The present invention provides an immunotherapy of a cancerous tumor and more specifically immunotherapy of cancer by photodynamic vaccination using transgenically modified Leishmania.
By their innate ability to dwell in the endosome/phagolysosomes of antigen-presenting cells, Leishmania are a suitable carrier for vaccine delivery to elicit robust immunity. The efficacy of Leishmania to serve in that capacity is preserved when rendered non-viable and thus safe to use by photodynamic therapy or treatment (PDT). The unique feature of PDT makes this possible. Exposure of photosensitized Leishmania to light in presence of oxygen produces a burst of very short-lived, albeit highly reactive radicals, which kills them instantly and completely, leaving their antigenicity and adjuvanticity unscathed to serve as carrier to deliver transgenic vaccines and adjuvants.
A novel cell-mediated immunotherapy is being developed according to the Leishmania strategy of vaccine delivery (Chang et al., 2016 Parasit Vectors. 9:396) against difficult-to-cure diseases, e.g., canine leishmaniasis. The current clinical management of this disease entails prolonged treatments of sick dogs for 30 days with heavy daily dosage of very toxic drugs (antimonials/miltefosine) followed by a daily maintenance dose of allopurinol for life. Still, relapses of the disease are frequent (up to 50%) within the first year (Manna et al., 2015 Parasit Vectors. 8: 289).
Commonly assigned U.S. Pat. Nos. 7,261,887; 7,238,347, 9,327,017, U.S. Patent Publication No. 2017/0042989 disclose using leishmania as a carrier for vaccine delivery or for the delivery of peptides and proteins, and U.S. Patent Publication No. 2018/0318408 is directed to immunotherapy of canine leishmaniasis. All of these documents are incorporated herein in their entirety by reference and made a part hereof.
Disclosed herein is a method for vaccination against cancer. The method includes the steps of: providing a sample of a photo-inactivated Leishmania; providing a sample of GST-alpha-enolase; mixing the photo-inactivated Leishmania with the GST-alpha-enolase sample to form a vaccine mixture; and, delivering an effective amount of the vaccine mixture to a patient in need thereof.
Also disclosed herein is a container of a solution for vaccination against cancer. The vaccination solution is a mixture of a photo-inactivated Leishmania and a GST-alpha-enolase.
A method for treating a solid tumor in a patient includes: obtaining a sample of peripheral blood mononuclear cells (PBMC) cells from the patient; isolating CD14 positive monocytes from the PBMC sample; maturing the CD14 positive monocytes into mature dendritic cells; co-cultivating the mature dendric cells with isolated T cells to activate CD8+ T cells and cytotoxic T lymphocytes activity; providing a sample of a photo-inactivated Leishmania; mixing the mature dendritic cells with the Leishmania sample to form a vaccination solution; and, delivering an effective amount of the vaccination solution to the patient.
While this invention is susceptible of embodiments in many different forms, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
Antigen-specific vaccination remains to be an option for tumor immunotherapy. The delivery of vaccines for this approach includes the strategies of using attenuated bacterial and viral constructs, e.g. Listeria and Vaccinia. Leishmania are parasitic protozoa, which are uniquely favorable for such use as a universal platform to deliver vaccines for disease prevention and therapy. Of particular relevance is the human cutaneous Leishmania, which causes innocuous, self-resolving skin infection. Life-long immunity develops after its spontaneous cure, indicative of not only the presence of vaccines in Leishmania against leishmaniasis but also adjuvanticity critical for effective vaccination against this and other diseases, e.g. malignancy. Leishmania is a vaccine carrier of high efficacy with eukaryotic translational machineries and post-translational mechanisms for correctly expressing multiple foreign vaccines in abundance. Additionally, Leishmania are inherently endowed with multifarious molecules to protect endogenous vaccines and target them specifically to antigen presenting cells (APC), i.e., dendritic cells (DC) and macrophages—the exclusive host cells for the residence of these parasites in natural infection.
Leishmania surface lipoglycoconjugates are attributable to these activities and are also structurally similar to some adjuvants known to enhance the vaccine effectiveness. Leishmania are intrinsically safe. They produce no toxins and show no human toxicity, as indicated by their extensive use after chemical or physical inactivation in Leishmanin skin test for delayed type hypersensitivity and in several large-scale vaccine trial attempts. We have developed novel strategies to completely inactivate Leishmania for safety assurance with the preservation of its adjuvanticity as a vaccine carrier. Dual suicidal mechanisms were installed to accomplish this by genetic and chemical engineering of Leishmania for light-inducible 1O2 initiated oxidative inactivation. The safety and efficacy of such inactivated Leishmania have been demonstrated by immunization of animals, producing no adverse effects, but prophylactic activities experimentally against both cutaneous and visceral leishmaniasis, and immunotherapeutic activities clinically against drug-incurable canine leishmaniasis. Moreover, Leishmania transgenically made to express ovalbumin (OVA) was shown to deliver this antigen, more effectively after photodynamic inactivation, to DC for processing and presentation to activate OVA epitope-specific T cells in vitro.
