The present invention relates to the field of garments adapted to protect a wearer's body from impacts associated with contacts sports and/or military/police activities.
Protective garments for sports, military and police uses have evolved in the direction of becoming lighter, stronger, more mobile, and more wearable. Optionally, the structures comprising such protective garments should be capable of deflecting impact forces, damping their impact, dissipating such forces, absorbing them, and blocking penetration through to the wearer's body.
The principal problem to be solved in designing such garments is that diverse materials need to be utilized in connection with the foregoing capabilities. The task of integrating such diverse materials into a composite structure requires consideration of their interaction, which should be synergistic, such that the resultant protective effect is greater than the sum of each material's isolated contribution.
The present invention comprises a multi-layer composite structure, which is conformable to the contours of the body parts for which protection is required. In one embodiment, the structure is designed for impacts associated with contact sports, such as football, hockey and lacrosse. In another embodiment, the structure is designed for military/police applications, in which impacts can be blunt forces, from weapons such as clubs, or penetrative forces, from knives, bullets or shrapnel.
In both embodiments, the present invention deploys a structure comprising a rigid shock deflecting outer layer, two semi-rigid shock damping and dissipative middle layers, and a pliable shock absorbing lower layer.
In the sports embodiments, the outer shock-deflecting layer of each structure is a panel or shell composed of a rigid, light-weight, impact-resistant polymer, polymer blend or ceramic material. The outer layer is sized and contoured to match the body part(s) over which it will be worn. Such sizing and contouring can be done generically according to ranges of different body types, e.g., large men's size, medium men's size, small woman's size, etc.
Alternately, the outer layer can be tailored to the body shape, size and contours of specific individual wearer's body. Such tailoring can be done by three-dimensional (3D) optical scanning of the covered body part(s) of the individual and use of the 3D optical scanning data in a 3D printer to produce the corresponding panel/shell structure. This 3D optical scanning-printing methodology can also be used to generate partial “exoskeleton” structures, such as breast-plates or sleeves.
Over joints, such as shoulders, elbows, spine and knees, the outer layer structures comprise overlapping, articulated concave shaped panels, which are elastically interconnected so as to move translationally and rotationally with respect to one another. In one embodiment, the articulated plates/panels are interconnected by a semi-rigid track with intervaled notches or detents, along which each plate/panel can move incrementally in relation to the other interconnected plates/panels.
In the military/police embodiments, the structures of the outer shock-deflecting layer can be the same as those outlined above for the sports embodiments, but they will be composed of a ballistic and puncture resistant material, such as reinforced plastic, reinforced carbon fiber, graphene, titanium metal or aramid fibers.
In both sports and military/police embodiments, the middle layers of the impact resistant structures according to the present invention comprise a deformable, polymer-based microlattice damping layer above a semi-rigid, polyurethane honeycomb lattice dissipating layer. The microlattice material preferably comprises a three-dimensional interconnected network of hollow nanotubes preferably having tube diameters less than 1 mm, the stress buckling of which damps impact forces.
Beneath the microlattice damping layer, the semi-rigid honeycomb dissipating material acts as a constraining layer that sandwiches the microlattice material between itself and the rigid outer deflecting layer, thereby improving the damping characteristics of the microlattice. Preferably, the honeycomb dissipating layer comprises open hexagonal cells less than 0.5 inches in diameter.
The shock absorbing lower layer of the present invention comprises a loose fabric interwoven with carbon nanotube yarn (tube diameter less than 1 mm). In the sports embodiments, the base fabric is preferably woven of a breathable natural or artificial fiber that wicks moisture away from the wearer's skin. In the military/police embodiments, the base fabric is preferably a ballistic and puncture resistant fiber, such as Kevlar®.
As discussed above, the multi-layered composite impact resistant structures of the present invention can be configured as partial exoskeleton panels, which can in turn be removably interconnected to form a complete exoskeleton body armor for the upper torso, arms, lower torso, legs or a combination of some or all of these.
The foregoing summarizes the general design features of the present invention. In the following sections, specific embodiments of the present invention will be described in some detail. These specific embodiments are intended to demonstrate the feasibility of implementing the present invention in accordance with the general design features discussed above. Therefore, the detailed descriptions of these embodiments are offered for illustrative and exemplary purposes only, and they are not intended to limit the scope either of the foregoing summary description or of the claims which follow.
Referring to
As shown in
As shown in
The material composing the rigid, shock-deflecting outer layer 11 of the exemplary breastplate structure 10 can be varied, depending on the application. In sports uses, it is preferably made of a rigid, light-weight, impact-resistant plastic or ceramic material, while in military/police uses, it is preferably composed of a ballistic and puncture resistant material, such as reinforced plastic, titanium metal or aramid fibers.
As shown in
Although the preferred embodiment of the present invention has been disclosed for illustrative purposes, those skilled in the art will appreciate that many additions, modifications and substitutions are possible, without departing from the scope and spirit of the present invention as defined by the accompanying claims.
This application claims the benefits of the filing date of U.S. Provisional Patent Application No. 62/407,204, filed Oct. 12, 2016, the disclosure of which is incorporated herein by reference. The present invention is also related to this inventor's U.S. Pat. No. 9,067,122 B2, “Protective Athletic Garment and Method,” which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62407204 | Oct 2016 | US |