The present disclosure refers to an immunosuppression-reverting oligonucleotide hybridizing with a nucleic acid sequence of indoleamine-2,3-dioxygenase (IDO) such as IDO1 and to a pharmaceutical composition comprising such immunosuppression-reverting oligonucleotide and a pharmaceutically acceptable carrier, excipient and/or dilutant.
In recent years the treatment of several different diseases such as malignant tumors was very successful by application of immune therapy, in particular by inhibitors of so called “immune checkpoints”. These checkpoints are molecules in the immune system that either turn up (co-stimulatory molecules) or down a signal. The concept of the therapeutic approach is based on the activation of endogenous anti-tumor immune reactions. Many cancers for example protect themselves from the immune system by inhibiting T cell and NK cell activity, respectively. Immune checkpoint modulators, i.e., stimulators or inhibitors are for example directed to one or more of CTLA-4, PD-1, PD-L1, LAG-3, VISTA, A2AR, BTLA, IDO, CD39, CD73, STAT3, TDO2, TIM-3, MICA, NKG2A, KIR, TIGIT, TGF-beta, Ox40, GITR, CD27, CD160, 2B4 and 4-1BB.
Tryptophan for example is an amino acid which is essential for cell proliferation and survival. It is required for the biosynthesis of the neurotransmitter serotonin, the synthesis of the cofactor nicotinamide adenine dinucleotide (NAD), and is an important component in the immune system response (“immune escape”) to tumors. Depletion of levels of tryptophan is associated with adverse effects on the proliferation and function of lymphocytes and diminished immune system response.
The enzyme indoleamine-2,3-deoxygenase (IDO) is an intracellular enzyme and it is overexpressed in many human tumors or in suppressive immune cells. IDO catalyzes the initial, rate-limiting step in the conversion of tryptophan to kynurenine resulting in lack of tryptophan and severe immunosuppressive effects of kynurenines. These effects result in suppression for example of T-cells and natural killer (NK) cells against tumor cells for example with regard to cell proliferation, cytokine secretion and/or cytotoxic reactivity. In addition, IDO expression results for example in dendritic cells in the induction of regulatory T-cells which represent a negative prognostic factor in tumor diseases. Thus, IDO is a highly relevant immunosuppressive factor for example in the tumor environment. Moreover, IDO has been implicated in neurologic and psychiatric disorders including mood disorders as well as other chronic diseases characterized by IDO activation and tryptophan degradation such as viral infections, for example, AIDS, Alzheimer's disease, cancers including T-cell leukemia and colon cancer, autoimmune diseases, diseases of the eye such as cataracts, bacterial infections such as Lyme disease, and streptococcal infections.
Small molecules such as 1-methyl-D-tryptophan have been developed and tested in clinical trials. However, 1-methyl-D-tryptophan for example shows an increase in the expression of IDO mRNA and protein due to a feedback mechanism by enzymatic inhibition of IDO. Thus, the activity of the small molecules and their in vivo half-life is limited.
Immune therapies have resulted in long-term remission, but only of small patient groups so far. The reason may be that numerous immune checkpoints and optionally further immunosuppressive mechanisms are involved in the interaction between for example the immune system and the tumor cells. The combination of immune checkpoints and potential other mechanisms may vary depending on the tumor and individual conditions of a subject to escape the body's defenses.
For the inhibition of several immunosuppressive mechanisms common approaches using an antibody and/or a small molecule are not or hardly suitable as the molecular target is located intracellularly or does not have enzymatic activity. Accordingly, an agent which is safe and effective in inhibiting the function of an “immune checkpoint” such as IDO would be an important addition for the treatment of patients suffering from diseases or conditions affected for example by the activity of this enzyme.
Oligonucleotides of the present invention are very successful in the inhibition of the expression and activity of IDO, respectively. The mode of action of an oligonucleotide differs from the mode of action of an antibody or small molecule, and oligonucleotides are highly advantageous regarding for example
(i) the penetration of tumor tissue in solid tumors,
(ii) the blocking of multiple functions and activities, respectively, of a target,
(iii) the combination of oligonucleotides with each other or an antibody or a small molecule, and
(iv) the inhibition of intracellular effects which are not accessible for an antibody or inhibitable via a small molecule.
