1. Field of the Invention
The present invention relates to hammer drills, and more particularly, to an impact mechanism for a hammer drill.
2. Background of the Invention
When drilling through hard surfaces such as rocks or stone, many times it is desirable to impart a reciprocating motion to the drill bit to facilitate drilling. This hammering motion of the drill bit helps break up the material while the rotating of the drill bit allows the broken up material to be removed from the hole being drilled.
A primary disadvantage associated with existing impact mechanisms for hammer drills is the fact that in order to accomplish a desired high blows per minute (BPM) for efficient hammer drill performance, an undesirable high output speed is required. High BPM can also be achieved by increasing the number of ramps on the impact mechanism. However, an increased number of impact ramps tend to produce a “skipping” effect and efficiency loss due to the smaller area of surface contact for each ramp.
It is, therefore, an object of the present invention to provide an improved impact mechanism for a hammer drill that accomplishes desired high blows per minute (BPM) without requiring an undesirable high output speed, or at least provide the public with a useful choice.
According to an aspect of the present invention, an impact mechanism for a hammer drill, which has a housing and a drill bit protruding outside the housing, includes firstly an impact platform within the housing. The impact platform is in connection with the drill bit for receiving impact forces and for transferring the impact forces to the drill bit. The mechanism also has a plurality of cams within the housing, and the plurality of cams are angularly spaced apart and arranged about an axis of rotation. The mechanism further includes a plurality of hammers placed within the housing and interactable with both the impact platform and the plurality of cams. The plurality of hammers are angularly spaced apart and arranged about the axis of rotation, and each hammer is capable of reciprocating along the axis for exerting the impact forces on the impact platform. Each of the plurality of cam is driven to interact with each of the plurality of hammers alternatively such that the plurality of hammers are driven to reciprocate along the axis so as to generate the impact forces.
According to another aspect of the present invention, a hammer drill includes
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which description illustrates by way of example the principles of the invention.
As shown in
In
An impact platform 205, mounted co-axially with the rotational shaft 201 in the exemplary embodiment, is placed inside the housing 101 and behind the drill bit 111. The impact platform 205 receives impact forces and further transmits such forces to the drill bit 111 for drilling purposes.
A plurality of angularly spaced apart hammers 207 is placed inside the housing 101 and behind the impact platform 205 for striking on the platform 205 alternatively to exert an impact force thereon individually. The hammers 207 are arranged to circle the axis 203, and each hammer 207 may reciprocate parallel to the axis 203 within a longitudinal chamber 209. Furthermore, a plurality of compression springs 211 are provided inside the chambers 209, and each is connected to the backside of its respective hammer 207 and biases the hammer 207 towards the impact platform 205 for exerting the impact force.
A cam disc 213, secured atop a ring 215, is co-axially mounted with the impact platform 205, with a plurality angularly spaced apart cams 217 mounted thereon. Thus, as the platform 205 rotates with the rotating shaft 201, the cam disc 213 also rotates such that each cam 217 sequentially interacts with the hammers 207. As a result, each hammer 207 is raised and then falls due to the spring force to strike on the platform 205 individually.
A plurality of steel balls 219 is provided, with each being rotatably retained in a hole 221 at an end of its respect hammer 207 between the hammer 207 and the cam disc 213 for reducing friction forces therebetween.
The impact platform 205 and the drill chuck 113 are held by a bearing 223 to the housing 101 but are allowed to rotate and move forward and backward freely. The positions of the impact platform 205 and the drill chuck 113 are held back by a spring 225 such that as the impact forces are exerted on the platform 205, the drill chuck 113 and the drill bit 111 will shock forward producing a chiseling action before being held back to their original positions by the spring 225. The spring 225 eliminates the need for holding the platform 205 back to receive the impact by forcing the drill bit hard against the surface to be drilled as compared to conventional designs. This brings more convenience to the user in that conventionally, a large force is generally required by the user to press the drill against the surface to be drilled for the impact ramps to be effective.
Furthermore, this forward shock action produced by the hammers 207 happens at two position of the rise and fall cycle of the hammers 207; firstly when the cam 217 on the cam disc 213 becomes in contact with the steel ball 221 producing an upward shock of the hammer 207, and the counteraction of such shock on the cam disc 213 is transmitted as an forward shock through the cam disc 213 to the chuck 113 that holds the drill bit 111; the second position is when a hammer 207 strikes on the impact platform 205, which transmits the impact energy as a forward chiseling action to the drill bit 111.
The design of the impact platform 205, the cam disc 213, the ring 215 and the hammers 207 is such that when a hammer 207 strikes on the impact platform 205 while none of the cams 217 is in contact with the steel ball 219 of this hammer 207, there is a sufficient clearance between the steel ball 219 and both this hammer 207 and the cam disc 205 to allow no contact therebetween. This allows this particular hammer 207 to strike on the platform 205.
In the exemplary embodiment, the number of cams 217 is one more than the number of hammers 207. Specifically, an example of 6 radially positioned hammers 207 and a cam disc 213 with 7 cams 217 are used to demonstrate the principle as shown in
In addition, the interaction between the hammers and the cams happen in a sequential manner such that each rise and fall cycle of each hammer overlaps with the interactions of the other hammers and cams hence allowing more time for the rise and fall hammer to acquire more momentum for a bigger impact and minimizing the skipping problem at high rotation speed of the cam disc.
Various alternatives can be made to the exemplary embodiment as generally understood by the people in the art. For example, the design also caters for cases where the BPM is required to be independent of the rotation speed of the drill bit 111. In this case, the ring 215 can be a pulley which allows to rotate freely from impact platform 205, and is driven by an externally driven belt (not shown) so that the speed and direction of rotation of the cam disc 213 can be independent of the drill bit 111. In addition, the ring 215 together with the cam disc 213 can be detached from the impact platform 205 and be driven (rotate) by a belt (not shown) independently.
Number | Name | Date | Kind |
---|---|---|---|
1613555 | Boyd | Jan 1927 | A |
2564224 | Mitchell et al. | Aug 1951 | A |
2968960 | Fulop | Jan 1961 | A |
3133601 | Fulop | May 1964 | A |
4316513 | Harris | Feb 1982 | A |
4867251 | Isenring | Sep 1989 | A |
5653294 | Thurler | Aug 1997 | A |
6550546 | Thurler et al. | Apr 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20060102364 A1 | May 2006 | US |