1. Field of the Invention
The present invention relates to an impact tool which performs a predetermined operation on a workpiece by striking movement of a tool bit in its axial direction.
2. Description of the Related Art
Japanese laid-open patent publication No. 2008-73836 discloses a hammer drill as an example of an impact tool in which a striking mechanism part is driven via a swinging member which swings in the axial direction of a tool bit by the rotating output of a motor and the striking mechanism part linearly drives (strikes) a tool bit. The known hammer drill includes a counter weight that reduces vibration caused when the tool bit is driven. In the known hammer drill, the counter weight is disposed between an outer housing for forming an outer shell of the hammer drill and an inner housing for holding the striking mechanism part within the outer housing. Specifically, the counter weight is disposed outside the inner housing and configured to be moved in the axial direction of the tool bit by receiving power from the swinging member and thereby reduce vibration.
In this construction in which the counter weight is disposed outside the inner housing, however, it is necessary to provide clearances between the counter weight and the inner housing and between the counter weight and the outer housing in order to avoid interference in a direction transverse to the axial direction of the tool bit. This is an impediment to size reduction of the tool body.
Japanese laid-open patent publication No. 2008-73836
Accordingly, it is an object of the present invention to provide an impact tool in which a tool body can be effectively reduced in size.
In order to solve the above-described problem, in a preferred embodiment according to the present invention, an impact tool which performs a predetermined operation on a workpiece by striking movement of a tool bit in an axial direction of the tool bit is provided. The impact tool has a swinging member that is driven by the motor and swings in the axial direction of the tool bit, a striking mechanism that is driven by components of linear motion in the axial direction of the tool bit in the swinging motion of the swinging member, a connecting part that connects the swinging member and the striking mechanism, a housing member that houses at least the connecting part in an internal space, and a counter weight that is disposed within the internal space of the housing member and reduces vibration caused when the tool bit is driven. The “connecting part” in this invention refers to a member for movably connecting the swinging member and a cylindrical piston which is driven by the swinging member and linearly moves, and its surrounding region. The “internal space” in this invention is preferably formed as a space which is open in part in the axial direction of the tool bit and the circumferential direction. Therefore, the counter weight disposed inside the housing member is partly exposed from the housing member.
In the construction as described above in which the counter weight is disposed inside the housing member, it is only necessary to provide a clearance between the counter weight and the housing member to avoid interference. Therefore, compared with the known construction in which the counter weight is disposed between the outer housing for forming the outer shell of the impact tool and the inner housing, the number of clearances required to avoid interference can be reduced, so that the tool body can be reduced in size.
According to a further embodiment of the present invention, the counter weight is connected to the housing member and can rotate on a pivot shaft and the counter weight is connected to the swinging member on the opposite side of a pivot of the swinging member from the connecting part.
According to this embodiment, the counter weight can be driven in a direction opposite to the direction in which the striking mechanism strikes the tool bit. Therefore, the counter weight can effectively reduce vibration caused by striking the tool bit.
According to a further embodiment of the present invention, the counter weight is formed in one piece. The method of “forming in one piece” in this invention may include sintering, cutting, forging and casting.
According to this embodiment, the counter weight having higher durability can be obtained by forming it in one piece.
According to a further embodiment of the present invention, the counter weight is formed in a closed ring-like form. The “closed ring-like form” literally refers to a structure having no opening in the circumferential direction and the shape in the circumferential direction is not particularly limited and suitably includes circular, oval and non-circular forms.
According to this embodiment, by forming the counter weight in a closed ring-like form, durability of the counter weight can be further enhanced.
According to a further embodiment of the present invention, the striking mechanism and the swinging member are assembled into an assembly via the connecting part in advance.
According to this embodiment, the striking mechanism and the swinging member which are assembled into an assembly in advance can be handled as one component part, so that ease of mounting and ease of repair can be increased.
According to a further embodiment of the present invention, a metal member is disposed between sliding surfaces of the housing member and the counter weight which rotates on the pivot shaft with respect to each other.
According to this embodiment, the sliding surfaces can be protected by the metal member. Therefore, when the housing member is formed of soft metal materials such as aluminum in order to make the tool body lighter, while the counter weight is formed of high-density sintered alloy in order to make it heavier, the metal member may be provided and configured to be fixed to the housing member and to rotate with respect to the counter weight, so that the sliding surface of the soft metal housing member can be protected from wear.
According to a further embodiment of the present invention, the housing member and the metal member have respective shaft holes through which the pivot shaft is inserted. Further, the metal member is positioned with respect to the housing member such that a center of the shaft hole of the metal member is aligned with a center of the shaft hole of the housing member.
