The present invention relates to an impeller for a blower such as a cross flow fan, a sirocco fan, a turbo fan, or a propeller fan, and an air conditioner in which such equipment is installed.
For example, in an impeller for a blower such as a cross flow fan, a sirocco fan, a turbo fan or a propeller fan, a problem arises in that aerodynamic noise is produced by an air flow passing through a blade constituting the impeller. Among the principal causes of aerodynamic noise produced, is the peeling of air flow on a negative pressure surface of the blade and a trailing vortex produced on a trailing edge of the blade.
In order to reduce the level of aerodynamic noise, a technique has been already proposed which, by means of the formation in a saw-tooth shape of at least one side edge of a pair of side edges in each of the blades constituting the impeller, prevents air flow from peeling on the negative pressure surface of the blade and reduces the occurrence of a trailing vortex on the trailing edge side of the blade (refer to Japanese Laid-Open Patent Publication No. 11-141494).
However, in the case of the technique disclosed in the Japanese Laid-Open Patent Publication No. 11-141494 mentioned above, since the side edge of each of the blades is formed in a saw-tooth shape, the trailing vortex produced on the trailing edge of each of the blades is excessively segmented into a plurality of unstable vortexes. Accordingly, these segmented vortexes interfere with adjacent vortexes, and cases occur where significant reductions in the level of aerodynamic noise can not be obtained. Further, processes for forming the side edge of the blade in a saw-tooth shape are far from simple, and another problem that arises is that it is hard to form a side edge of a blade in a saw-tooth shape in cases where the blade is small.
The present invention has been achieved by taking into consideration the points described above, and an object of the present invention is to provide an impeller for a blower which, by virtue of being of a simpler shape, can effectively reduce the level of aerodynamic noise, and an air conditioner in which such equipment is provided.
In accordance with the present invention, as a first aspect for solving the problem mentioned above, an impeller for a blower is provided comprising: a blade 15; a plurality of notches 17 provided at predetermined intervals on a side edge of the blade 15; and a plurality of smooth portions 18, each being provided between a pair of the notches 17.
In accordance with the structure mentioned above, since a transverse vortex discharged from the side edge of the blade 15, and on a large scale, is organized by vertical vortexes formed in the notches 17 on a small scale so as to be segmented into stable transverse vortexes, it is possible to reduce aerodynamic noise. Further, since it is possible to reduce the number of notches 17 per unit length due to the smooth portions 18 each provided between an adjacent pair of the notches 17, the notches 17 can be more easily formed than in the case of the saw tooth shape mentioned above.
In accordance with the present invention, as a second aspect for solving the problem mentioned above, an impeller is provided for a blower comprising: a circular support plate 14 having a rotational axis; and a plurality of blades 15 provided at a peripheral edge portion of the support plate 14, extending in parallel to the rotational axis and having a predetermined blade angle. A plurality of notches 17 are provided at an outer edge 15a of a pair of side edges of each of the blades 15, and the respective notches 17 are arranged at predetermined intervals along a longitudinal direction of the respective blades 15. A smooth portion 18 is provided between each pair of the notches 17.
In accordance with the structure mentioned above, in cases where the impeller for the blower is provided in the form of a sirocco fan, at the trailing edge of each blade 15, the transverse vortex discharged from the outer edge 15a of the blade 15, and on a large scale, is segmented into stable transverse vortexes organized at the small scale by the vertical vortexes formed in the notches 17. Accordingly, it is possible to reduce aerodynamic noise. Further, in cases where the impeller for the blower is provided in the form of a cross flow fan, in a suction region of the cross flow fan, on the basis of the vertical vortexes formed by the notches 17 at a front edge side of the blade 15 it is possible to reduce aerodynamic noise by suppressing the peeling of the air flow on the negative pressure surface side of the blade 15. Further, since a similar operation to that of the sirocco fan mentioned above can be performed in a blowout region of the cross flow fan, it is possible to reduce aerodynamic noise. In addition, for the same reasons as mentioned above notches 17 can be more easily formed than in the case of the saw tooth shape mentioned above.
In accordance with the present invention, as a third aspect for solving the problem mentioned above, an impeller is provided for a blower comprising: a circular support plate 14 having a rotational axis; and a plurality of blades 15 provided on a peripheral edge portion of the support plate 14, extending in parallel to the rotational axis and having a predetermined blade angle. A plurality of notches 17 are provided on an inner edge 15b of a pair of side edges of each of the blades 15, and the respective notches 17 are arranged at predetermined intervals along a longitudinal direction of the respective blades 15. A smooth portion 18 is provided between each pair of the notches 17.