The present invention refers to an oligonucleotide such as an immunosuppression-reverting oligonucleotide comprising about 10 to 20 nucleotides, wherein at least one of the nucleotides is modified. The oligonucleotide hybridizes for example with a nucleic acid sequence of indoleamine-2,3-dioxygenase (IDO1) of SEQ ID NO.1 (human) and/or a sequence of SEQ ID NO.2 (mouse/rat). The modified nucleotide is for example selected from the group consisting of a bridged nucleic acid (e.g., LNA, cET, ENA, 2′Fluoro modified nucleotide, 2′O-Methyl modified nucleotide or a combination thereof). In some embodiments, the oligonucleotide inhibits at least 50% of the IDO1 expression and in some embodiments the oligonucleotide inhibits the expression of IDO1 at a nanomolar concentration.
The present invention is further directed to a pharmaceutical composition comprising an immunosuppression-reverting oligonucleotide of the present invention and optionally a pharmaceutically acceptable carrier, excipient, dilutant or a combination thereof. In some embodiments, this pharmaceutical composition additionally comprises a chemotherapeutic such as platinum or gemcitabine, another oligonucleotide, an antibody or a fragment thereof such as a Fab fragment, a HERA fusion protein, a ligand trap, a nanobody, a BiTe and/or a small molecule which is for example effective in tumor treatment.
In some embodiments, the oligonucleotide of the present invention is in combination with another oligonucleotide, an antibody and/or a small molecule, either each of these compounds is separate or combined in a pharmaceutical composition, wherein the oligonucleotide, the antibody or a fragment thereof such as a Fab fragment, a HERA fusion protein, a ligand trap, a nanobody, a BiTe and/or the small molecule inhibits or stimulates an immune suppressive factor such as IDO1, IDO2, CTLA-4, PD-1, PD-L1, LAG-3, VISTA, A2AR, CD39, CD73, STAT3, TDO2, TIM-3, TIGIT, TGF-beta, BTLA, MICA, NKG2A, KIR, CD160, Chop, and/or Xbp1. In addition or alternatively, the oligonucleotide, the antibody or a fragment thereof such as a Fab fragment, a HERA fusion protein, a ligand trap, a nanobody, a BiTe and/or the small molecule inhibits or stimulates an immune stimulatory factor such as 4-1BB, Ox40, KIR, GITR, CD27 and/or 2B4.
Furthermore, the present invention relates to the use of the oligonucleotide or the pharmaceutical composition of the present invention in a method of preventing and/or treating a disorder, where an IDO imbalance is involved. In some embodiments, the disorder is for example an autoimmune disorder, an immune disorder, a psychiatric disorder and/or cancer. In some embodiments, the oligonucleotide or the pharmaceutical composition of the present invention is for example administered locally or systemically.
All documents cited or referenced herein (“herein cited documents”), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.
The present invention provides for the first time human and murine oligonucleotides which hybridize with mRNA sequences of indoleamine-2,3-dioxygenase (IDO) such as IDO1 and inhibit the expression and activity, respectively, of IDO. In consequence, the level of tryptophan increases and the level of metabolites of tryptophan such as kynurenine decreases. Thus, the oligonucleotides of the present invention represent an interesting and highly efficient tool for use in a method of preventing and/or treating disorders, where the IDO such as the IDO1 expression and activity, respectively, is increased.
In the following, the elements of the present invention will be described in more detail. These elements are listed with specific embodiments, however, it should be understood that they may be combined in any manner and in any number to create additional embodiments. The variously described examples and embodiments should not be construed to limit the present invention to only the explicitly described embodiments. This description should be understood to support and encompass embodiments which combine the explicitly described embodiments with any number of the disclosed elements. Furthermore, any permutations and combinations of all described elements in this application should be considered disclosed by the description of the present application unless the context indicates otherwise.