According to this embodiment, it is not necessary to take the trouble of centering the shaft hole of the metal member with respect to the shaft hole of the housing member, so that the pivot shaft can be easily mounted.
According to a further embodiment of the present invention, the impact tool has an outer housing that is disposed outside the housing member and houses the housing member. The housing member and the outer housing have respective fitting surfaces extending around an axis of the tool bit, and an O-ring is disposed between the fitting surfaces and extends in the circumferential direction. The O-ring is arranged to be partially displaced (skewed) in the axial direction of the hammer bit.
According to this embodiment, when a clearance between the fitting surfaces of the housing member and the outer housing in the circumferential direction is sealed by the O-ring in order to prevent leakage of lubricant sealed in the outer housing, the O-ring can be arranged to be displaced (inclined) in the axial direction of the tool bit with respect to a transverse plane transverse to the axial direction of the tool bit 119. Thus, a sealing surface can be selected to avoid an inadequate region in terms of shape as the sealing surface.
According to this invention, an impact tool in which a tool body can be effectively reduced in size is provided. Other objects, features and advantages of the present invention will be readily understood after reading the following detailed description together with the accompanying drawings and the claims.
Each of the additional features and method steps disclosed above and below may be utilized separately or in conjunction with other features and method steps to provide and manufacture improved impact tools and method for using such impact tools and devices utilized therein. Representative examples of the present invention, which examples utilized many of these additional features and method steps in conjunction, will now be described in detail with reference to the drawings. This detailed description is merely intended to teach a person skilled in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed within the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe some representative examples of the invention, which detailed description will now be given with reference to the accompanying drawings.
A first embodiment of the present invention is now described with reference to
The body 103 mainly includes a motor housing 105 that houses a driving motor 111, and a gear housing 107 that houses a motion converting mechanism 113, a striking mechanism 115 and a power transmitting mechanism 117. The driving motor 111 and the gear housing 107 are features that correspond to the “motor” and the “outer housing”, respectively, according to this invention. The handgrip 109 extends in a vertical direction transverse to the axial direction of the hammer bit 119 and is configured as a closed loop (D-shaped) handle having upper and lower ends connected to the body 103. A battery mounting part 109A is formed on a lower end of the handgrip 109 and a rechargeable battery pack 110 from which the driving motor 111 is powered is detachably mounted on the battery mounting part 109A.
The motion converting mechanism 113 mainly includes a driving gear 121, a driven gear 123, an intermediate shaft 125, a rotating element 127 and a swinging ring 129. The driving gear 121 is a small bevel gear which is fitted on an output shaft 112 of the driving motor 111 extending in a vertical direction transverse to the axial direction of the hammer bit 119 and is rotated in a horizontal plane by the driving motor. The driven gear 123 is a large bevel gear which engages with the driving gear 121 and rotates together with the intermediate shaft 125 which is disposed in parallel to the axial direction of the hammer bit 119. The rotating element 127 rotates together with the intermediate shaft 125, and the swinging ring 129 is rotatably mounted on the outer periphery of the rotating element 127 via a bearing 126. The swinging ring 129 is provided and configured as a swinging member which is caused to swing in the axial direction of the hammer bit 119 by rotation of the rotating element 127. The swinging ring 129 has a swinging rod 128 extending upward therefrom in a direction transverse to the axial direction of the hammer bit 119. The swinging rod 128 is rotatably connected to a rear end (bottom) of the cylindrical piston 130 having a bottom via a cylindrical connecting shaft 124. The swinging ring 129 is a feature that corresponds to the “swinging member” according to the present invention.
A U-shaped connecting part (crevice) 130b which is generally U-shaped in plan view is integrally formed on a rear end (left end as viewed in
The striking mechanism 115 mainly includes a driving element in the form of the cylindrical piston 130 having a bottom, a striking element in the form of a striker 143 that is slidably disposed within the bore of the cylindrical piston 130, and an intermediate element in the form of an impact bolt 145 that is slidably disposed within the tool holder 137. The striker 143 is driven by the action of an air spring (pressure fluctuations) within an air chamber 130a of the cylindrical piston 130 which is caused by the sliding movement of the cylindrical piston 130. The striker 143 then collides with (strikes) the impact bolt 145 and transmits the impact (striking) force caused by the collision to the hammer bit 119. The striking mechanism 115 is a feature that corresponds to the “striking mechanism” according to the present invention.
