVTDNAMDYWGQG




TTVTVSS









Table 28 provides a list of amino acid sequences of VL regions of affinity matured fully human TNF antibodies derived from hMAK199 Amino acid residues of individual CDRs of each VL sequence are indicated in bold.









TABLE 28







List of amino acid sequences of affinity matured hMAK199


VL variants









Clone
SEQ ID NO:
VL












J644M2S1-11Vk
957
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J644M2S1-73Vk
958
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J647M2-11Vk
959
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKTVKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J647M2S1-10Vk
960
DIQMTQSPSSLSASVGDRVTITCRASQDIWNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNRYPPTFGQGTKLEIK





J647M2S1-16Vk
961
DIQMTQSPSSLSASVGDRVTITCRASQDICTYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNSPPPTFGQGTKLEIK





J647M2S1-1Vk
962
DIQMTQSPSSLSASVGDRVTITCRASQAIGNYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J647M2S1-20Vk
963
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTRPPTFGQGTKLEIK





J647M2S1-24Vk
964
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTGPPTFGQGTKLEIK





J647M2S1-25Vk
965
DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J647M2S1-29Vk
966
DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPATFGQGTKLEIK





J647M2S1-2Vk
967
DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK




PGKTVKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTPPPTFGQGTKLEIK





J647M2S1-34Vk
968
DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J647M2S1-37Vk
969
DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTMPTTFGQGTKLEIK





J647M2S1-38Vk
970
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYFASRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTPPTTFGQGTKLEIK





J647M2S1-3Vk
971
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPSTFGQGTKLEIK





J647M2S1-42Vk
972
DIQMTQSPSSLSASVGDRVTITCRASQVISNTLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNALPPTFGQGTKLEIK





J647M2S1-44Vk
973
DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTPPPTFGQGTKLEIK





J647M2S1-46Vk
974
DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J647M2S1-50Vk
975
DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTAPPTFGQGTKLEIK





J647M2S1-52Vk
976
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTMPPTFGQGTKLEIK





J647M2S1-56Vk
977
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J647M2S1-59Vk
978
DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTRPPTFGQGTKLEIK





J647M2S1-71Vk
979
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTQPPTFGQGTKLEIK





J647M2S1-74Vk
980
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNSQPPTFGQGTKLEIK





J647M2S1-78Vk
981
DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK




PGKAPKLLIYNASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J647M2S1-7Vk
982
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSLLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNIWPPTFGQGTKLEIK





J647M2S1-9Vk
983
DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J652M2S1-10Vk
984
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTFPPTFGQGTKLEIK





J652M2S1-13Vk
985
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J652M2S1-14Vk
986
DIQMTQSPSSLSASVGDRVTITCRASQDISNVLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J652M2S1-15Vk
987
DIQMTQSPSSLSASVGDRVTITCRASQDIYKYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTMPPTFGQGTKLEIK





J652M2S1-17Vk
988
DIQMTQSPSSLSASVGDRVTITCRASQEIFSYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNMGPPTFGQGTKLEIK





J652M2S1-18Vk
989
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTQPPTFGQGTKLEIK





J652M2S1-1Vk
990
DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTWPPTFGQGTKLEIK





J652M2S1-22Vk
991
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTRPPTFGQGTKLEIK





J652M2S1-23Vk
992
DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTFPPTFGQGTKLEIK





J652M2S1-25Vk
993
DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTRPPTFGQGTKLEIK





J652M2S1-26Vk
994
DIQMTQSPSSLSASVGDRVTITCRASQDINNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J652M2S1-27Vk
995
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYASGLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTWPPTFGQGTKLEIK





J652M2S1-28Vk
996
DIQMTQSPSSLSASVGDRVTITCRASQDISRYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTQPPTFGQGTKLEIK





J652M2S1-29Vk
997
DIQMTQSPSSLSASVGDRVTITCRASQDIATYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTMPPTFGQGTKLEIK





J652M2S1-31Vk
998
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTFPPTFGQGTKLEIK





J652M2S1-33Vk
999
DIQMTQSPSSLSASVGDRVTITCRASQRIGNYLNWYQQK




PGKTVKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J652M2S1-34Vk
1000
DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNSQPPTFGQGTKLEIK





J652M2S1-35Vk
1001
DIQMTQSPSSLSASVGDRVTITCRASQDIANYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J652M2S1-37Vk
1002
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTFPPTFGQGTKLEIK





J652M2S1-38Vk
1003
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTQPPTFGQGTKLEIK





J652M2S1-3Vk
1004
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTPPPTFGQGTKLEIK





J652M2S1-40Vk
1005
DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J652M2S1-41Vk
1006
DIQMTQSPSSLSASVGDRVTITCRASQDIGNFLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTRPPTFGQGTKLEIK





J652M2S1-42Vk
1007
DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTPPPTFGQGTKLEIK





J652M2S1-45Vk
1008
DIQMTQSPSSLSASVGDRVTITCRASQDISDYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNMWPPTFGQGTKLEIK





J652M2S1-47Vk
1009
DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTMPPTFGQGTKLEIK





