The present invention relates to ceramic turbine engine components that function in high temperature environments and may be exposed to velocity metallic and ceramic particles. More particularly, the present invention relates to coatings for turbine engine components to improve resistance to high-temperature combustion gas environments, high velocity particle impact, and other potentially deleterious factors.
Turbine engines are used as the primary power source for various kinds of aircrafts. The engines are also auxiliary power sources that drive air compressors, hydraulic pumps, and industrial gas turbine (IGT) power generation. Further, the power from turbine engines is used for stationary power supplies such as backup electrical generators for hospitals and the like.
Most turbine engines generally follow the same basic power generation procedure. Compressed air is mixed with fuel and burned, and the expanding hot combustion gases are directed against stationary turbine vanes in the engine. The vanes turn the high velocity gas flow partially sideways to impinge on the turbine blades mounted on a rotatable turbine disk. The force of the impinging gas causes the turbine disk to spin at high speed. Jet propulsion engines use the power created by the rotating turbine disk to draw more air into the engine and the high velocity combustion gas is passed out of the gas turbine aft end to create forward thrust. Other engines use this power to turn one or more propellers, electrical generators, or other devices. [0005] Silicon-based ceramics such as silicon nitride, silicon carbide, and their composites are used to form hot section. components in turbine engines, and particularly in advanced turbomachines. The high temperature capabilities of silicon-based ceramics enable turbomachines to operate at high temperatures with minimum cooling. However, above about 1100° C. the silicon-based ceramics can be subject to surface recession due to the presence of water vapor in the impinging combustion gas stream. For example, water vapor will react with a protective silicon oxide surface on a silicon-base ceramic substrate, converting the silicon oxide surface to a volatile silicon-hydroxide. At typical operating conditions, the surface recession rate due to water vapor attack may be in the order of a few microns per hour. Also, uncoated silicon-based ceramics may be exposed to potential high-speed impacts with small metallic and ceramic particles or debris. Flaws initiated by small particle impacts increase the potential for the silicon- based ceramics to be in need of premature replacement.
Hence, there is a need for methods and materials for coating turbine engine components such as the turbine blades and vanes. There is a particular need for environment-resistant coatings that will improve a turbine component's durability, and for efficient and cost effective methods of coating the components using such materials.
The present invention provides a turbine engine component. The component includes a ceramic substrate having a surface, an environmental barrier layer bonded to the substrate surface, and an impact-resistance layer bonded to the environmental barrier layer, the impact-resistance layer having a melting point higher than about 2700° F., and further having between about 10 and about 30% porosity. The impact-resistance layer, environmental barrier layer, and interfaces at which the environmental layer is bound to the substrate surface and the impact-resistance layer are more readily shearable than the substrate.
A method is also provided for protecting a turbine engine component from environmental and particle impact-related damage. The method includes the steps of coating a ceramic substrate surface with an environmental barrier layer, and coating the environmental barrier layer with an impact-resistance layer as previously described.
Other independent features and advantages of the preferred article and methods will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
The present invention provides a multilayer coating for a substrate such as a turbine blade or vane. The multilayer coating system inhibits environmental attack and particle impact-related damage. An outer coating layer is compressible, and interfaces between the coating layers are shearable. These factors minimize impact energy that is transferred from the particle to the load- bearing ceramic substrate, and also the shear stress on the substrate surface produced as the particle deforms and spreads about the surface
Exemplary additives for a tantalum oxide base environmental barrier layer 20 include oxides of aluminum, hafnium, silicon, lanthanum and the other rare earth metals from the lanthanum series, yttrium, niobium, titanium, and/or zirconium. A preferred environmental barrier layer 20 includes tantalum oxide alloyed with small amounts of oxides of aluminum and/or lanthanum. Additional additives such as nitrides, carbides, borides, and silicides may be included to further inhibit grain growth, modify the thermal expansion coefficient, and reinforce the tantalum oxide.