The power transmitting mechanism 117 mainly includes a first transmission gear 131 that is mounted on the intermediate shaft 125 on the opposite side of the swinging ring 129 from the driven gear 123, a second transmission gear 133 that engages with the first transmission gear 131 and is caused to rotate around the axis of the hammer bit 119, and a final shaft in the form of the tool holder 137 that is caused to rotate around the axis of the hammer bit 119 together with the coaxially-mounted second transmission gear 133. The rotating output of the intermediate shaft 125 which is rotationally driven by the driving motor 111 is transmitted from the first transmission gear 131 to the hammer bit 119 held by the tool holder 137 via the second transmission gear 133. The tool holder 137 is generally cylindrical and held by the gear housing 107 such that it can rotate around the axis of the hammer bit 119. The tool holder 137 has a front cylindrical part which houses and holds a shank of the hammer bit 119 and the impact bolt 145 and a rear cylindrical part which extends rearward from the front cylindrical part and houses and holds the cylindrical piston 130 such that the piston can slide therein.
In the hammer drill 101 constructed as described above, when the driving motor 111 is driven by a user's depressing operation of the trigger 109a and the intermediate shaft 125 is rotationally driven, the cylindrical piston 130 is caused to linearly slide within the tool holder 137 by the swinging movement of the swinging ring 129. The striker 143 is caused to reciprocate within the cylindrical piston 130 by air pressure fluctuations or the action of an air spring within the air chamber 130a of the cylindrical piston 130 which is caused by the sliding movement of the cylindrical piston 130. The striker 143 then collides with the impact bolt 145 and transmits the kinetic energy caused by the collision to the hammer bit 119.
When the first transmission gear 131 is caused to rotate together with the intellnediate shaft 125, the tool holder 137 is caused to rotate in a vertical plane via the second transmission gear 133 engaged with the first transmission gear 131, which in turn causes the hammer bit 119 held by the tool holder 137 to rotate together with the tool holder 137. Thus, the hammer bit 119 performs a hammering movement in the axial direction and a drilling movement in the circumferential direction, so that a drilling operation is performed on a workpiece (concrete).
Further, the hammer drill 101 according to this embodiment has a mode switching clutch 139 for switching not only to hammer drill mode in which the hammer bit 119 performs hammering movement and drilling movement in the circumferential direction, but also to drilling mode in which the hammer bit 119 performs only drilling movement. The mode switching clutch 139 is spline-fitted on the intermediate shaft 125 such that it can move in the axial direction. The mode switching clutch 139 can be moved in the axial direction by external manual operation such that it is switched between a power transmission state in which clutch teeth of the mode switching clutch 139 are engaged with clutch teeth of the rotating element 127 and rotation of the intermediate shaft 125 is transmitted to the rotating element 127, and a power transmission interrupted state in which the clutch teeth are disengaged and power transmission is interrupted. The hammer drill mode can be selected by switching to the power transmission state, and the drill mode can be selected by switching to the power transmission interrupted state.
The hammer drill 101 has a vibration reducing mechanism for reducing impulsive and cyclic vibration caused in the axial direction of the hammer bit 119 or the direction of axis of striking motion. The vibration reducing mechanism according to this embodiment mainly includes a counter weight 155 which is driven by the swinging ring 129. The counter weight 155 is a feature that corresponds to the “counter weight” according to the present invention.
As shown in
As shown in
The inner housing 151 is fitted into a rear opening 107a (see
Further, as shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
In this embodiment, as shown in
As shown in
In the hammer drill 101 constructed as described above, the counter weight 155 has a vibration reducing function of reducing impulsive and cyclic vibration caused in the axial direction of the hammer bit 119 during operation. The counter weight 155 is connected to the swinging ring 129 at a position displaced about 180 degrees in the circumferential direction from the connecting shaft 124 which connects the swinging ring 129 and the piston 130. Specifically, the counter weight 155 is connected to the swinging ring 129 on the opposite side of the pivot of the swinging ring 129 from the connecting shaft 124. Therefore, when the piston 130 slides toward the striker 143 within the tool holder 137, the counter weight 155 rotates in a direction opposite to the sliding direction of the striker 143, so that vibration caused in the hammer drill 101 is reduced in the axial direction of the hammer bit 119.