J652M2S1-48Vk
1010
DIQMTQSPSSLSASVGDRVTITCRASQDISHYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J652M2S1-49Vk
1011
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTMPPTFGQGTKLEIK





J652M2S1-51Vk
1012
DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTRPPTFGQGTKLEIK





J652M2S1-52Vk
1013
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNMRPPTFGQGTKLEIK





J652M2S1-53Vk
1014
DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J652M2S1-55Vk
1015
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTGPPTFGQGTKLEIK





J652M2S1-56Vk
1016
DIQMTQSPSSLSASVGDRVTITCRASQNINNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTMPPTFGQGTKLEIK





J652M2S1-57Vk
1017
DIQMTQSPSSLSASVGDRVTITCRASQDISKYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTPPPTFGQGTKLEIK





J652M2S1-61Vk
1018
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTVPPTFGQGTKLEIK





J652M2S1-62Vk
1019
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSKLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNIFPPTFGQGTKLEIK





J652M2S1-64Vk
1020
DIQMTQSPSSLSASVGDRVTITCRASQGIYNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J652M2S1-67Vk
1021
DIQMTQSPSSLSASVGDRVTITCRASQDISSYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J652M2S1-69Vk
1022
DIQMTQSPSSLSASVGDRVTITCRASQEISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTGPPTFGQGTKLEIK





J652M2S1-6Vk
1023
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTPPPTFGQGTKLEIK





J652M2S1-71Vk
1024
DIQMTQSPSSLSASVGDRVTITCRASQDISDYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTWPPTFGQGTKLEIK





J652M2S1-73Vk
1025
DIQMTQSPSSLSASVGDRVTITCRASQDIWKYLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTLPPTFGQGTKLEIK





J652M2S1-75Vk
1026
DIQMTQSPSSLSASVGDRVTITCRASQDISTYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTWPPTFGQGTKLEIK





J652M2S1-77Vk
1027
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTPPPTFGQGTKLEIK





J652M2S1-78Vk
1028
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNAPPPTFGQGTKLEIK





J652M2S1-79Vk
1029
DIQMTQSPSSLSASVGDRVTITCRASQDIYKFLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J652M2S1-80Vk
1030
DIQMTQSPSSLSASVGDRVTITCRASQDIFNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J652M2S1-82Vk
1031
DIQMTQSPSSLSASVGDRVTITCRASQDISNTLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTLPPTFGQGTKLEIK





J652M2S1-84Vk
1032
DIQMTQSPSSLSASVGDRVTITCRASQHISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J652M2S1-86Vk
1033
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNMPPPTFGQGTKLEIK





J652M2S1-87Vk
1034
DIQMTQSPSSLSASVGDRVTITCRASQDITNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTVPPTFGQGTKLEIK





J652M2S1-8Vk
1035
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYFTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGNTQPPTFGQGTKLEIK





J652M2S1-90Vk
1036
DIQMTQSPSSLSASVGDRVTITCRASQDISKFLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYYCQQGNTRPPTFGQGTKLEIK





J652M2S1-91Vk
1037
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTFPPTFGQGTKLEIK





J652M2S1-92Vk
1038
DIQMTQSPSSLSASVGDRVTITCRASQDIYNVLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGITLPPTFGQGTKLEIK





J652M2S1-93Vk
1039
DIQMTQSPSSLSASVGDRVTITCRASQHISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTWPPTFGQGTKLEIK





J652M2S1-95Vk
1040
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTQPSTFGQGTKLEIK





J652M2S1-9Vk
1041
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J662M2S3-13Vk
1042
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNSWPPTFGQGTKLEIK





J662M2S3-15Vk
1043
DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J662M2S3-21Vk
1044
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTWPPTFGQGTKLEIK





J662M2S3-22Vk
1045
DIQMTQSPSSLSASVGDRVTITCRASQDISQYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTWPPTFGQGTKLEIK





J662M2S3-34Vk
1046
DIQMTQSPSSLSASVGDRVTITCRASQDIYDVLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQGITLPPTFGQGTKLEIK





J662M2S3-3Vk
1047
DIQMTQSPSSLSASVGDRVTITCRASQDIENYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J662M2S3-41Vk
1048
DIQMTQSPSSLSASVGDRVTITCRASQNIENFLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTWPPTFGQGTKLEIK





J662M2S3-56Vk
1049
DIQMTQSPSSLSASVGDRVTITCRASQDIYNYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTPPPTFGQGTKLEIK





J662M2S3-64Vk
1050
DIQMTQSPSSLSASVGDRVTITCRASQDIASYLNWYQQK




PGKAPKLLIYYTSRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J662M2S3-78Vk
1051
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQK




PGKVPKLLIYYTSRLQSGVPSRFSGSGSGTDYTLTISSL




QPEDFATYFCQQGNTQPPTFGQGTKLEIK





J662M2S3-84Vk
1052
DIQMTQSPSSLSASVGDRVTITCRASQNIYNVLNWYQQK




PGKAPKLLIYYASRLQSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYFCQQGNTMPPTFGQGTKLEIK
















TABLE 29





Amino acid residues observed in affinity matured hMAK-199 antibodies







MAK199 Heavy chain variable region (SEQ ID NO: 1077)








