The invention relates to impact crusher rotor position detection and control.
Horizontal shaft impact (HSI) crushers are used in processing of mineral materials such as stone. In such a crusher the mineral material is thrown by a rotating rotor having a group of hammers or blow bars against a group of breaker plates having a wear element thereon.
The hammers need to be changed periodically due to wear. Furthermore, the position of the breaker plates needs to be calibrated by determining the distance of the wear parts of the breaker plates from the hammers. For these operations the rotor has been traditionally manually rotated to correct positions.
As an alternative to manually rotating the rotor, a separate motor for positioning has been previously used.
DE 10 2004 005 378 A1 shows a crusher contact calibration method wherein the contact calibration position is established by rotating the rotor backwards until contact occurs. This requires a certain form of the hammers and/or breaker plates.
According to a first example aspect of the invention there is provided an apparatus comprising
The rotor position detection unit may comprise a distance sensor and a counterpart element.
The sensor may be an ultrasound distance sensor and the counterpart element may be a disc with a varying diameter.
The rotor position detection unit may comprise an angular sensor.
The rotor position detection unit may comprise an optical sensor.
The rotor position detection unit may comprise a magnetic sensor.
The rotor position detection unit may be configured to detect a second angular position of the rotor corresponding to a second position of the hammer of the group of hammers attached to the rotor.
The group of hammers may comprise one or more hammers.
The rotor position detection unit may be configured to detect the angular positions of the rotor corresponding to a first and second position of each hammer of the group of hammers attached to the rotor.
The first position of each hammer of the group of hammers may be a service position of the hammer.
The second position of each hammer of the group of hammers may be a contact calibration position of the hammer.
The motor control system may be configured to stop the rotor at the first or second position of a hammer of the group of hammers using the frequency converter and the brake in response to detecting the first or second position of the hammer of the group of hammers.
The sensor may be configured to output a standard signal.
The standard signal may have a range of 4 to 20 mA.
The automation and control system may further be configured to measure the load of the crusher.
The automation and control system may further be configured to combine the measured load and the detected angular position of the rotor in order to monitor the crusher.
According to a second example aspect of the invention there is provided a horizontal shaft impact crusher for processing mineral material comprising
The horizontal shaft impact crusher may further comprise means for preventing the rotation of the rotor.
The horizontal shaft impact (HSI) crusher may further comprise means for preventing the rotation of the rotor.
According to a third example aspect of the invention there is provided a mineral material processing plant comprising a horizontal shaft impact crusher of the second example aspect of the invention.
The mineral material processing plant may be a mobile processing plant.
According to a fourth example aspect of the invention there is provided a method comprising
The angular position of the rotor may be detected using a distance sensor and a counterpart element.
The angular position of the rotor may be detected using an ultrasound distance sensor and a counterpart disc with a varying diameter.
The angular position of the rotor may be detected with an angular sensor.
The angular position of the rotor may be detected with an optical sensor.
The angular position of the rotor may be detected with a magnetic sensor.
The method may further comprise detecting a second angular position of the rotor corresponding to a second position of the hammer of the group of hammers attached to the rotor.
The group of hammers may comprise one or more hammers.
The method may further comprise detecting the angular positions of the rotor corresponding to a first and second position of each hammer of the group of hammers attached to the rotor.
The first position of each hammer of the group of hammers may be a service position of the hammer.
The second position of each hammer of the group of hammers may be a contact calibration position of the hammer.
Controlling the rotation speed of the rotor may comprise setting the rotation speed of the rotor to a predetermined speed
The method may further comprise stopping the rotor at the first or second position of a hammer of the group of hammers with a frequency converter and a brake in response of detecting the first or second position of the hammer of the group of hammers.
The sensor may output a standard signal.
The standard signal may have a range of 4 to 20 mA.
The method may further comprise measuring the load of the crusher.
The method may further comprise combining the measured load and the detected angular position of the rotor.
According to a fifth example aspect of the invention there is provided a computer program, comprising:
According to a sixth example aspect of the invention, there is provided a memory medium comprising the computer program of the fifth example aspect of the invention.
It has been found that the positioning of the rotor for both maintenance and calibration can be carried out in a cost-effective and safe way by using impact crusher position detection and control according to the example aspects of the invention.