The environmental barrier layer 20 effectively protects the ceramic substrate 10 at high temperatures, particularly at a thickness that is between about 20 and about 80 μm. Several coating methods may be used to apply the environmental barrier layer 20 to the substrate 10. Exemplary coating methods include depositing processes such as electron beam-physical vapor deposition, plasma spray deposition, and slurry deposition followed by sintering. U.S. Pat. No. 6,861,164, assigned to Honeywell International, Inc. and hereby incorporated by reference, discloses a variety of tantalum oxide-based environmental barrier layers and methods for making and using them to coat a silicon-based substrate.
The environmental barrier layer top surface 25 is coated with an impact-resistant layer 30.
The impact-resistant layer 30 preferably has a melting point higher than about 2700° F., and is preferably selected to have a thermal expansion coefficient that differs from that of the environmental barrier layer 20 by at least about 20%. Shearability of the impact-resistant layer 30, particularly at the interface with the environmental barrier layer 20, is increased when the two layers have a significant difference in thermal expansion coefficients.
Exemplary materials for the impact-resistant layer 30 include varieties of stabilized zirconia. One preferred material is a stabilized tetragonal or cubic zirconia, such as yttria stabilized zirconia. Impact tests have demonstrated that stabilized zirconia and tantalum oxide have a shearable interface 25. Also, yttria stabilized zirconia has a melting point of about 4900° F. The high melting temperature provides for a stable porous microstructure within the impact-resistant layer. Other exemplary materials for the impact-resistant layer 30 include stabilized tetragonal hafnia, and stabilized cubic hafnia.
Exemplary methods for depositing the impact-resistant layer 30 include plasma spraying, slurry-sintering, and various physical deposition methods. An exemplary physical deposition method for depositing the impact-resistant layer 30 is electron beam-physical vapor deposition (EB-PVD), which produces coatings with a “ceramic rug” microstructure having columnar grains with internal nanometer-scale porosity and intercolumnar gaps that enhance the coating compliance and ability to accommodate thermal strains and thermal expansion mismatches between the impact-resistant layer 30 and the underlying substrate. An exemplary impact-resistant layer is deposited over the environmental barrier layer 20 at a thickness ranging between about 50 and about 250 μm. The impact-resistant layer 30 can be applied in a single layer, although shearing is promoted by applying the impact-resistant layer 30 as a plurality of layers with some layers having higher porosity than others.
Turning now to
As mentioned previously, the coating system of the present invention can be tailored to fit the blade's specific needs, which depend in part on the blade component where degradation may occur. For example, the environmental barrier coating may be applied to all surfaces exposed to moisture rich combustion gases. In contrast, the impact-resistant layer 30 may be thicker at particular locations that are most likely to be impacted by particles, such as the airfoil's leading edge.
It is also emphasized again that turbine blades are just one example of the type of turbine components that can be coated using the coating system of the present invention. Vanes, shrouds, and other turbine components can be coated in the same manner.
Turning now to
All tests were conducted on ASTM C1161 (B size) four point bend test specimens measuring 3 mm thick×4 mm wide with a minimum length of 45 mm. The bars were machined from silicon nitride blanks leaving the original sintered surface intact on one of the 4 mm wide faces. Some of the bars were then coated with an environmental barrier layer of tantalum oxide alloyed with small amounts of lanthanum oxide, and an overlaying impact-resistant coating of yttria stabilized zircoma.
Impact tests were conducted using 1.59 mm diameter balls of silicon nitride and hardened chromium steel. Target specimens were mounted firmly against a rigid backing plate and aligned to cause the projectile to impact the center of the as-sintered or coated face with a normal angle of incidence. After impact testing, bars that survived the impact were tested to determine retained strength after impact according to ASTM C1161 using a 20 mm inner span and a 40 mm outer span. Bend tests were also conducted on bars that had not been impacted to determine the baseline material strength. All strength testing was performed such that the sintered or impacted face of the specimen was placed in tension. Bars that failed upon impact at the impact site were assigned a retained strength of zero.
As shown in
In
The present invention thus provides a multilayer coating for a substrate such as a silicon-based ceramic material. The coating significantly reduces the potential for environmental or impact-related damage by minimizing impact energy and resulting stress on the underlying substrate.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This listing of claims will replace all prior versions and listings of claims in the above-identified application:
This invention was made with Government support under Contract Number F33615-01-C-5230 awarded by the U.S. Air Force. The Government has certain rights in this invention.