MAK199VH.2a
1234567890123456789012345678901234567890123456789012a345678901




EIQLVQSGAEVKKPGASVKVSCKASGYTFTNYGMNWVRQAPGQGLEWMGWINTYTGEPTYAD




 V                           ND  II                   N K S  Q



                             AH   T                   S V H



                             ST   Q                     Q N



                             RS   S                     R M



                             DQ   G                     L K



                             KK   A                     S A



                             P    V                     N R



                             Q                          I Q



                             M                          D D



                             G                          A



                             E



34567890123456789012abc345678901234567890abcdefg12345678901234





DFKG
RFTFTLDTSTSTAYMELSSLRSEDTAVYFCARKFLTTVVVTDYAMDYWGQGTTVTVSS




GLT  V M T                      Y   RLFNPMDASENT



K Q                                 NYMKVEAEM SR



                                     IRSSAEMN CC



                                     VSRARSD  H



                                     CWL IMG  D



                                      QP QII  I



                                      VF GPQ  F



                                      ND D P  V



                                      GM   N  L



                                      CA   L  A



                                           H










Mak199 Light chain variable region (SEQ ID NO: 1078)








Mak199Vk.1a
1234567890123456789012345678901234567890123456789012345678901



DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKTVKLLIYYTSRLQSGVPSR



                           N YQV          AP     FA L



                           E ESF          V      N  K



                           H AKT                    G



                           G TT



                           V WH



                           R GD



                           A NR



                             F



                             C



2345678901234567890123456789012345678901234567



FSGSGSGTDYTLTISSLQPEDFATYFCQQGNTLPPTFGQGTKLEIK



         F               Y    ISW T



                               MQ S



                               IP A



                               AM



                               RR



                                F



                                G



                                V



                                Y



                                A
















TABLE 30







Individual hMAK-199 VII sequences from converted clones









Protein

Sequence


region
SEQ ID NO:
123456789012345678901234567890













J662M2S3

1053
EVQLVQSGAEVKKPGASVKVSCKASGYTFA


#10 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



10 VH

of SEQ ID





NO.: 1053



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



10 VH

of SEQ ID





NO.: 1053



J662M2S3#
CDR-H3
Residues 99-112

RASQDISQYLN



10 VH

of SEQ ID





NO.: 1053






J662M2S3#

1054
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


13 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKLQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFNTVDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



13 VH

of SEQ ID





NO.: 1054



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKLQG



13 VH

of SEQ ID





NO.: 1054



J662M2S3#
CDR-H3
Residues 99-112

KLFNTVDVTDNAMD



13 VH

of SEQ ID





NO.: 1054






J662M2S3#

1055
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


15 VH



NYGIIWVRQAPGQGLEWMGWINTYTGVPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFNTVDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



15 VH

of SEQ ID





NO.: 1055



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGVPTYAQKFQG



15 VH

of SEQ ID





NO.: 1055



J662M2S3#
CDR-H3
Residues 99-112

KLFNTVDVTDNAMD



15 VH

of SEQ ID





NO.: 1055






J662M2S3#

1056
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


16 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFNTVAVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



16 VH

of SEQ ID





NO.: 1056



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



16 VH

of SEQ ID





NO.: 1056



J662M2S3#
CDR-H3
Residues 99-112

KLFNTVAVTDNAMD



16 VH

of SEQ ID





NO.: 1056






J662M2S3#

1057
EVQLVQSGAEVKKPGASVKVSCKASGYTFR


21 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFTTVDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



21 VH

of SEQ ID





NO.: 1057



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



21 VH

of SEQ ID





NO.: 1057



J662M2S3#
CDR-H3
Residues 99-112

KLFTTVDVTDNAMD



21 VH

of SEQ ID





NO.: 1057






J662M2S3#

1058
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


34 VH



NYGINWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKFRNTVAVTDYAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGIN



34 VH

of SEQ ID





NO.: 1058



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



34 VH

of SEQ ID





NO.: 1058



J662M2S3#
CDR-H3
Residues 99-112

KFRNTVAVTDYAMD



34 VH

of SEQ ID





NO.: 1058






J662M2S3#

1059
EVQLVQSGAEVKKPGASVKVSCKASGYTFR


36 VH



NYGITWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGIT



36 VH

of SEQ ID





NO.: 1059



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



36 VH

of SEQ ID





NO.: 1059



J662M2S3#
CDR-H3
Residues 99-112

KLFTTMDVTDNAMD



36 VH

of SEQ ID





NO.: 1059






J662M2S3#

1060
EVQLVQSGAEVKKPGASVKVSCKASGYTFA


45 VH



NYGIIWVRQAPGQGLEWMGWINTYTGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



45 VH

of SEQ ID





NO.: 1060



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGKPTYAQKFQG



45 VH

of SEQ ID





NO.: 1060



J662M2S3#
CDR-H3
Residues 99-112

KLFTTMDVTDNAMD



45 VH

of SEQ ID





NO.: 1060






J662M2S3#

1061
EVQLVQSGAEVKKPGASVKVSCKASGYTFS


58 VH



NYGINWVRQAPGQGLEWMGWINTYTGQPSY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYYCARKLFKTEAVTDYAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGIN



58 VH

of SEQ ID





NO.: 1061



J662M2S3#
CDR-H2
Residues 50-66

WINTYTGQPSYAQKFQG



58 VH

of SEQ ID





NO.: 1061



J662M2S3#
CDR-H3
Residues 99-112

KLFKTEAVTDYAMD



58 VH

of SEQ ID





NO.: 1061






J662M2S3#

1062
EVQLVQSGAEVKKPGASVKVSCKASGYTFN


72 VH



NYGIIWVRQAPGQGLEWMGWINTYSGKPTY







AQKFQGRVTMTTDTSTSTAYMELSSLRSED






TAVYFCARKLFTTMDVTDNAMDYWGQGTTV





TVSS


J662M2S3#
CDR-H1
Residues 31-35

NYGII



72 VH

of SEQ ID





NO.: 1062



J662M2S3#
CDR-H2
Residues 50-66

WINTYSGKPTYAQKFQG



72 VH

of SEQ ID





NO.: 1062



J662M2S3#
CDR-H3
Residues 99-112

KLFTTMDVTDNAMD



72 VH

of SEQ ID





NO.: 1062
















TABLE 31







Individual hMAK-199 clones VL sequences









Protein

Sequence


region
SEQ ID NO:
123456789012345678901234567890













J662M2S3#

1063
DIQMTQSPSSLSASVGDRVTITCRASQDIS


10 VL



QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#10
CDR-L1
Residues 24-34

RASQDISQYLN



VL

of SEQ ID





NO.: 1063



J662M2S3#10
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1063



J662M2S3#10
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 1063






J662M2S3#13

1064
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL



NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNSWPPTFGQGTKLEIK



J662M2S3#13
CDR-L1
Residues 24-34

RASQDISNYLN



VL

of SEQ ID





NO.: 1064



J662M2S3#13
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1064



J662M2S3#13
CDR-L3
Residues 89-97

QQGNSWPPT



VL

of SEQ





ID NO.: 1064






J662M2S3#15

1065
DIQMTQSPSSLSASVGDRVTITCRASQDIY


VL



NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTQPPTFGQGTKLEIK



J662M2S3#15
CDR-L1
Residues 24-34

RASQDIYNYLN



VL

of SEQ ID





NO.: 1065



J662M2S3#15
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1065



J662M2S3#15
CDR-L3
Residues 89-97

QQGNTQPPT



VL

of SEQ





ID NO.: 1065






J662M2S3#16

1066
DIQMTQSPSSLSASVGDRVTITCRASQDIE


VL



NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTQPPTFGQGTKLEIK



J662M2S3#16
CDR-L1
Residues 24-34

RASQDIENYLN



VL

of SEQ ID





NO.: 1066



J662M2S3#16
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1066



J662M2S3#16
CDR-L3
Residues 89-97

QQGNTQPPT



VL

of SEQ





ID NO.: 1066






J662M2S3#21

1067
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL



NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#21
CDR-L1
Residues 24-34

RASQDISNYLN



VL

of SEQ ID





NO.: 1067



J662M2S3#21
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1067



J662M2S3#21
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 1067






J662M2S3#34

1068
DIQMTQSPSSLSASVGDRVTITCRASQDIY


VL



DVLNWYQQKPGKAPKLLIYYASRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYYCQQ






GITLPPTFGQGTKLEIK



J662M2S3#34
CDR-L1
Residues 24-34

RASQDIYDVLN



VL

of SEQ ID





NO.: 1068



J662M2S3#34
CDR-L2
Residues 50-56

YASRLQS



4 VL

of SEQ ID





NO.: 1068



J662M2S3#34
CDR-L3
Residues 89-97

QQGITLPPT



VL

of SEQ





ID NO.: 1068






J662M2S3#36

1069
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL



NYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#36
CDR-L1
Residues 24-34

RASQDISNYLN



VL

of SEQ ID





NO.: 1069



J662M2S3#36
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1069



J662M2S3#36
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 1069






J662M2S3#45

1070
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL



QYLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTWPPTFGQGTKLEIK



J662M2S3#45
CDR-L1
Residues 24-34

RASQDISQYLN



VL

of SEQ ID





NO.: 1070



J662M2S3#45
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1070



J662M2S3#45
CDR-L3
Residues 89-97

QQGNTWPPT



VL

of SEQ





ID NO.: 1070






J662M2S3#58

1071
DIQMTQSPSSLSASVGDRVTITCRASQNIY


VL



NVLNWYQQKPGKAPKLLIYYASRLQSGVPS






RFSGSGSGTDFTLTISSLQPEDFATYFCQQ






GNTMPPTFGQGTKLEIK



J662M2S3#58
CDR-L1
Residues 24-34

RASQNIYNVLN



VL

of SEQ ID





NO.: 1071



J662M2S3#58
CDR-L2
Residues 50-56

YASRLQS



VL

of SEQ ID





NO.: 1071



J662M2S3#58
CDR-L3
Residues 89-97

QQGNTMPPT



VL

of SEQ





ID NO.: 1071






J662M2S3#72

1072
DIQMTQSPSSLSASVGDRVTITCRASQDIS


VL



NFLNWYQQKPGKAPKLLIYYTSRLQSGVPS






RFSGSGSGTDYTLTISSLQPEDFATYFCQQ






GNTQPPTFGQGTKLEIK



J662M2S3#72
CDR-L1
Residues 24-34

RASQDISNFLN



VL

of SEQ ID





NO.: 1072



J662M2S3#72
CDR-L2
Residues 50-56

YTSRLQS



VL

of SEQ ID





NO.: 1072



J662M2S3#72
CDR-L3
Residues 89-97

QQGNTQPPT



VL

of SEQ





ID NO.: 1072
















TABLE 32







hMAK199 affinity matured scFv clones converted to full length IgG










ScFv


Full length IgG


clone name
HC plasmid
LC plasmid
(protein) name





J662M2S3#10
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM1



J662M2S3#10
M2S3#10


J662M2S3#13
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM2



J662M2S3#13
M2S3#13


J662M2S3#15
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM3



J662M2S3#15
M2S3#15


J662M2S3#16
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM4



J662M2S3#16
M2S3#16


J662M2S3#21
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM5



J662M2S3#21
M2S3#21


J662M2S3#34
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM6



J662M2S3#34
M2S3#34


J662M2S3#36
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM7



J662M2S3#36
M2S3#36


J662M2S3#45
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM8



J662M2S3#45
M2S3#45


J662M2S3#58
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM9



J662M2S3#58
M2S3#58


J662M2S3#72
pHybE-hCg1,z,non-a V2
pHybE-hCk V3 J662
hMAK199-AM10



J662M2S3#72
M2S3#72









3.1 TNF Enzyme-Linked Immunosorbent Assay Result








TABLE 33







hMAK199 affinity matured full length IgG










IgG Name
EC50 in hTNFa ELISA(nM)














hMAK199-AM1
0.016



hMAK199-AM2
0.016



hMAK199-AM3
0.019



hMAK199-AM4
0.050



hMAK199-AM5
0.078



hMAK199-AM6
0.035



hMAK199-AM7
0.100



hMAK199-AM8
0.219



hMAK199-AM9
0.032



hMAK199-AM10
0.014










3.2 TNF Neutralization Potency of TNF Antibodies by L929 Bioassay










TABLE 34






hu TNF neutralization
rhesus TNF neutralization


IgG Name
IC50 (nM)
IC50 (nM)







hMAK199-AM1
0.054
0.012


hMAK199-AM2
0.029
0.010


hMAK199-AM3
0.051
0.019


hMAK199-AM4
0.028
0.005


hMAK199-AM5
0.087
0.020


hMAK199-AM6
0.033
0.004


hMAK199-AM7
0.095
0.051


hMAK199-AM8
0.247
0.204


hMAK199-AM9
0.163
0.089


hMAK199-AM10
0.048
0.034









Example 4
Example 4.4: Affinity Determination Using BIACORE Technology








TABLE 35







Reagent for Biacore Analyses












Antigen
Vendor Designation
Vendor
Catalog #







TNFα
Recombinant Human TNF-
R&D
210-TA




α/TNFSF1A
systems











BIACORE Methods:


The BIACORE assay (Biacore, Inc. Piscataway, N.J.) determines the affinity of binding proteins with kinetic measurements of on-rate and off-rate constants. Binding of binding proteins to a target antigen (for example, a purified recombinant target antigen) is determined by surface plasmon resonance-based measurements with a Biacore® 1000 or 3000 instrument (Biacore® AB, Uppsala, Sweden) using running HBS-EP (10 mM HEPES [pH 7.4], 150 mM NaCl, 3 mM EDTA, and 0.005% surfactant P20) at 25° C. All chemicals are obtained from Biacore® AB (Uppsala, Sweden) or otherwise from a different source as described in the text. For example, approximately 5000 RU of goat anti-mouse IgG, (Fcγ), fragment specific polyclonal antibody (Pierce Biotechnology Inc, Rockford, Ill., US) diluted in 10 mM sodium acetate (pH 4.5) is directly immobilized across a CM5 research grade biosensor chip using a standard amine coupling kit according to manufacturer's instructions and procedures at 25 μg/ml. Unreacted moieties on the biosensor surface are blocked with ethanolamine. Modified carboxymethyl dextran surface in flowcell 2 and 4 is used as a reaction surface. Unmodified carboxymethyl dextran without goat anti-mouse IgG in flow cell 1 and 3 is used as the reference surface. For kinetic analysis, rate equations derived from the 1:1 Langmuir binding model are fitted simultaneously to association and dissociation phases of all eight injections (using global fit analysis) with the use of Biaevaluation 4.0.1 software. Purified antibodies are diluted in HEPES-buffered saline for capture across goat anti-mouse IgG specific reaction surfaces. Antibodies to be captured as a ligand (25 μg/ml) are injected over reaction matrices at a flow rate of 5 μl/minute. The association and dissociation rate constants, kon (M−1s−1) and koff (s−1), are determined under a continuous flow rate of 25 μl/minute. Rate constants are derived by making kinetic binding measurements at different antigen concentrations ranging from 10-200 nM. The equilibrium dissociation constant (M) of the reaction between antibodies and the target antigen is then calculated from the kinetic rate constants by the following formula: KD=koff/kon. Binding is recorded as a function of time and kinetic rate constants are calculated. In this assay, on-rates as fast as 106 M−1s−1 and off-rates as slow as 10−6 s−1 can be measured.