Throughout this specification and the claims, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated member, integer or step or group of members, integers or steps but not the exclusion of any other member, integer or step or group of members, integers or steps. The terms “a” and “an” and “the” and similar reference used in the context of describing the invention (especially in the context of the claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by the context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”, “for example”), provided herein is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Oligonucleotides of the present invention are for example antisense oligonucleotides consisting of or comprising 10 to 25 nucleotides, 10 to 15 nucleotides, 15 to 20 nucleotides, 12 to 18 nucleotides, or 14 to 17 nucleotides. The oligonucleotides for example consist of or comprise 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or 25 nucleotides. The oligonucleotides of the present invention comprise at least one nucleotide which is modified. The modified nucleotide is for example a bridged nucleotide such as a locked nucleic acid (LNA, e.g., 2′,4′-LNA), cET, ENA, a 2′Fluoro modified nucleotide, a 2′O-Methyl modified nucleotide or a combination thereof. In some embodiments, the oligonucleotide of the present invention comprises nucleotides having the same or different modifications. In some embodiments the oligonucleotide of the present invention comprises a modified phosphate backbone, wherein the phosphate is for example a phosphorothioate and/or methylphosophonate, i.e., the oligonucleotide comprise phosphorothioate or methylphosphonate or both.
The oligonucleotide of the present invention comprises the one or more modified nucleotide at the 3′- and/or 5′-end of the oligonucleotide and/or at any position within the oligonucleotide, wherein modified nucleotides follow in a row of 1, 2, 3, 4, 5, or 6 modified nucleotides, or a modified nucleotide is combined with one or more unmodified nucleotides. The following Tables 1 to 3 present embodiments of oligonucleotides comprising modified nucleotides for example LNA which are indicated by (+) and phosphorothioate (PTO) indicated by (*). The oligonucleotides consisting of or comprising the sequences of Tables 1 to 3 may comprise any other modified nucleotide and any other combination of modified and unmodified nucleotides. Oligonucleotides of Tables 1 and 2 hybridize with mRNA of human IDO1:
Single-dose screens and dose-response investigations revealed the antisense oligonucleotides A06007H, A06008H, A06030H and A06035H as highly potent. To further explore their potential, 16 additional antisense oligonucleotides based on their basic sequences were designed and are shown in the following Table 2:
The following Table 3 shows oligonucleotides hybridizing with mRNA of rat or murine IDO1:
The oligonucleotides of the present invention hybridize for example with mRNA of human or murine IDO of SEQ ID No. 1 and/or SEQ ID No. 2. Such oligonucleotides are called IDO antisense oligonucleotides. In some embodiments, the oligonucleotides hybridize within a hybridizing active area which is one or more region(s) on the IDO mRNA, e.g., of SEQ ID NO.1, where hybridization with an oligonucleotide highly likely results in a potent knockdown of the IDO expression. In the present invention surprisingly several hybridizing active areas were identified for example selected from position 250 to 455, position 100 to 160, position 245 to 305, position 300 to 360, and/or position 650 to 710 (including the terminal figures of the ranges) of IDO1 mRNA for example of SEQ ID No. 1. Examples of antisense oligonucleotides hybridizing within the above mentioned positions of IDO1 mRNA for example of SEQ ID No. 1 are shown in the following Tables 4 to 7:
In Tables 4 to 7 “ASO” is the abbreviation for “antisense oligonucleotide” and the sequences and LNA patterns of the ASOs are specified in Tables 1 and 2.
In some embodiments, the oligonucleotide of the present invention inhibits at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of IDO such as the, e.g., human, rat or murine, IDO1 expression. Thus, the oligonucleotides of the present invention are immunosuppression-reverting oligonucleotides which revert immunosuppression for example in a cell, tissue, organ, or a subject. The oligonucleotide of the present invention inhibits the expression of IDO such as IDO1 at a nanomolar or micromolar concentration for example in a concentration of 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900 or 950 nM, or 1, 10 or 100 μM.
