This application relates to accessories for power tools and, more specifically, to a tool bit and/or tool bit holder that includes a damper to make the bit or bit holder resistant to breakage when used in an impact driver.
When an impact driver is utilized to drive fasteners, such as screws, into a workpiece, a large driving torque (e.g., approximately 500 inch-lbs) is generated in rapid cycles (e.g., approximately every 2 milliseconds). Due to the large driving torque and the rapid cycling, current tool bits (e.g., screwdriving bits) and/or bit holders often fail when used with impact drivers. This may be due to the fact that the tool bits and bit holders often have a lower torque rating (e.g., approximately 200 inch-lbs) than the torque rating of the impact driver. It would be desirable to have a tool bit or a holder for a screwdriving bit that can withstand the torque loading of an impact driver.
This application discloses a tool bit and/or a bit holder with a damper, which enables the tool bit and/or bit holder to dissipate large and dynamic torque loading from an impact driver, while smoothly delivering torque, e.g., to a fastener such as a screw. The tool bit or bit holder dissipates a sufficient amount of energy to prevent the peak torque from exceeding the strength of the tool bit or bit holder, without breaking the tool bit or bit holder.
It is an aspect of the present disclosure to provide a tool bit holder that comprises a tool holder body defining an axis and having a first and second end. The first end has a tool receiving bore and the second end has a shank receiving bore. The holder body includes a pocket between the first and second ends. The pocket receives a damping mechanism. The pocket is defined by a plurality of walls that define an overall rectangular bore. At least one wall includes a recess portion. The recess portion receives material from the damping mechanism during deformation of the damping mechanism caused by dynamic torque loading from an impact driver onto the tool bit holder. A shank defines an axis. The shank has a first and second end. The first end of the shank has a mating configuration with the tool holder shank receiving bore and is received in the shank receiving bore of the holder body. The shank first end is rotatable in the shank receiving bore. The shank second end includes a configuration to mate with a chuck or the like of a power tool. A pocket is formed in the shank between the first and second ends. The pocket receives a portion of a damping mechanism. The pocket is defined by a plurality of walls that define an overall rectangular bore. At least one wall includes a recess portion to receive material from the damping mechanism during deformation. A rotation limiting mechanism is coupled with the holder body and the shank. The rotation limiting mechanism limits rotation of the holder body and shank with respect to one another. The rotation limiting mechanism includes at least one pin positioned in a recess, in the holder body and the shank. A damping mechanism is received in the holder body and shank pockets. The damping mechanism has a rectangular configuration that fits into the pockets rectangular bores. The damping mechanism is made from a shape memory material, such as a nitinol alloy. The recess portions are defined by at least one surface extending away from one of the walls. The surface forms an acute angle with respect to one of the walls forming a wedge shaped void to receive the deformed material.
In accordance with a second aspect of the disclosure, an impact resistant tool comprises an active end to drive a fastener. The active end includes a body defining an axis. A bore is in the body to receive a shank. A pocket is formed in the body to receive a damping mechanism. A shank is to be secured with a power tool. The shank includes an end to engage the bore in the body. The shank includes a pocket to receive the damping mechanism. The shank has a limited rotation with respect to the body. A damping mechanism is positioned in the pockets to provide dampening between the body and the shank caused by dynamic torque loading of the tool. The active end may include a tool bit or tool bit holder. The active end may include a fastening bit, including a bit having a flat head, a socket head, a Phillips head, a Torx® head, a star head, a socket head or the like, or a drilling bit. The holder may include, e.g., a pivoting holder, a quick release holder, a drop and load holder, all including a receiving bore. The pockets further comprise at least one transition zone to receive material from the damping mechanism as it deforms in response to dynamic torque applied onto the tool. A mechanism for limiting rotation of the body with respect to the shank is coupled with the body and the shank.
According to a third aspect of the disclosure, a tool bit holder includes a shanking end to couple it with a powered driver. A body is coupled with the shanking end. A tool bit receiver is coupled with the body. The tool bit receiver includes a mechanism to receive a tool bit. A damping mechanism is internally positioned within the body. The damping mechanism provides torsional dampening between the shanking end and the tool bit receiver. The damping mechanism is coupled between the body and the tool bit receiver. The damping mechanism is of a shape memory material, e.g., a nitinol alloy. The damping mechanism enables torsional twisting with respect to one another. A bearing is positioned between the body and the tool bit receiver.