The binding proteins herein are expected to have beneficial properties in this regard, including high affinity, slow off rate, and high neutralizing capacity.


Example 4.5: Neutralization of Human TNF-α

L929 cells are grown to a semi-confluent density and harvested using 0.25% trypsin (Gibco #25300). The cells are washed with PBS, counted and resuspended at 1E6 cells/mL in assay media containing 4 μg/mL actinomycin D. The cells are seeded in a 96-well plate (Costar #3599) at a volume of 100 μL and 5E4 cells/well. The binding proteins and control IgG are diluted to a 4× concentration in assay media and serial 1:4 dilutions are performed. The huTNF-α is diluted to 400 pg/mL in assay media. Binding protein sample (200 μL) is added to the huTNF-α (200 μL) in a 1:2 dilution scheme and allowed to incubate for 0.5 hour at room temperature.


The binding protein/human TNF-α solution is added to the plated cells at 100 μL for a final concentration of 100 pg/mL huTNF-α and 150 nM-0.0001 nM binding protein. The plates are incubated for 20 hours at 37° C., 5% CO2. To quantitate viability, 100 μL is removed from the wells and 10 μL of WST-1 reagent (Roche cat #11644807001) is added. Plates are incubated under assay conditions for 3.5 hours. The plates are read at OD 420-600 nm on a Spectromax 190 ELISA plate reader.


The binding proteins herein are expected to have beneficial properties in this regard, including high affinity, slow off rate, and high neutralizing capacity.


Example 4.6: Treatment

A patient requiring treatment with a TNF-α binding protein may have a disease with immune and inflammatory elements, such as autoimmune diseases, particularly those assocated with inflammation, including Crohn's disease, psoriasis (including plaque psoriasis), arthritis (including rheumatoid arthritis, psoratic arthritis, osteoarthritis, or juvenile idiopathic arthritis), multiple sclerosis, and ankylosing spondylitis. Therefore, the binding proteins herein may be used to treat these disorders.


Administration of the TNF-α binding protein may occur by subcutaneous injection. If the patient has rheumatoid arthritis, psoratic arthritis, or ankylosing spondyitis, the patient may receive 40 mg every other week as a starting dose and 40 mg every week, if necessary to achieve treatment goals. If the patient has juvenile idiopathic arthritis and weighs from 15 kg to <30 kg, the patient may receive 20 mg every other week, and if ≧30 kg, 40 mg every other week. If the patient has Crohn's disease, the patient may receive an initial dose of 160 mg (four 40 mg injections in one day or two 40 mg injections per day for two consecutive days) followed by 80 mg two weeks later, and another two weeks later begin a maintenance dose of 40 mg every other week. If the patient has plaque psoriasis, the patient may receive an 80 mg initial dose, followed by 40 mg every other week starting one week after initial dose.


The binding protein may be provided in a single-use prefilled pen (40 mg/0.8 mL), a single-use prefilled glass syringe (40 mg/0.8 mL or 20 mg/0.4 mL).


INCORPORATION BY REFERENCE

The contents of all cited references (including literature references, patents, patent applications, and websites) that are cited throughout this application are hereby expressly incorporated by reference in their entirety, as are the references cited therein. The practice disclosed herein will employ, unless otherwise indicated, conventional techniques of immunology, molecular biology and cell biology, which are well known in the art.


EQUIVALENTS

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced herein.

