The present invention relates to the field of electric height-adjustable desks, in particular to an impact protection controller for an electric height-adjustable desk.
Desk workers often sit for long periods without moving, and this easily results in damage to the spine, cervical vertebra and other parts of the body. An electric height-adjustable desk can help people who sit for long periods by giving them the option to stand and work, without holding up work or affecting health. For this reason, electric height-adjustable desks are receiving more and more attention, and are especially popular among office staff.
While being convenient and healthy for people, electric height-adjustable desks also carry potential hazards. During operation, an electric height-adjustable desk might accidentally strike another object or a person's body, damaging the object or injuring the body.
In order to eliminate this potential hazard, an impact protection function is generally designed in a controller. When an electric height-adjustable desk is struck during operation, an electric motor current will change; a control box detects the change in current, and immediately stops the movement of the height-adjustable desk or moves back by a certain distance in the reverse direction after stopping.
The method of impact protection described above relies on detection of a change in current. If protection is set to be too sensitive, i.e. such that a very small change in current triggers protection, the result will be that the height-adjustable desk will erroneously stop during operation due to current fluctuation in the electric motor itself, even in the absence of an impact; if protection is set to be too dull, i.e. such that protection is only triggered when the change in current is large, the result will be that protection will only occur when an impact occurs and a very large squeezing force is generated, but at this time it is possible that damage to an object and injury to a person's body has already been caused. In particular, when a height-adjustable desk is operating in descent under a load, the change in current will not be obvious even if high resistance is encountered due to an impact; at this time the drawbacks of this solution are even more pronounced.
For the abovementioned technical problem in the prior art, the present invention provides an impact protection controller for an electric height-adjustable desk, comprising an MCU (Micro Controller Unit), an electric motor drive circuit, an electric motor current sampling circuit, a current amplification circuit, a HALL pulse generator and a HALL filter, the MCU controlling the electric motor drive circuit; a signal transmitted by the HALL pulse generator is sent to the MCU via the HALL filter; an electric motor current, after sampling by the electric motor current sampling circuit, is sent into the MCU via the current amplification circuit, and used for detecting a change in current; also included is a shock switch, disposed outside the MCU and connected to the MCU, or disposed inside the MCU.
The present invention employs a combination of current detection and shock detection, thereby increasing the sensitivity and reliability of impact protection.
The present invention is explained further below with reference to the accompanying drawings.
As shown in
During normal operation, the electric height-adjustable desk operates stably, without shocks, and protection will not be triggered. When the height-adjustable desk is struck during operation, a shock will be generated; the shock is transmitted to the shock switch, and the shock switch triggers the MCU to carry out protection.
The electric height-adjustable desk is generally composed of two or three electric height-adjustable posts, which must maintain synchronous operation in order to ensure level operation of a desktop. Thus, during operation, each electric height-adjustable post must adjust speed in a timely manner in order to achieve synchronous operation; in general, speed is changed by PWM, and this is analogous to changing a power supply voltage of the electric motor in order to change speed. Adjustment is generally performed in the following manner: when A falls behind B, the voltage of A is increased (in fact, the PWM Duty Cycle is increased, likewise hereinbelow), the voltage of B is decreased, and A is then faster than B; when A passes B, it is necessary to decrease the voltage of A, and increase the voltage of B; in this way, the voltages of A and B are continually adjusted in a cyclic manner in order to achieve synchronous operation. Since the electric motor voltage of each electric height-adjustable post is changing continually, the current thereof will naturally change continually. In this situation, in order to prevent erroneous protection, it is necessary to increase a current change threshold for triggering protection (exceeding a current fluctuation value), thereby causing protection to be more dull, i.e. a greater impact force is needed in order to carry out protection.
The present application employs PID (Proportional-Integral-Derivative) automatic control technology for synchronous processing; by means of this control technology, each height-adjustable post can automatically maintain operation at a uniform speed according to a set speed and a set target position. Synchronous operation can be achieved by setting two or three height-adjustable posts to the same speed and the same target position. During operation, as long as the load of the height-adjustable post does not change, the voltage of the electric motor (in fact the PWM Duty Cycle) will not be adjusted again, i.e. will not change repeatedly, and correspondingly, current will not change repeatedly. This method of synchronous control has a stable current and will not add further current fluctuation, and can therefore increase the sensitivity of current detection.
Number | Date | Country | Kind |
---|---|---|---|
201720592545.5 | May 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/089089 | 6/20/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/214194 | 11/29/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5475291 | Yoshida | Dec 1995 | A |
5736824 | Sato | Apr 1998 | A |
7068002 | Tsutsui | Jun 2006 | B2 |
8072181 | Koch | Dec 2011 | B2 |
9993069 | Hansen | Jun 2018 | B2 |
20050082997 | Koch | Apr 2005 | A1 |
20130293173 | Strothmann et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2549807 | May 2003 | CN |
201467046 | May 2010 | CN |
104460697 | Mar 2015 | CN |
105553341 | May 2016 | CN |
106308036 | Jan 2017 | CN |
2000-333734 | Dec 2000 | JP |
Entry |
---|
International Search Report issued by the Chinese Patent Office in International Application PCT/CN2017/089089 dated Feb. 6, 2018. |
Number | Date | Country | |
---|---|---|---|
20200136551 A1 | Apr 2020 | US |