In accordance with the structure mentioned above, in cases where the impeller for the blower is provided in the form of a sirocco fan, on the basis of vertical vortexes formed by the notches 17 on the front edge side of the blade 15 it is possible to reduce aerodynamic noise by suppressing peeling of the air flow from the negative pressure surface side of the blade 15. Further, in cases where the impeller for the blower mentioned above is provided as a cross flow fan, in the suction region of the cross flow fan, on the trailing edge side of the blade 15, the transverse vortex discharged from the inner edge 15b of the blade 15, and of a large scale, is segmented into stable transverse vortexes organized on a small scale by the vertical vortexes formed in the notches 17. Accordingly, it is possible to reduce aerodynamic noise. Further, since similar operation to that in the case of the sirocco fan mentioned above can be obtained in the blowout region of the cross flow fan, it is possible to reduce aerodynamic noise. In addition, for the same reasons as mentioned above notches 17 can be more easily formed than in the case of the saw tooth shape mentioned above.
In accordance with the present invention, as a fourth aspect for solving the problem mentioned above, an impeller is provided for a blower comprising: a circular support plate 14 having a rotational axis; and a plurality of blades 15 provided on a peripheral edge portion of the support plate 14, extending in parallel to the rotational axis and having a predetermined blade angle. A plurality of notches 17 are provided at both side edges 15a and 15b of each of the blades 15, and the respective notches 17 are arranged at predetermined intervals along a longitudinal direction of the respective blades 15. A smooth portion 18 is provided between each pair of the notches 17.
In accordance with the structure mentioned above, in cases where the impeller for the blower is provided as a sirocco fan, on the basis of the vertical vortexes formed by the notches 17 on the front edge side of the blade 15 it is possible to reduce aerodynamic noise by suppressing the peeling of the air flow on the negative pressure surface side of the blade 15. Further, on the trailing edge side of the blade 15, since the transverse vortex discharged from the side edges 15a and 15b of the blade 15, and on a large scale, is segmented into stable transverse vortexes organized on a small scale by the vertical vortexes formed in the notches 17, it is possible to reduce aerodynamic noise. Further, in cases where the impeller for the blower mentioned above is provided in the form of a cross flow fan, a similar operation to that of the sirocco fan can be obtained in the suction region and the blowout region of the cross flow fan. Accordingly, it is possible to reduce aerodynamic noise. In addition, for the same reasons as mentioned above the notches 17 can be formed more easily than in the case of the saw tooth shape mentioned above.
In accordance with the present invention, as a fifth aspect for solving the problem mentioned above, an impeller is provided for a blower comprising: a circular support plate 14 having a rotational axis; and a plurality of blades 15 provided on a peripheral edge portion of the support plate 14, extending in parallel to the rotational axis and having a predetermined blade angle. A plurality of notches 17 are provided on an outer edge 15a of a pair of side edges of a predetermined blade 15 selected from a plurality of blades 15, and the respective notches 17 are arranged at predetermined intervals along a longitudinal direction of the predetermined blade 15. A smooth portion 18 is provided between each pair of the notches 17.
In accordance with the structure described above, in cases where the impeller for the blower is provided in the form of a sirocco fan, on the trailing edge side of the blade 15, since the transverse vortex discharged from the outer edge 15a of the blade 15, and on a large scale, is segmented into stable transverse vortexes organized on a small scale by the vertical vortexes formed in the notches 17, it is possible to reduce aerodynamic noise. Further, in case where the impeller for the blower mentioned above is provided in the form of a cross flow fan, on the basis of the vertical vortexes formed by the notches 17 on the front edge side of the blade 15, in the suction region of the cross flow fan it is possible to reduce aerodynamic noise by suppressing the peeling of the air flow on the negative pressure surface side of the blade 15. Further, since a similar operation to that of the sirocco fan can be obtained in the blowout region of the cross flow fan, it is possible to reduce aerodynamic noise. In addition, the notches 17 can be more easily formed than in the case of the saw tooth shape mentioned above, for the same reasons as mentioned above. Furthermore, since the blade 15X, in which notches 17 are formed, and the blade 15Y, in which notches 17 are not formed, exist together, at a time of sucking or blowing out the air it is possible to prevent air from leaking from a gap between a member (for example, a casing) surrounding the impeller and the impeller itself, and it is thus possible to enhance a blowing performance of the blower. Further, by virtue of the existence of the blade 15Y in which the notches 17 are not formed it is possible to reinforce the strength of the impeller.