In some embodiments, the oligonucleotide of the present invention is used in a concentration of 1, 3, 5, 9, 10, 15, 27, 30, 40, 50, 75, 82, 100, 250, 300, 500, or 740 nM, or 1, 2.2, 3, 5, 6.6 or 10 μM.
In some embodiments the present invention refers to a pharmaceutical composition comprising an oligonucleotide of the present invention and a pharmaceutically acceptable carrier, excipient and/or dilutant. In some embodiments, the pharmaceutical composition further comprises a chemotherapeutic, another oligonucleotide, an antibody or a fragment thereof such as a Fab fragment, a HERA fusion protein, a ligand trap, a nanobody, a BiTe and/or a small molecule.
In some embodiments, the oligonucleotide or the pharmaceutical composition of the present invention is for use in a method of preventing and/or treating a disorder. In some embodiments, the use of the oligonucleotide or the pharmaceutical composition of the present invention in a method of preventing and/or treating a disorder is combined with radiotherapy. The radiotherapy may be further combined with a chemotherapy (e.g., platinum, gemcitabine). The disorder is for example characterized by an IDO imbalance, i.e., the IDO level is increased in comparison to the level in a normal, healthy cell, tissue, organ or subject. The IDO level is for example increased by an increased IDO such as IDO1 expression and activity, respectively. The IDO level can be measured by any standard method such as immunohistochemistry, western blot, quantitative real time PCR or QuantiGene assay known to a person skilled in the art. An oligonucleotide or a pharmaceutical composition of the present invention is administered locally or systemically for example orally, sublingually, nasally, subcutaneously, intravenously, intraperitoneally, intramuscularly, intratumoral, intrathecal, transdermal, and/or rectal. Alternatively or in combination ex vivo treated immune cells are administered. The oligonucleotide is administered alone or in combination with another immunosuppression-reverting oligonucleotide of the present invention and optionally in combination with another compound such as another oligonucleotide, an antibody, a small molecule and/or a chemotherapeutic (e.g., platinum, gemcitabine). In some embodiments, the other oligonucleotide (i.e., not being part of the present invention), the antibody, and/or the small molecule are effective in preventing and/or treating an autoimmune disorder, an immune disorder, a psychiatric disorder (e.g., schizophrenia, bipolar disorders, Alzheimer's disease) and/or cancer. An oligonucleotide or a pharmaceutical composition of the present invention is used for example in a method of preventing and/or treating a solid tumor or a hematologic tumor. Examples of cancers preventable and/or treatable by use of the oligonucleotide or pharmaceutical composition of the present invention are breast cancer, lung cancer, malignant melanoma, lymphoma, skin cancer, bone cancer, prostate cancer, liver cancer, brain cancer, cancer of the larynx, gall bladder, pancreas, testicular, rectum, parathyroid, thyroid, adrenal, neural tissue, head and neck, colon, stomach, bronchi, kidneys, basal cell carcinoma, squamous cell carcinoma, metastatic skin carcinoma, osteo sarcoma, Ewing's sarcoma, reticulum cell sarcoma, liposarcoma, myeloma, giant cell tumor, small-cell lung tumor, islet cell tumor, primary brain tumor, meningioma, acute and chronic lymphocytic and granulocytic tumors, acute and chronic myeloid leukemia, hairy-cell tumor, adenoma, hyperplasia, medullary carcinoma, intestinal ganglioneuromas, Wilm's tumor, seminoma, ovarian tumor, leiomyomater tumor, cervical dysplasia, retinoblastoma, soft tissue sarcoma, malignant carcinoid, topical skin lesion, rhabdomyosarcoma, Kaposi's sarcoma, osteogenic sarcoma, malignant hypercalcemia, renal cell tumor, polycythermia vera, adenocarcinoma, anaplastic astrocytoma, glioblastoma multiforma, leukemia, or epidermoid carcinoma.
