The present invention relates to an impact tool head assembling mechanism.
Impact tools are widely used in engineering operations such as building construction or vehicle maintenance. The types of impact tools include power type and manual type. The tool head such as that in TWI468268 or TWM507829, is usually detachably and removably connected to the impact tool, and can be replaced according to different operation requirements. The conventional impact tool is provided with a connecting head, the tool head is provided with a radial flange that can be blocked by a retaining mechanism (such as a steel ball) to restrict the tool head. The tool head and the connecting head can be stably connected as their radial dimensions match with each other. However, after long-term use, the radial flange is easily deformed by repeated impact of the retaining mechanism, thereby expanding the radial dimension of the radial flange or changing the shape of the radial flange so that the connecting head can be stuck in the connecting head, which results in inconvenience in use.
The present invention is, therefore, arisen to obviate or at least mitigate the above-mentioned disadvantages.
The main object of the present invention is to provide an impact tool head assembling mechanism which can prevent an impact tool head from being stuck due to deformation.
To achieve the above and other objects, the present invention provides an impact tool head assembling mechanism is provided, including: an engaging sleeve, being disposed on a front end of an impact tool, including a tubular wall and at least one projection, the tubular wall defining an axial direction, the at least one projection being protrudingly and retractably disposed on an inner wall of the tubular wall; an impact tool head, including a rod body and a flange radially protruding from the rod body, the flange including an inclined surface facing toward the front end and an outermost peripheral edge, a contact position being defined as a position where the inclined surface contact with the at least one projection; wherein a reference plane is defined as passing through the outermost peripheral edge and perpendicular to the axial direction, and an included angle between a line which is from the contact position to the outermost peripheral edge and the reference plane is between 25 and 65 degrees.
To achieve the above and other objects, the present invention provides an impact tool head assembling mechanism is provided, including: an engaging sleeve, being disposed on a front end of an impact tool, including a tubular wall and at least one projection, the tubular wall defining an axial direction, the at least one projection being protrudingly and retractably disposed on an inner wall of the tubular wall; an impact tool head, including a rod body and a flange radially protruding from the rod body, the flange including an inclined surface facing toward the front end and an outermost peripheral edge, a contact position being defined as a position where the inclined surface contact with the at least one projection; wherein each of the at least one projection is a ball member, as viewed in the axial direction, a ratio of a distance between the contact position and the outermost peripheral edge to a radius of the at least one projection is between 0.1 and 0.6.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment(s) in accordance with the present invention.
Please refer to
The engaging sleeve 10 is disposed on a front end of an impact tool 2 and includes a tubular wall 11 and at least one projection 12. The tubular wall 11 defines an axial direction L, and the at least one projection 12 is protrudingly and retractably disposed on an inner face 111 of the tubular wall 11. The impact tool head 20 includes a rod body 21 and a flange 22 radially protruding from the rod body 21. The flange 22 includes an inclined surface 221 facing toward the front end and an outermost peripheral edge 222, and a contact position P is defined as a position where the inclined surface 221 contact with the at least one projection 12. A reference plane F is defined as passing through the outermost peripheral edge 222 and perpendicular to the axial direction L. An included angle α between a line which is from the contact position P to the outermost peripheral edge 222 and the reference plane F is between 25 and 65 degrees. Whereby, the flange 22 cannot be stuck by the tubular wall 11 due to radial deformation of the flange 22.
In this embodiment, the included angle α is 45 degrees; the inclined surface 221 is a flat surface, and the flat surface has a slope, preferably, between 0.5 and 3 so that there is a suitable distance between the contact position P and the outermost peripheral edge 222. The inclined surface 221 and the at least one projection 12 are preferably in point contact, and thus the contact area of the at least one projection 12 and the inclined surface 221 is small so that the impacted deformation of the flange 22 is reduced and it allows more deformation tolerance. In other embodiments, the inclined surface may be a convex surface or a concave surface.
Each of the at least one projection 12 is a ball member. As viewed in the axial direction, a ratio of a distance D between the contact position P and the outermost peripheral edge 222 to a radius of the at least one projection 12 is between 0.1 and 0.6. With the radius of the at least one projection 12 which is relatively larger, the at least one projection 12 exerts a smaller impact force on the inclined surface 221 in the axial direction L so that the inclined surface 221 is uneasy to deform. Specifically, a diametric dimension of the flange 22 is 1.3 to 1.8 times a diametric dimension of the rod body 21 so as to stably abut against the at least one projection 12. The hardness of the at least one projection 12 (for example, HRC60) is greater than the hardness of the flange 22 (for example, HRC50), thus having good structural strength for stably abutting the flange 22; the ball member has a diameter from 6 to 10 mm; the inclined surface 221 includes an upper peripheral edge 223, a distance between the upper peripheral edge 223 and the outermost peripheral edge 222 is from 1.5 to 5.0 mm; a distance between the contact position P and the outermost peripheral edge 222 is from 0.75 to 2.5 mm. When the impact tool head 20 is forced to impact outward, the ball member can contact the inclined surface 221 in a specific range of the flange 22, the inclined surface 221 can occurs within the specific range of the flange 22 so that the flange 22 cannot be stuck by the tubular wall 11, as shown in
The engaging sleeve 10 further includes a receiving hole 13 expanding toward the front end, and the impact tool head 20 further includes an abutting surface 23 receivable within the receiving hole 13. A shape of the abutting surface 23 and a shape of the receiving hole 13 are complementary with each other so that the impact tool head 20 and the receiving hole 13 fittingly contact each other and is not easy to be damaged and so that the force transmission is efficient. Fittingly contact of the impact tool head 20 and the receiving hole 13 each other provides large contact area for distributing force on the impact tool 2, and the abutting surface 23 facilities assembling of the flange 22 to move past the at least one projection 12.
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.