Different embodiments of the present invention will be illustrated or have been illustrated only in connection with some aspects of the invention. A skilled person appreciates that any embodiment of an aspect of the invention may apply to the same aspect of the invention and other aspects alone or in combination with other embodiments as well.
The invention will be described, by way of example, with reference to the accompanying drawings, in which:
In the following description, like numbers denote like elements. It should be appreciated that the illustrated figures are not entirely in scale, and that the figures mainly serve the purpose of illustrating embodiments of the invention.
The mineral material processing plant further comprises a motor control system 130 and an automation and control system 125 communicatively connected to each other and to the motor 120. The motor control system 130 further comprises a frequency converter (FCC) 135 and a brake such as a DC injection brake 140 for changing the rotating speed of the motor 120 and for braking the motor 120 in order to enable stopping of the rotor 13 at a desired angular position. The motor control system 130 and the automation and control system 125, or parts thereof, can be provided as separate systems communicating with each other or be integrated into a single system. Furthermore, in an example embodiment, the frequency converter 135 and/or the brake 140 can be provided as separate units. A skilled person appreciates that in a further example embodiment the motor control system 130 and/or the automation and control system 125 can alternatively be provided as separate units instead of being carried by the body 101.
It should be noted that
The wear parts 18, 19 and the hammers 14, 15, 16, 17 are susceptible to wear during operation of the HSI crusher 200. Accordingly, their position, and consequently the position of the breaker plates 20, 24, in relation to the hammers 14, 15, 16, 17 needs to be adjusted or calibrated and the amount of wear of the wear parts 18, 19 and/or the hammers 14, 15, 16, 17 needs to be detected or measured. For detection of the wear and for position adjustment, the rotor 13 needs to be in a certain position, i.e. one of the hammers 14, 15, 16, 17 needs to point substantially perpendicularly towards the wear part 18, 19. The detection of the wear and the subsequent adjustment of the position of the breaker plates 20, 24, hereinafter referred to as contact calibration, is carried out by moving a breaker plate 20, 24 closer to a hammer 14, 15, 16, 17 positioned at the proper position until contact occurs. The contact is detected with conventional measurement means, e.g. with a pressure switch. The distance at which contact occurred, indicating the amount of wear of the wear part 18, 19 or the hammer 14, 15, 16, 17, is then stored in the automation and control unit 125 for further use. This position of the hammer 14, 15, 16, 17 for contact calibration is detected by rotor position detection unit 30. Furthermore, the hammers 14, 15, 16, 17 need to be replaced with new hammers periodically due to wear. The replacement of the hammers 14, 15, 16, 17 is possible in a service position of the rotor in which position one of the hammers 14, 15, 16, 17 at a time is available for replacement. The service position is detected by the rotor position detection unit 30.
The sensor 32 is, according to an example embodiment, an ultrasound distance sensor. The sensor output is a standard signal, e.g. 4 to 20 mA, which is readily interfacable with conventional automation and control systems. The counterpart element 35, according to an example embodiment, is a disc of conventional material being formed in such a way as to have a varying diameter, i.e. the edge of the disc 35 has protrusions or is formed in such way as to be situated at different distance from the axle shaft 12 at different locations and accordingly at a different distance from the sensor 32. The distance between the sensor 32 and the edge of the disc 35 is detected by the sensor and converted to a sensor output. Each distance corresponds to a certain level of the standard signal and to a certain position of the rotor. In an example embodiment, as shown in
In a further example embodiment, the sensor 32 and/or the counterpart element 35 are of a different type or have a different structure. For example an encoder disc having thereon a binary code with a desired number of bits for indicating the service and contact calibration positions and one or more optical sensors for reading the encoder disc can be used. In a further example embodiment, a number of optical transmitter receiver pairs can be used. In a still further example embodiment a magnetic distance sensor can be used with a suitable counterpart disc and/or elements. The skilled person appreciates that any conventional analog or digital angular and/or distance sensor with or without a corresponding counterpart disc or the like can be used. In a further example embodiment more than one sensor and/or counterpart element of different or same type are used.