Claims
  • 1. A binding protein that binds human TNF-α, the binding protein comprising at least one heavy chain variable region (VH region) and at least one light chain variable region (VL region), wherein the VH region comprises the amino acid sequence of SEQ ID NO: 74 andthe VL region comprises the amino acid sequence of SEQ ID NO: 84.
  • 2. The binding protein of claim 1, wherein the binding protein comprises two VH regions and two VL regions.
  • 3. The binding protein of claim 1, wherein the binding protein comprises: (a) a heavy chain constant region comprising an amino acid sequence of SEQ ID NO:2 or SEQ ID NO: 3; and(b) a light chain constant region comprising an amino acid sequence of SEQ ID NO:4 or SEQ ID NO: 5.
  • 4. The binding protein of claim 1, wherein the binding protein comprises a DVD-Ig protein.
  • 5. The binding protein of claim 2, wherein the binding protein is conjugated to an imaging agent selected from the group consisting of a radiolabel, an enzyme, a fluorescent label, a luminescent label, a bioluminescent label, a magnetic label, and biotin.
  • 6. The binding protein of claim 1, wherein the binding protein further comprises a therapeutic or cytotoxic agent selected from the group consisting of an antimetabolite, an alkylating agent, an antibiotic, a growth factor, a cytokine, an anti-angiogenic agent, an anti-mitotic agent, and an anthracycline.
  • 7. A pharmaceutical composition comprising the binding protein of claim 1, and a pharmaceutically acceptable carrier.
  • 8. A pharmaceutical composition comprising the binding protein of claim 2, and a pharmaceutically acceptable carrier.
  • 9. A pharmaceutical composition comprising the binding protein of claim 4, and a pharmaceutically acceptable carrier.
  • 10. The binding protein of claim 1, wherein the binding protein comprises a bispecific antibody.
  • 11. A pharmaceutical composition comprising the binding protein of claim 10, and a pharmaceutically acceptable carrier.
  • 12. The binding protein of claim 1, wherein the binding protein is conjugated to an imaging agent selected from the group consisting of a radiolabel, an enzyme, a fluorescent label, a luminescent label, a bioluminescent label, a magnetic label, and biotin.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 61/550,587, filed Oct. 24, 2011, which is incorporated herein by reference in its entirety. The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 3, 2014, is named 532365_BBI-387_Sequence_Listing.txt and is approximately 1,223,428 bytes in size. This sequence listing replaces a previous sequence listing in ASCII format that was submitted Feb. 27, 2013, and which was also incorporated by reference in its entirety.