In some embodiments two or more oligonucleotides of the present invention are administered together, at the same time point for example in a pharmaceutical composition or separately, or on staggered intervals. In other embodiments, one or more oligonucleotides of the present invention are administered together with another compound such as another oligonucleotide (i.e., not being part of the present invention), an antibody, a small molecule and/or a chemotherapeutic, at the same time point for example in a pharmaceutical composition or separately, or on staggered intervals. In some embodiments of these combinations, the immunosuppression-reverting oligonucleotide inhibits the expression and activity, respectively, of an immune suppressive factor and the other oligonucleotide (i.e., not being part of the present invention), the antibody or a fragment thereof such as a Fab fragment, a HERA fusion protein, a ligand trap, a nanobody, a BiTe and/or small molecule inhibits (antagonist) or stimulates (agonist) the same and/or another immune suppressive factor and/or an immune stimulatory factor. The immune suppressive factor is for example selected from the group consisting of IDO1, IDO2, CTLA-4, PD-1, PD-L1, LAG-3, VISTA, A2AR, CD39, CD73, STAT3, TDO2, TIM-3, TIGIT, TGF-beta, BTLA, MICA, NKG2A, KIR, CD160, Chop, Xbp1 and a combination thereof. The immune stimulatory factor is for example selected from the group consisting of 4-1BB, Ox40, KIR, GITR, CD27, 2B4 and a combination thereof.
The immune suppressive factor is a factor whose expression and/or activity is for example increased in a cell, tissue, organ or subject. The immune stimulatory factor is a factor whose level is increased or decreased in a cell, tissue, organ or subject depending on the cell, tissue, organ or subject and its individual conditions.
An antibody in combination with the oligonucleotide or the pharmaceutical composition of the present invention is for example an anti-PD-1 antibody, an anti-PD-L1 antibody, or a bispecific antibody. A small molecule in combination with the oligonucleotide or the pharmaceutical composition of the present invention are for example NLG919, Indoximod, or Epacadostat.
A subject of the present invention is for example a mammalian, a bird or a fish.
The following examples illustrate different embodiments of the present invention, but the invention is not limited to these examples. The following experiments are performed on cells endogenously expressing IDO1, i.e., the cells do not represent an artificial system comprising transfected reporter constructs. Such artificial systems generally show a higher degree of inhibition and lower IC50 values than endogenous systems which are closer to therapeutically relevant in vivo systems. Further, in the following experiments no transfecting agent is used, i.e., gymnotic delivery is performed. Transfecting agents are known to increase the activity of an oligonucleotide which influences the IC50 value (see for example Zhang et al., Gene Therapy, 2011, 18, 326-333; Stanton et al., Nucleic Acid Therapeutics, Vol. 22, No. 5, 2012). As artificial systems using a transfecting agent are hard or impossible to translate into therapeutic approaches and no transfection formulation has been approved so far for oligonucleotides, the following experiments are performed without any transfecting agent.
For the design of antisense oligonucleotides with specificity for human (h) IDO1 the hIDO1 mRNA sequence with SEQ ID No. 1 (seq. ref. ID NM_002164.5;
In order to analyze the efficacy of hIDO1 antisense oligonucleotides of the present invention with regard to the knockdown of hIDO1 mRNA expression in cancer cell lines, EFO-21 (human Ovarian Cystadenocarcinoma, DSMZ) and SKOV-3 (human Ovary Adenocarcinoma, ATCC) cells were treated with a single dose (concentration: 10 μM without addition of any transfection reagent; this process is called gymnotic delivery) of the respective antisense oligonucleotide as shown in
To further select the candidates with the highest activity in both tested cell lines EFO-21 and SKOV-3 a correlation analysis was performed (data derived from
