In order to provide suitable and operational weapon systems for the military it is necessary to test weapons in circumstances simulating conditions as close as possible to actual conditions. For example, it would be desirable to test missiles hitting actual targets. Unfortunately, the missile and target are frequently destroyed and usable laboratory data is difficult to gather.
To test missiles actually striking targets, a gas powered gun may be used to fire a missile at a target in a laboratory environment. The gas gun may be configured so as to fire the missile precisely, arriving with the same properties at the target as if it were actually fired at the target. But the acceleration of the missile leaving the gas gun is significantly higher than accelerations experienced by the missile in actual flight, frequently causing a premature detonation of the missile or a failure of the missile to detonate. In addition, the deceleration of the missile after leaving the gas gun may also cause a premature detonation of the missile. Therefore, there is a need for a replacement nose assembly for experimental use to allow the missile to strike a target without premature detonation and thus allow the collection of valid and useful laboratory data.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation. In the FIGURE, the same reference numbers are used to identify the same components.
Embodiments of the invention include an apparatus and a method to initiate a detonation utilizing an impact switch. A nose assembly is mounted upon a missile or other kind of explosive device. Within the nose assembly conductive elements are separated from one another. The conductive elements are electrically connected to a fuze within the weapon. Upon an impact, the conducting elements within the assembly are forced together thereby completing a circuit in the fuze and initiating a detonation. A method of initiating a detonation utilizes an impact switch within which forcing conducting elements together initiates a detonation.
An embodiment of the invention includes a conducting bottom ring 140 fixed to the nose bottom 120 and positioned around the extended section 130 of nose bottom 120 in the manner shown in the figure. In addition, the end of a first conductor 170 leading to the fuze (not shown) is attached to the bottom ring 140. In one embodiment the first conductor 170 is attached to the bottom ring 140 by soldering, but other methods of connection may be contemplated by those of skill in the art. A conducting top ring 160 is positioned adjacent to the nose top 110 and is also positioned so as to fit around the extended section 130 of nose bottom 120. One end of a second conductor 180 leading to the fuze (not shown) is attached to the top ring 160. The conductors 170 and 180 are constructed from a conducting material such as, for example, copper wire. The conducting rings 140 and 160 are constructed of a conducting material suitable to the accelerations experienced by the nose assembly 100, such as, but not limited to copper, brass, steel, aluminum, bronze, tin, or an electrically conducting composite.
An embodiment of the invention includes an insulating spacer ring 150, positioned upon the extended section 130 of nose bottom 120 between the top ring 160 and the bottom ring 140. The spacer ring 150 is dimensioned and configured so as to keep the conducting rings 140 and 160 from touching one another inadvertently but so that the rings can touch upon sufficient impact. The spacer ring 150 is constructed of an insulating material such as, but not limited to acrylic, glass, ceramic, lexan, PVC, PolyEthylene, Polypropylene HDPE, UHMW, sapphire, fiberglass, glass or aramid composites, or phenolic and phenolic composites.
The nose top 110 and the nose bottom 120 are fixed to one another, creating a sealed enclosure to protect the assembly from inadvertent contact of the conducting rings 140 and 160 or shorting of the conductors 170 and 180 during handling and launch of the missile. The nose top 110 and nose bottom 120 are joined or fixed together utilizing a fixative agent such as, but not limited to glue, epoxy, cynoacrylate, organic bonding agents (such as gorilla glue), silicone, RTV, or molten plastic (as in plastic welding). Upon impact with a target or another surface, the bottom ring 140 and the top ring 160 are crushed together and forced around the spacer 150 to touch one another, electrically connecting the conductors 170 and 180. The conductors 170 and 180, being connected to a fuze, complete a circuit to the fuze thereby causing a detonation.
Another embodiment of the invention includes a method for initiating a detonation. The embodiment includes providing an impact switch with a nose assembly 100 having a nose bottom 120 and a nose top 110 that are substantially hollow, the nose bottom 120 having an extended section 130 that is dimensioned and configured to reside within the nose top 110, a conducting bottom ring 140 connected to the nose bottom 120 and positioned upon the extended section 130 of the nose bottom 120, the conducting bottom ring 120 connected to an end of a first conductor 170 of a fuze, a conducting top ring 160 positioned adjacent to the nose top 110 and positioned upon the extended section 130 of the nose bottom 120, the conducting top ring 160 connected to an end of a second conductor 180 of the fuze, an insulating spacer ring 150 positioned between the top ring 160 and the bottom ring 140 wherein the nose top 110 and the nose bottom 120 are fixedly connected to one another; forcing by an impact the bottom ring 140 and the top ring 160 to touch one another; and connecting electrically the first and second conductors (170 and 180), thereby initiating a detonation.
It is to be understood that the foregoing detailed description is exemplary and explanatory only and is not to be viewed as being restrictive of embodiments of the invention, as claimed. The invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive. Thus the scope of this invention should be determined by the appended claims, drawings and their legal equivalents.
This application is a continuation of U.S. patent application Ser. No. 11/169,335, filed Jun. 27, 2005, now abandoned.
The invention described herein may be manufactured and used by or for the government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
2887056 | Perret | May 1959 | A |
3158705 | Bliss | Nov 1964 | A |
3380384 | Kaiser et al. | Apr 1968 | A |
3577923 | Perkins et al. | May 1971 | A |
3621163 | Hitchcock | Nov 1971 | A |
3715985 | Fugelso | Feb 1973 | A |
3783791 | Backstein et al. | Jan 1974 | A |
3903805 | Hovnanian | Sep 1975 | A |
4036143 | Nordgren et al. | Jul 1977 | A |
4174666 | Lucey et al. | Nov 1979 | A |
4581507 | Bai et al. | Apr 1986 | A |
5088413 | Huber et al. | Feb 1992 | A |
5387257 | Tari et al. | Feb 1995 | A |
5853149 | Vo et al. | Dec 1998 | A |
5914459 | Teske et al. | Jun 1999 | A |
6105504 | Ayres et al. | Aug 2000 | A |
Number | Date | Country | |
---|---|---|---|
Parent | 11169335 | Jun 2005 | US |
Child | 12128549 | US |