According to a fourth aspect of the disclosure, a screwdriving tool or holder includes an active end and a shanking end separated by a damping mechanism. The active end may include a fastening end, including an end having a flat head, a socket head, a Phillips head, a Torx® head, a star head, a socket head or the like, a drilling end, or a receptacle for receiving a fastening or drilling bit. The shanking end may be hexagonal with a groove to be received in an impact driver. The damping mechanism is a torsional biasing member. The biasing member may include a helical torsion spring, an energy absorbing material, a memory shape metal, or the like.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
Turning to
The holder body 16 has an overall cylindrical configuration illustrated with a hex shaped outer surface. The holder body 16 includes a first end 22 and a second end 24. Also, the holder body 16 defines an axis 26 extending through the body. The first end 22 includes a bit receiving bore 28. Likewise, the second end 24 includes a shank receiving bore 30. The bit receiving bore 28 has a first portion 32 designed to receive a cylindrical magnet 34. A second portion 36 is defined by hexagonal walls to receive a tool bit. Additionally, a groove 38 is positioned toward the end 22 to receive a ring 40. The ring 40 cooperates with detents on the tool bits to maintain the tool bits in the second bore portion 36. It should be understood that, the first end may instead have a bit retention mechanism such as a pivoting holder, a quick-release holder, or a drop and load holder, e.g., as illustrated in Assignee's U.S. Des. Pat. No. D589,319, issued Mar. 31, 2009, entitled “Pivoting Bit Holder” and Assignee's U.S. patent application Ser. No. 11/322,183, filed Dec. 29, 2005, entitled “Universal Tool Bit Shank, which are hereby incorporated by reference
The shank receiving bore 30 is defined by a right cylindrical wall 42 to receiving a portion of the shank 18. The bores 28 and 30 terminate inside of the body 16. A pocket 44 is formed between the bores 28 and 30. The pocket 44 may be a blind pocket or it may extend from one bore to the other. The pocket 44 is defined by a plurality of walls 46. The walls 46 are substantially identical and define a polygonal cross-section 48, e.g., a rectangular or square cross-section. The pocket 44 receives a portion of the damping mechanism 50. The walls 46 include recesses or transition portions 52, which will be described in more detail below. The pocket 44 extends from a desired point along the wall 42 toward the second bore 30 as seen in
Additionally, the second end includes a receiving portion 58 to receive a cap 60 that holds the shank 18 and holder body 16 together. Also, the receiving portion 58 includes a pair of apertures 62 and 64 that receive pins 66 that couple with the shank 18 to limit the rotation of the shank 18 in the holder body 16.
The shank 18 includes a first end 68 and the shanking end 14. The first end 68 has an overall cylindrical outer surface in the shape of a right cylinder. The cylinder 70 includes a pair of smaller cylindrical portions 72 and 74 that receive bearing sleeves 76. The bearing sleeves 76 enhance the rotation of the shank 18 with respect to the holder body 16. The first end 68 includes a pocket 78. The configuration of pocket 78 is like that of pocket 44. Accordingly, pocket 78 includes walls 80 that define a bore of polygonal cross-section, e.g., rectangular or square. The pocket receives 78 a portion of the damping mechanism 50. The walls 80 include recesses or transition portions 82, which will be described in more detail below. The pocket 78 extends from a desired point along the wall toward the first end 68.
Additionally, the cylindrical portion 74 includes a pair of recesses or stops 88. The recesses 88 receive the pins 66 to limit the rotation of the shank 18 with respect to the body 16. The recesses 88 act like a stop to prohibit movement once they encounter the pins 66. Thus, the pins 66 and recesses 88 act as a rotational limiting device.
The damping mechanism 50 comprises a damping bar having a cross-sectional shape that is substantially similar to the cross-sectional shape of pockets 44 and 78, e.g., substantially rectangular or square. The bar has a length set as a minimum that maintains the required cycled life. The damping mechanism 50 has surfaces 90 that are substantially flat planar surfaces. The damping mechanism 50 is positioned into the pockets 44 and 78 as illustrated in
For example, if the bar is made from nitinol alloy, the energy may be dissipated as the material transitions from austentite to martensite and back to martensite. Initially, the crystal structure is in an austenite phase. When stress develops, the material transitions to martensite. Martensite is unstable and when the stress is removed it returns to the austenite phase. A torque versus angle of twist graph shows a typical nitinol torsion bar as it is twisted to some arbitrary angle (see
The transition portions 52, 82 reduce the stress concentrations that develop in the torsion bar at the bar-shank interface and bar-holder interface. The gradual transitions from the rigidly mounted ends to the free section of the bar help support the bar as it is twisted to its maximum angle. Without the transition portions 52, 82, the same region will take the entire load as it is twisted. But, with this type of support, the load is distributed over a much larger area.