US Referenced Citations (32)
Number Name Date Kind
5231024 Moeller et al. Jul 1993 A
5624821 Winter et al. Apr 1997 A
5648260 Winter et al. Jul 1997 A
7612181 Wu et al. Nov 2009 B2
8735546 Ghayur et al. May 2014 B2
8779101 Hsieh et al. Jul 2014 B2
8835610 Hsieh et al. Sep 2014 B2
8877194 Hsieh et al. Nov 2014 B2
8999331 Hsieh et al. Apr 2015 B2
9481735 Hsieh et al. Nov 2016 B2
9481736 Hsieh et al. Nov 2016 B2
9493560 Ghayur et al. Nov 2016 B2
20060024308 Crea Feb 2006 A1
20090239259 Hsieh Sep 2009 A1
20090311253 Ghayur et al. Dec 2009 A1
20100266531 Hsieh et al. Oct 2010 A1
20110250130 Benatuil et al. Oct 2011 A1
20120034160 Ghayur et al. Feb 2012 A1
20120230911 Hsieh et al. Sep 2012 A1
20130171096 Hsieh et al. Jul 2013 A1
20140079705 Hsieh et al. Mar 2014 A1
20140161804 Perez et al. Jun 2014 A1
20140170152 Hsieh et al. Jun 2014 A1
20140219912 Ghayur et al. Aug 2014 A1
20140220019 Ghayur et al. Aug 2014 A1
20140234208 Ghayur et al. Aug 2014 A1
20140271457 Ghayur et al. Sep 2014 A1
20140335564 Hsieh et al. Nov 2014 A1
20140343267 Hsieh et al. Nov 2014 A1
20140348834 Hsieh et al. Nov 2014 A1
20140348856 Hsieh et al. Nov 2014 A1
20140356909 Hsieh et al. Dec 2014 A1
Foreign Referenced Citations (16)
Number Date Country
9729131 Aug 1997 WO
2004050683 Jun 2004 WO
WO-2004063335 Jul 2004 WO
2005014650 Feb 2005 WO
2006119107 Nov 2006 WO
2008061013 May 2008 WO
2008115732 Sep 2008 WO
2008133722 Nov 2008 WO
2009047356 Apr 2009 WO
2009091912 Jul 2009 WO
2009149189 Dec 2009 WO
2010102251 Sep 2010 WO
2011059755 May 2011 WO
2011127141 Oct 2011 WO
2012018790 Feb 2012 WO
WO 2012078878 Jun 2012 WO
Non-Patent Literature Citations (38)
Entry
Sundberg. Structural basis of antibody-antigen interactions. Methods in Molecular Biology, 524:23-36, 2009.
Paul. Fv structure and diversity in three dimension. Fundamental Immunology, 3rd Edition, Raven Press, New York, Chapter 8, pp. 292-295, 1993.
MacCallum et al. Antibody interactions: contact analysis and binding site topography. Journal of Molecular Biology, 262:732-745, 1996.
Casset et al. A peptide mimetic of an anti-CD4 monoclonal antibody by rational design. Biochemical and Biophysical Research Communications, 307:198-205, 2003.
Rudikoff et al. Single amino acid substitution altering antigen-binding specificity. Proceeding of the National Academy of Sciences, 79(6):1979-1983, Mar. 1982.
Colman. Effects of amino acid sequence changes on antibody-antigen interactions. Research in Immunology, 145:33-36, 1994.
Holler, E., et al., “Modulation of Acute Graft-Versus-Host Disease After Allogeneic Bone Marrow Transplantation by Tumor Necrosis Factor α (TNFα) Release in the Course of Pretransplant Conditioning: Role of Conditioning Regimens and Prophylactic Application of a Monoclonal Antibody Neutralizing Human TNFα (MAK 195F),” Blood 86(3):890-899, The American Society of Hematology, United States (1995).
Thie, H., et al., “Phage Display Derived Therapeutic Antibodies,” current Pharmaceutical Biotechnology 9:439-445, Bentham Science Publishers Ltd., Netherlands (2008).
Chen, W., et al., “Improved Isolation of Anti-rhTNF-α scFvs from Phage Display Library by Bioinformatics,” Mol Biotechnol 43:20-28, Humana Press, Inc., United States (2009).
Co-pending U.S. Appl. No. 15/270,945, inventors Ghayur, T., et al., filed Sep. 20, 2016 (Not Published).
Co-pending U.S. Appl. No. 15/219,584, inventors Ghayur, T., et al., filed Jul. 26, 2016 (Not Published).
Lindner, H., et al., “Peripheral Blood Mononuclear Cells Induce Programmed Cell Death in Human Endothelial Cells and May Prevent Repair: Role of Cytokines,” Blood 89:1931-1938, American Society of Hematology, United States (1997).
Moeller A., et al.,“Monoclonal Antibodies to Human Rumor Necrosis Factor Alpha: in Vitro and in Vivo Application,” Cytokine 2:162-169, Academic Press Ltd., United States (1990).
Non-Final Office Action mailed Oct. 9, 2015, in U.S. Appl. No. 14/073,479, inventors Hsieh C., et al., filed Nov. 6, 2013.
Final Office Action mailed May 16, 2016, in U.S. Appl. No. 14/073,479, inventors Hsieh C., et al., filed Nov. 6, 2013.
Non-Final Office Action mailed Apr. 16, 2015, in U.S. Appl. No. 13/659,666, inventors Perez J., et al., filed Oct. 24, 2012.
Final Office Action mailed Aug. 25, 2015, in U.S. Appl. No. 13/659,666, inventors Perez J., et al., filed Oct. 24, 2012.
Non-Final Office Action mailed Jun. 10, 2016, in U.S. Appl. No. 13/659,666, inventors Perez J., et al., filed Oct. 24, 2012.
Non-Final Office Action mailed Feb. 14, 2014, in U.S. Appl. No. 13/659,647, inventors Hsieh C., et al., filed Oct. 24, 2012.
Final Office Action mailed Jul. 29, 2014, in U.S. Appl. No. 13/659,647, inventors Hsieh C., et al., filed Oct. 24, 2012.
Office Communication mailed Feb. 5, 2014, in U.S. Appl. No. 13/314,878, inventors Hsieh C., et al., filed Dec. 8, 2011.
International Search Report and Written Opinion in related application PCT/US2012/061690 mailed Mar. 15, 2013, 20 pages.
International Search Report and Written Opinion in related application PCT/US2012/0061666 mailed Mar. 15, 2013, 22 pages.
Lewiecki, Michael: “Sclerostin monoclonal antibody therapy with AMG 785: a potential treatment for osteoporosis”, Expert Opinion on Biological Therapy, Informa Healthcare, UK, vol. 11, No. 1, pp. 117-127 (2011).
International Search Report and Written Opinion in related PCT application PCT/US2012/061686, mailed on Mar. 15, 2013, 24 pages.
Nakanishi, et al., Interleukin-18 regulates Both Th1 and Th2 Responses, Ann. Rev. Immunol. 19: 423-74, (2001).
Arndt and Krauss, Bispecific Diabodies for Cancer Therapy, Methods Mol. Biol. 207: 305-21, (2003).
Durocher et al., “High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells”, Nucleic Acids Res. 30(2), (2002).
Mizushima and Nagata, “pEF-BOS, a powerful mammalian expression vector”, Nucleic Acids Res. 18(17), (1990).
Holliger et al., Diabodies: Small bivalent and bispecific antibody fragments, Proc. Natl. Acad. Sci. USA 90:6444-6448; (1993).
Poljak, et al., Production and structure of diabodies, Structure 2:1121-1123, (1994).
Urlaub and Chasin, “Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity,” Proc. Natl. Acad. Sci. USA 77:4216-4220, (1980).
Kaufman and Sharp, Amplfication and Expression of Sequences Cotransfected with a Modular Dihydrofolate Reductase Complementary DNA Gene, Mol. Biol. 159:601-621, (1982).
McDonnell, et al., TNF Antagonism, Progress Respir. Res., 31:247-250, (2001).
Harriman G, et al., Summary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFalpha treatment, Ann. Rheum. Dis., 58 Suppl 1:I61-4, (1999).
Peng, Experimental Use of Murine Lupus Models, Methods Mol. Med., 102:227-72, (2004).
Bossers, et al., Analysis of Gene Expression in Parkinson's Disease: Possible Involvement of Neurotrophic Support and Axon Guidance in Dopaminergic Cell Death, Brain Pathol., 19: 91-107, (2009).
McGee et al., “The Nogo-66 receptor: focusing myelin inhibition of axon regeneration”, Trends Neurosci., 26:193, (2003).
Related Publications (1)
Number Date Country
20130164256 A1 Jun 2013 US
Provisional Applications (1)
Number Date Country
61550587 Oct 2011 US