In this embodiment, the counter weight 155 is disposed inside the inner housing 151. With this construction, compared with a construction in which the counter weight 155 is disposed outside the inner housing 151 (between the inner housing 151 and the gear housing 107), for example, it is not necessary to provide a clearance between the inner housing 151 and the gear housing 107, so that the body 103 can be reduced in size in its radial direction (transverse to the axial direction of the hammer bit). Specifically, in the construction in which the counter weight 155 is disposed outside the inner housing 151, it is necessary to provide clearances between the counter weight 155 and the inner housing 151 and the gear housing 107 to avoid interference. According to this embodiment, however, it is only necessary to provide a clearance between the counter weight 155 and the inner housing 151 to avoid interference. Thus, the number of clearances required to avoid interference can be reduced, so that the body 103 can be effectively reduced in size.
In this embodiment, the annular region of the inner housing for holding the tool holder 137 is formed as the annular tool holder holding part 152 separate from the inner housing 151, and can be mounted to the inner housing 151 after the counter weight 155 is mounted inside the inner housing 151. Therefore, the counter weight 155 can be mounted inside the inner housing 151 simply by moving the counter weight 155 in the axial direction of the hammer bit 119 without need of deforming. Therefore, the counter weight 155 can be formed in one piece having a closed ring-like form, by sintering, cutting, forging or other similar methods, so that the counter weight 155 having higher durability can be obtained.
According to this embodiment, the swinging ring 129 on the intermediate shaft 125 and the cylindrical piston 130 are assembled into an assembly in advance, and this assembly is mounted to the inner housing 151. By forming such an assembly, all components relating to power transmission from the intermediate shaft 125 to the cylindrical piston 130 can be handled as one component part, so that ease of mounting and ease of repair can be increased.
According to this embodiment, the iron sheet intervening member 163 is disposed between the sliding surfaces of the mounting part 155c of the counter weight 155 and the pin holding part 151e of the inner housing 151 and fixed to the pin holding part 151e in order to protect the sliding surfaces of the pin holding parts 151e from wear. Therefore, the inner housing 151 can be formed of lightweight metal such as aluminum in order to make the tool body 103 lighter.
Further, according to this embodiment, when the intervening member 163 is fitted onto the pin holding part 151e from above, the intervening member 163 is positioned in the vertical direction and in the transverse direction such that the center of the pin hole 163a of the intervening member 163 is aligned with the center of the pin hole 151f of the pin holding part 151e. Therefore, when the mounting part 155c of the counter weight 155 is mounted to the pin holding parts 151e of the inner housing 151 by the mounting pin 159, it is not necessary to take the trouble of centering the pin hole 163a of the intervening member 163 with respect to the pin hole 151f of the pin holding part 151e. Thus, the ease of mounting can be increased.
Further, in this embodiment, the electric hammer drill 101 is explained as a representative example of the impact tool according to the present invention, but the present invention can also be applied to an electric hammer in which the hammer bit 119 performs only striking movement in the axial direction.
Number | Date | Country | Kind |
---|---|---|---|
2011-147497 | Jul 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5138243 | Kress et al. | Aug 1992 | A |
6112830 | Ziegler | Sep 2000 | A |
6926108 | Polakowski | Aug 2005 | B1 |
7588097 | Kamegai et al. | Sep 2009 | B2 |
8403075 | Schlesak | Mar 2013 | B2 |
20040222001 | Ikuta et al. | Nov 2004 | A1 |
20070034397 | Fischer et al. | Feb 2007 | A1 |
20080047723 | Kamegai et al. | Feb 2008 | A1 |
20090223691 | Ikuta et al. | Sep 2009 | A1 |
20090223692 | Yoshikane | Sep 2009 | A1 |
20090321101 | Furusawa et al. | Dec 2009 | A1 |
20100270046 | Schlesak | Oct 2010 | A1 |
20110017483 | Baumann et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
10 2007 061 716 | Jun 2009 | DE |
1 000 712 | May 2000 | EP |
1 892 062 | Feb 2008 | EP |
2 103 388 | Sep 2009 | EP |
H03-131481 | Jun 1991 | JP |
2007-044868 | Feb 2007 | JP |
A-2008-73836 | Apr 2008 | JP |
2009-208208 | Sep 2009 | JP |
2009-208210 | Sep 2009 | JP |
WO 2008010467 | Jan 2008 | WO |
Entry |
---|
Partial Search Report issued in European Patent Application No. 12173864.5 dated Oct. 1, 2012. |
Jan. 28, 2013 European Search Report issued in Application No. 12173864.5. |
Nov. 5, 2014 Office Action issued in Application No. JP2011-147497. |
Feb. 29, 2016 Office Action issued in European Patent Application No. 12173864.5. |
Number | Date | Country | |
---|---|---|---|
20130000937 A1 | Jan 2013 | US |