The pocket walls 46 each include a recess or transition portion 52. The recesses 52 are defined by a pair of surfaces 54 and 56. The surfaces 54 and 56 extend outwardly from the axis of the holder body 16. Surface 54 has an overall triangular shape and is positioned at the vertex of adjoining walls 46. Surface 56 has an overall rectangular shape. It should be realized that other surface shapes may be used as long as they provide an increased surface area. The surfaces 54 and 56 are angled at acute angles with respect to the axis and walls 46. The distance from the walls 46 to the surfaces 54, 56 increases towards the open end of the pocket as illustrated in
The pocket walls 80 each include a recess or transition portion 82. The recesses 82 are defined by a pair of surfaces 84 and 86. The surfaces 84 and 86 extend outwardly from the axis of the holder body 16. Surface 84 has an overall triangular shape and is positioned at the vertex of adjoining walls 80. Surface 86 has an overall rectangular shape. It should be realized that other surface shapes may be used as long as they provide an increased surface area. The surfaces 84 and 86 are angled at acute angles with respect to the axis and walls 80. The distance from the wall 80 to the surfaces 84, 86 increases towards the open end of the pocket as illustrated in
Turning to the figures,
The body 114 may be welded or connected with the shanking end 112. Alternatively, the body 114 and shanking end 112 may be a unitary single piece. The body 114 includes a projecting portion 120. The projecting portion 120 has a right cylindrical shape having a smooth outer surface. A circular bore 122 is formed into the projecting member 120. The bore 122 extends through the projecting member 112 into the body 114 as shown in
The damping mechanism 126 has an overall polygonal, e.g., rectangular or square, cross-sectional shape with chamfered corners 128. The damping mechanism 126 has a desired length as well as height and width. The damping mechanism 126 cross sectional dimension is sized so that it is press fit into the extending bore 124 to secure the damping mechanism 126 and the holder body 114 together. The damping mechanism 126 provides torsional twisting movement. The damping mechanism 126 is manufactured from a memory metal material, such as nitinol. This material provides desired dampening characteristics. The memory metal material provides plastic deformation when torque is present. It provides damping from the impact driver to the tool bit. When the torque is removed, the memory metal material springs back to its original position.
Further, other dampers may be utilized to provide the desired characteristics. These dampers may be springs of various types, such as helical, leaf or the like. Additionally, polymeric materials may be used.
The tool bit receiving member 116 has an overall right circular cylindrical shape. The tool receiving member 116 includes two bores 130 and 132, one on each end of the tool bit receiving member 116. The bore 130 is like the bore 122 including a circular cross-section bore. A polygonal, e.g., rectangular or square, shaped bore 134 extends from the terminus of the bore 30 (see
Additionally, other shaped bores may be used to receive the damping mechanism. The damping mechanism could be a right circular cylinder press fit into circular bores. Further, the damping mechanism could be a flat rectangular bar or leaf, press fit into a mating rectangular shaped bore.
A bearing sleeve 140 is positioned on the projecting portion 120 between the body 114 and the bit receiving member 116. The bearing sleeve 140 is manufactured from an oil impregnated material such as bronze. However, it could be manufactured from various types of plastics or metal material depending upon the design. The bearing sleeve 140 provides for smooth rotation of the bit receiving member 116 with respect to the body 114. The bearing sleeve 40 fits into the bore 130 of the bit receiving member 116.
The damping mechanism 126 is positioned within the body and bit receiving member 116. The damping mechanism 126 is press fit into the bore 124 of body 114 and bore 134 bit receiving member 116. The damping mechanism 126 holds the two members together as illustrated in
The damping mechanism 216 is illustrated as a torsional spring. The damping mechanism 216 is secured at one end to the active end 212 and at its other end to the shanking end 214. The damping mechanism 216 is a discreet member and has desired characteristics to provide dampening to dissipate energy from the impact driver to the tool bit. The damping mechanism may be secured to the active end 212 and shanking end 214 by welding, adhesives, interference fit, crimping, or fitting as described above or the like.