In order to determine the IC50 of the hIDO1 antisense oligonucleotides A06007H (SEQ ID No. 4), A06008H (SEQ ID No. 11), A06030H (SEQ ID No. 3), A06043H (SEQ ID No. 45), A06044H (SEQ ID No. 46), A06045H (SEQ ID No. 47) and A06046H (SEQ ID No. 48), EFO-21 cells were treated with titrated amounts of the respective antisense oligonucleotide (concentrations: 6.6 μM, 2.2 μM, 740 nM, 250 nM, 82 nM, 27 nM, 9 nM, 3 nM). hIDO1 mRNA expression was analyzed three days later. As shown in
The highly potent hIDO1 antisense oligonucleotides A06007H (SEQ ID No. 4) and A06030H (SEQ ID No. 3) were characterized in detail with regard to their knockdown efficacy on the hIDO1 protein and mRNA expression and their influence on cell viability at different concentrations. EFO-21 cell were therefore treated with different concentrations of the respective antisense oligonucleotide for three days, then splitted at a ratio of 1:3 and treated again with the respective antisense oligonucleotide at the indicated concentration. After another three days, protein expression was analyzed by flow cytometry using the hIDO1 antibody clone “eyedio”, mRNA expression was analyzed and cell viability was investigated using the CellTiter-Blue Cell Viability Assay (Promega). As shown in
Kynurenines (L-kynurenine, kynurenic acid, 3-hydroxykynurenine) are the major immunosuppressive molecules that are generated during tryptophan degradation by hIDO1. The first kynurenine that is produced during tryptophan degradation is L-kynurenine which can be detected in cell culture supernatants by an enzyme linked immunosorbent assay (ELISA) (L-Kynurenine ELISA kit, ImmuSmol). EFO-21 cells were treated for three days with the antisense oligonucleotides A06007H (SEQ ID No. 4) and A06030H (SEQ ID No. 3) at 504. Medium was changed to RPMI-1640 and supplemented with fresh antisense oligonucleotide at the respective concentration. As RPMI-1640 has a defined tryptophan concentration of only 24.5 μM (according to sigmaaldrich.com) RPMI-1640 was supplemented with 200 μM L-tryptophan (L-trp) in an additional experimental condition.
Protein knockdown efficiency of both antisense oligonucleotides was verified after 24 hours (
2/2.4
1/1.1
In addition to the experiments described in Example 6, the effect of treatment of EFO-21 cells with hIDO1 antisense oligonucleotides, e.g., A06007H (SEQ ID No. 4) and A06030H (SEQ ID No. 3) at different concentrations was investigated. Therefore, EFO-21 cells were treated with 10 nM, 30 nM, 100 nM, 300 nM, 1 μM or 3 μM of the respective antisense oligonucleotide for three days. S6 was used as control antisense oligonucleotide (ASO). Medium was then changed to RPMI-1640 and supplemented with fresh antisense oligonucleotide at the respective concentration and 100 μM L-tryptophan. Supernatant was harvested 24 h later and L-kynurenine levels were determined by ELISA.
Strikingly, a potent reduction of 1-Kynurenine levels upon treatment of cells with both tested hIDO1 antisense oligonucleotides with a >50% reduction at concentrations as low as 100 nM compared to untreated cells was observed (
Monocytes were enriched from peripheral blood mononuclear cells by plastic adherence. Monocytes were differentiated into dendritic cells (DC) for three days, followed by maturation for three days. DC were treated with neg1 or antisense oligonucleotide A06030H at different concentrations during the maturation period. As shown in
Tryptophan starvation and the presence of kynurenines in the tumor microenvironment play an important role in the suppression of immune effector cells (e.g. T cells). The effect of hIDO knockdown in tumor cells on the proliferation of T cells is investigated in coculture in vitro. EFO-21 cells were treated with different concentrations of the respective antisense oligonucleotide, e.g., A06007H (SEQ ID No. 4) and A06030H (SEQ ID No. 3), respectively. S6 was used as control antisense oligonucleotide (ASO). T cells labeled with a proliferation dye were added three days later, activated with CD2/CD3/CD28 antibodies and proliferation was analyzed by flow cytometry four days after T cell activation.