In a further example embodiment, the rotor position measurement from the rotor position detection unit 30 is used for providing further information into the automation and control system 125 and therethrough to the user of the HSI crusher 200. For example, the rotor position information can be used to provide graphs of crusher load, which is measured in conventional manner, with respect to each hammer 14, 15, 16, 17 position. Accordingly, the load used on each combination of wear part and breaker plate 18, 20 can be measured and visualized and used e.g. to distribute the load evenly or in any other desired manner for greater processing capacity and energy saving.
At step 605 the running status of the process is checked, i.e. the automation and control system 125 checks whether the HSI crusher 200 is running on a full rotor speed or stopped. If it is found out at step 610 that the process is running at production speed, a stop sequence is run and the process is stopped at step 615.
Once it is established at step 620 that the process, and accordingly the rotor 13, is stopped, the rotor 13 is rotated at step 625 at roaming speed using the frequency converter 135 and the brake 140 under control of the motor control system 130 to control the speed of the rotor.
The rotor position detection unit 30 with the sensor 32 measures the position of the rotor 13 during rotating with roaming speed and the rotor is stopped at the desired position. The position is checked at step 630 and if it is established that the position is not correct at step 635, the step 625 of rotating with roaming speed is repeated. If the position is established to be correct at step 630, the rotor is stopped with the brake 140 and locked into place with the locking means.
It should be noted that the process of positioning the hammers 14, 15, 16, 17 at the service position 50 follows an analogous sequence.
At step 650 the contact calibration is finalized by driving the combination of wear part and breaker plate 18, 20 towards the hammer 14, 15, 16, 17 at the contact calibration position 60 until contact is established. The distance at which the contact occurs corresponds to the wear of the wear part 18 and/or to the wear of the hammer 14, 15, 16, 17. The wear information is saved to the automation and control system 125 at step 660 and the contact calibration process is ended at step 670.
During a first period 701 after the rotor is started up, it is possible to carry out rotor positioning to either the contact calibration position 60 or service position 50 according to an example embodiment as hereinbefore described. Second and third periods 702 and 703 are ramp-up periods to normal processing speed and the positioning is not possible during these periods, although the rotor position detection unit 30 is measuring the rotor position and position information. A fourth period 704 is a processing period of the HSI crusher 200 with full process speed and the feed to the HSI crusher being enabled. During this fourth period 704 the position information from the rotor position detection unit 30 can be used to provide load information with respect to rotor position.
A fifth period 705 is a ramp-down period of the HSI crusher 200. As the rotor slows down and a sixth period 706 is reached, rotor positioning to either the contact calibration position 60 or service position 50 can be carried out according to an example embodiment as hereinbefore described.
A seventh period 707 is a roaming ramp-up period, wherein using the frequency converter 135 under control of the motor control system 130, the speed is slowly increased to a predetermined maximum rotor positioning speed at which speed the rotor 13 is rotated during an eighth period 708 to position it to either the contact calibration position 60 or service position 50 according to an example embodiment as hereinbefore described. During a ninth period 709 the rotor 13 is stopped at the desired position, detected with the rotor position detection unit 30, with the brake 140 under control of the motor control system 130.
Without in any way limiting the scope, interpretation, or application of the claims appearing below, a technical effect of one or more of the example embodiments disclosed herein is to provide a simple and reliable way of rotor positioning. Another technical effect of one or more of the example embodiments disclosed herein is to enable the detection of the position and control of the position of each single hammer. Another technical effect of one or more of the example embodiments disclosed herein is to decrease the cost of rotor positioning. A further technical effect of one or more example embodiments is to increase safety of crusher maintenance operations. A still further technical effect of one or more of the example embodiments disclosed herein is the provision of easier contact calibration. A still further technical effect of one or more of the example embodiments is to increase crusher capacity thanks to more precise load monitoring.
Although various aspects of the invention are set out in the independent claims, other aspects of the invention comprise other combinations of features from the described embodiments and/or the dependent claims with the features of the independent claims, and not solely the combinations explicitly set out in the claims.
It is also noted herein that while the above describes example embodiments of the invention, these descriptions should not be viewed in a limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope of the present invention as defined in the appended claims.
This application claims priority to PCT/FI2012/050685, filed Jun. 29, 2012, and published in English on Jan. 3, 2014 as publication number WO 2014/001606, incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2012/050685 | 6/29/2012 | WO | 00 | 12/22/2014 |