Additionally, the damping mechanism 216′ could be manufactured from memory metal material, such as nitinol, that provides desired dampening characteristic. In this event, the nitinol portion is secured between the active end 212 and the shanking end 214 as illustrated in
Turning to
Turning to
The damping mechanism 236 has a plurality of ears 246 that fit into the valleys 244 so that the damping mechanism 236 meshes in the bore 238. The body 248 of the damper includes a bore 250 to receive the active end 232. The damping mechanism 236 is manufactured from a soft elastic material, such as rubber, to enable it to absorb and dissipate the energy. Thus, as the impact driver is activated and the shanking end rotates, the damping mechanism 236 is compressed to absorb the energy. Additionally, torque may be applied to the active end 232 when the driven fastener bottoms out into the workpiece. Accordingly, after the torque is released, the damping mechanism 236 rotates and returns to its original shape.
Moving to
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims priority, under 35 U.S.C. §119(e), to U.S. Provisional Application No. 61/059,363, filed Jun. 6, 2008, titled “Screwdriving Tool with Damper,” and U.S. Provisional Application No. 61/103,352, filed Oct. 7, 2008, titled “Tool Holder”, which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2409385 | Pletcher | Oct 1946 | A |
3744350 | Raff | Jul 1973 | A |
3832916 | Schoeps | Sep 1974 | A |
3859821 | Wallace | Jan 1975 | A |
4362161 | Reimels et al. | Dec 1982 | A |
4572041 | Rissmann | Feb 1986 | A |
4619567 | Campbell | Oct 1986 | A |
4774864 | Dossier | Oct 1988 | A |
4830001 | Walus | May 1989 | A |
4979408 | Hayashi | Dec 1990 | A |
5072650 | Phillips | Dec 1991 | A |
5123313 | Andersson | Jun 1992 | A |
5309799 | Jore | May 1994 | A |
5540527 | Bohnet et al. | Jul 1996 | A |
5704261 | Strauch et al. | Jan 1998 | A |
5737983 | Rennerfelt | Apr 1998 | A |
5746298 | Krivec et al. | May 1998 | A |
6053675 | Holland et al. | Apr 2000 | A |
RE36797 | Eggert et al. | Aug 2000 | E |
6123157 | Barnes | Sep 2000 | A |
6321855 | Barnes | Nov 2001 | B1 |
6330846 | Strauch | Dec 2001 | B1 |
6345560 | Strauch et al. | Feb 2002 | B1 |
6364318 | Bedi et al. | Apr 2002 | B1 |
6487943 | Jansson et al. | Dec 2002 | B1 |
6568693 | Glass | May 2003 | B2 |
6640911 | Lieser et al. | Nov 2003 | B2 |
6644150 | Chen | Nov 2003 | B2 |
6918913 | White | Jul 2005 | B2 |
RE38778 | Eggert et al. | Aug 2005 | E |
D516894 | Singh | Mar 2006 | S |
7086813 | Boyle et al. | Aug 2006 | B1 |
7107883 | Casutt | Sep 2006 | B2 |
7150680 | White | Dec 2006 | B2 |
7197968 | Bubel | Apr 2007 | B2 |
7261023 | Taguchi | Aug 2007 | B2 |
7318691 | Osburn | Jan 2008 | B2 |
D589319 | Peters | Mar 2009 | S |
20020135140 | Mitchell et al. | Sep 2002 | A1 |
20040099106 | Strauch et al. | May 2004 | A1 |
20060254786 | Murakami et al. | Nov 2006 | A1 |
20070114050 | Baumann et al. | May 2007 | A1 |
20080060849 | Entchev et al. | Mar 2008 | A1 |
20080107491 | Osburn | May 2008 | A1 |
20080217870 | Shibata | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
23 35 184 | Jan 1975 | DE |
34 37 083 | Apr 1986 | DE |
41 43 218 | Sep 1992 | DE |
198 43 452 | Mar 2000 | DE |
41 43 678 | Mar 2005 | DE |
20 2005 017 686 | Feb 2006 | DE |
10 2006 021 506 | Nov 2006 | DE |
10 2005 057 368 | Jun 2007 | DE |
0 988 134 | May 1998 | EP |
04-141332 | May 1992 | JP |
2007-190666 | Aug 2007 | JP |
WO 2007104286 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090311061 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61059363 | Jun 2008 | US | |
61103352 | Oct 2008 | US |