Strikingly, upon knockdown of hIDO1 in EFO-21 cells, strong proliferation of activated CD45+ cells in a concentration dependent manner was observed (
The efficacy of additional hIDO1 antisense oligonucleotides with regard to the knockdown of hIDO1 mRNA expression in cancer cell lines was investigated in a further screening round. EFO-21 (human Ovarian Cystadenocarcinoma, DSMZ) and SKOV-3 (human Ovary Adenocarcinoma, ATCC) cells were treated with the respective antisense oligonucleotide at a single dose (concentration: 504) without addition of any transfection reagent (this process is called gymnotic delivery). hIDO1 and HPRT1 mRNA expression was analyzed after three days of treatment using the QuantiGene Singleplex assay (Affymetrix) hIDO1 expression values were normalized to HPRT1 values and are shown in
In order to determine the IC50 of the potent hIDO1 antisense oligonucleotides A06057H (SEQ ID No. 99), A06060H (SEQ ID No. 96), A06062H (SEQ ID No. 99), A06065H (SEQ ID No. 102), A06066H (SEQ ID No. 103) and A06068H (SEQ ID No. 105) that have been identified in the second screening round and the antisense oligonucleotides A06007H (SEQ ID No. 4), A06030H (SEQ ID No. 3) and A06035H (SEQ ID No. 37) that have been identified in the first screening round, EFO-21 cells were treated with different concentrations of the respective antisense oligonucleotides (concentrations: 304, 1 μM, 300 nM, 100 nM, 30 nM, 10 nM). hIDO1 mRNA expression was analyzed after three days of treatment. As shown in
Due to the sequence differences between human and mouse(m)/rat(r) IDO1 only few hIDO1 antisense oligonucleotides are cross-reactive to mouse/rat IDO1. As they showed only limited knockdown efficacy in human cell lines, surrogate antisense oligonucleotides were designed with specificity for mouse/rat IDO1. The mouse IDO1 mRNA sequence with SEQ ID No. 2 (seq. ref. NM_008324;
In order to analyze the efficacy of mIDO1 antisense oligonucleotides with regard to the knockdown of mIDO1 mRNA expression in cancer cell lines, Renca (mouse renal adenocarcinoma, ATCC) and 4T1 cells (tumor of the mammary gland, ATCC) cells were treated with murine interferon gamma (mIFNg) to induce mIDO1 expression and a single dose (concentration: 5 μM without addition of any transfection reagent; this process is called gymnotic delivery) of the respective antisense oligonucleotide as indicated in
To further select the candidates with the highest activity in both tested cell lines a correlation analysis was performed (data derived from
In order to determine the IC50 of the mIDO1 antisense oligonucleotides A06013MR (SEQ ID No. 74), A06019MR (SEQ ID No. 80), A06020MR (SEQ ID No. 81), A06021MR (SEQ ID No. 82), A06026MR (SEQ ID No. 87), A06031MR (SEQ ID No. 60) and A06032MR (SEQ ID No. 61), Renca cells were treated with mIFNg to induce mIDO1 expression and titrated amounts of the respective antisense oligonucleotides (concentrations: 10 μM, 3 μM, 1 μM, 300 nM, 100 nM, 30 nM, 10 nM, 3 nM). mIDO1 mRNA expression was analyzed three days later. As shown in
The in vivo knockdown capacity of mIDO1 antisense oligonucleotide A06032MR (SEQ ID No. 61) was analyzed in a subcutaneous syngeneic murine tumor model. Therefore, MC-38 cells were injected subcutaneously into C57BL/6 mice. After the tumors had reached a size of 50-70 mm3, mice were treated with the control antisense oligonucleotide neg1 or the mIDO1-specific antisense oligonucleotide A06032MR for 5 days by daily intraperitoneal injection of 20 mg/kg without the use of a delivery agent. Mice were sacrificed on day 8 and single cell suspensions of tumors were prepared after tumor resection (experimental setup:
The knockdown of mIDO1 on the protein level was investigated in different cells types by flow cytometry. Strikingly, a ˜50% knockdown of IDO1 was observed in tumor cells (
Number | Date | Country | Kind |
---|---|---|---|
16192803.1 | Oct 2016 | EP | regional |
17187775.6 | Aug 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/075674 | 10/9/2017 | WO | 00 |