Human cancer vaccine candidates have been successfully expressed in transgenic Leishmania, including alpha-enolase (ENO1). These inactivated Leishmania produced dramatic tumor-suppressing activities by immunotherapy in mouse models mimicking human lung and pancreatic cancer. In active immunotherapy, frozen samples of photo-inactivated Leishmania were used as adjuvants for immunizations with recombinant mouse ENO1 (mENO1) against murine tumors. Similar samples of the human ENO1 (hENO1)-expressing Leishmania were used alone for immunizations of BALB/c mice followed by adaptive transfer of immunity with their splenic cells into immunocompromised mice bearing human tumor. Such photodynamic vaccination was also carried out similarly in KKPC transgenic mice against spontaneously and rapidly developed pancreatic tumor. Tumor antigens have been delivered to patients' DC in vitro by different ways, for example, via conjugation with cell-penetrating peptides and adeno-associated virus vectors for ex vivo vaccination to activate CD8+ T cells for CTL activities of anti-tumor immunity. Such protocols are being adapted for use with inactivated hENO1-Leishmania toward DC-based immunotherapy of human lung cancer.
A sample of transgenic alad/pbgd porphrinogenic Leishmania transgenically modified to express an antigen of a solid tumor e.g., alpha-enolase can be suspended in a suitable solution. The solution can be liquid, frozen or lyophilized and placed in a container for later use, sale, and transport for experimental and commercial purposes. Suitable containers can be rigid or flexible. Rigid containers include glass and plastic jars, vials, ampules for example. Suitable plastics include polyolefins, polystyrenes, polyamides, polyesters, polyvinyl chloride, cyclic olefin copolymers and others known to a person of ordinary skill in the relevant art. Preferably, the rigid containers will maintain their shape upon draining.
Flexible containers include those containers made of polymeric materials, such as polyvinyl chloride, polyolefins, polyamides, polyesters, polystyrene, and the like. Suitable containers include those commonly used to contain fluids for intravenous delivery to a patient. The flexible container can be filled and emptied through a closure such as a spout or port tube. Preferably, the flexible container will collapse upon draining.
The CD14 monocytes generate immature DCs upon exposure to granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin 4 (IL4) after a period of 3-4 days. The immature DCs are induced to maturity by exposure to lipopolysaccharide LPS (TNFα, IFNs, etc.) for 2-3 days. The mature DCs are co-cultivated with the isolated T cells to activate CD8+ T cells and cytotoxic T lymphocytes activity. Homologous cancer cells (end-points) are used as a control. The activated T cells are reinfused to the patient for immunotherapy of the lung cancer.
Experiment 1 is to determine the effective adjuvanticity of photodynamically inactivated Leishmania with recombinant enolase-1 peptide as a vaccine for immunotherapy of a tumor produced by murine lung cancer cells in a mouse model. The results are shown in
Experiment 2 is to determine the efficacy of the delivery of human lung cancer vaccine by photodynamically inactivated Leishmania transfectants for adoptive immunotherapy in a mouse model. The results are shown in
Thus, there are several methods of using the photo-inactivated, porphyric, ENO1 expressing Leishmania in treating mammalian patients. A first method is for vaccination against cancer including the steps of: providing a sample of a photo-inactivated Leishmania; providing an effective amount of an alpha-enolase; and delivering an effective amount of the sample and the alpha-enolase to a patient in need thereof.
Another method for vaccination against cancer includes the steps of: providing a sample of a photo-inactivated Leishmania transgenically modified to express alpha-enolase; and delivering an effective amount of the sample to a patient in need thereof. In one form of the invention the Leishmania are transgenically modified to be susceptible to delta-aminolevulinate for porphyrinogenesis.
Another method for vaccination against cancer includes the steps of: providing a sample of a photo-inactivated Leishmania transgenically modified to express alpha-enolase; delivering an effective amount of the sample to an animal to develop an immunity to alpha-enolase; obtaining a sample of cells from the animal; and, delivering an effective amount of the cells from the animal to a patient in need thereof to transfer the immunity to the patient.
In any of the methods, it is preferred the Leishmania have been transgenically modified with a dual suicidal mechanism.
Another method is for treating a solid tumor in a patient including: obtaining a sample of antigen presenting cells from the human patient; in vitro exposure of the cell sample to an effective amount of Leishmania transgenically modified to express an antigen of the solid tumor to form a vaccinated sample; and, delivering an effective amount of the vaccinated sample to the patient for clearing of the tumor.
The Leishmania-based vaccine to solid tumors can be provided in a container having walls defining a chamber; and a solution in the chamber having a suspension of an effective amount of a Leishmania-based vaccine having Leishmania transgenically modified with a dual suicidal mechanism and to express an antigen of the solid tumor, such as alpha-enolase. The container can have flexible walls or rigid walls.
The appended claims should be construed broadly and in a manner consistent with the spirit and the scope of the invention herein.
The present invention claims priority to and the benefit of U.S. Provisional Patent Application No. 62/855,621 filed May 31, 2019, the contents of which are incorporated in their entirety herein by reference and made a part hereof.
Number | Date | Country | |
---|---|---|---|
62855621 | May 2019 | US |