In accordance with the present invention, as a sixth aspect for solving the problem mentioned above, an impeller is provided for a blower comprising: a circular support plate 14 having a rotational axis; and a plurality of blades 15 provided at a peripheral edge portion of the support plate 14, extending in parallel to the rotational axis and having a predetermined blade angle. A plurality of notches 17 are provided on an inner edge 15b of a pair of side edges of a predetermined blade 15 selected from among a plurality of blades 15, and the respective notches 17 are arranged at predetermined intervals along a longitudinal direction of the predetermined blade 15. A smooth portion 18 is provided between each pair of the notches 17.
In accordance with the structure mentioned above, in cases where the impeller for the blower is provided as a sirocco fan, on the basis of the vertical vortexes formed by the notches 17 on the leading edge side of the blade 15 it is possible to reduce aerodynamic noise by suppressing the peeling of the air flow on the negative pressure surface side of the blade 15. Further, in cases where the impeller for the blower described above is provided in the form of a cross flow fan, in the suction region of the cross flow fan, on the trailing edge side of the blade 15, since the transverse vortex discharged from the inner edge 15b of the blade 15, and on a large scale, is segmented into stable transverse vortexes organized on a small scale by the vertical vortexes formed in the notches 17, it is possible to reduce aerodynamic noise. Further, in the blowout region of the cross flow fan, since a similar operation to that of the sirocco fan can be obtained on the front edge side of the blade 15, it is possible to reduce aerodynamic noise. In addition, for the same reasons as mentioned above the notches 17 can be more easily formed than in the case of the saw tooth shape mentioned above. Since the blade 15X, in which the notches 17 are formed, and the blade 15Y, in which the notches 17 are not formed, exist together, it is possible to reduce aerodynamic noise on the basis of the effects of the notches 17 while at the same time retaining the strength that is necessary for the impeller.
In accordance with the present invention, as a seventh aspect for solving the problem mentioned above, an impeller is provided for a blower comprising: a circular support plate 14 having a rotational axis; and a plurality of blades 15 provided on a peripheral edge portion of the support plate 14, extending in parallel to the rotational axis and having a predetermined blade angle. A plurality of notches 17 are provided on both side edges 15a and 15b of a predetermined blade 15, selected from among a plurality of blades 15, and the respective notches 17 are arranged at predetermined intervals along a longitudinal direction of the predetermined blade 15. A smooth portion 18 is provided between each pair of the notches 17.
In accordance with the structure mentioned above, in cases where the impeller for the blower is provided in the form of a sirocco fan, on the basis of the vertical vortexes formed by the notches 17 on the front edge side of the blade 15 it is possible to reduce aerodynamic noise by suppressing peeling of the air flow on the negative pressure surface side of the blade 15. Further, on the trailing edge side of the blade 15, since the transverse vortex discharged from the side edges 15a and 15b of the blade 15, and on a large scale, is segmented into stable transverse vortexes organized on a small scale by the vertical vortexes formed in a notches 17, it is possible to reduce aerodynamic noise. Further, in cases where the impeller for the blower mentioned above is provided in the form of a cross flow fan, since a similar operation to that of the sirocco fan can be obtained in the suction region and the blowout region of the cross flow fan, it is possible to reduce aerodynamic noise. In addition, for the same reasons as mentioned above the notches 17 can be more easily formed than in the case of the saw tooth shape mentioned above. Moreover, since the blade 15X, in which notches 17 are formed, and the blade 17Y, in which notches 17 are not formed, exist together, on the basis of the effects of the notches 17 it is possible to reduce aerodynamic noise while at the same time retaining the strength required by the impeller. Further, a gap between the member (for example, the casing) surrounding the impeller and the impeller itself becomes wider by notches 17 formed on the outer edge 15a of the blade 15X, and it is possible to enhance the blowing performance of the blower by preventing increases in the degree of leaking of air flow from the gap.
In accordance with the present invention, as an eighth aspect for solving the problem mentioned above, an impeller is provided for a blower comprising: a plurality of impellers continuously provided on the same rotational axis. Impellers positioned at both ends of the blower in a plurality of impellers are structured by the impeller 7Z for the blower described in any one of the fifth to seventh aspects mentioned above, and other impellers are structured by the impeller 7 for the blower described in any one of the second to fourth aspects.
In accordance with the structure mentioned above, at both ends considered as starting points of unstable behavior of a blowout flow at a time of a rotational destruction and a high pressure loss, on the basis of the suppression to a maximum limit of production of trailing vortex it is possible to maintain the necessary strength of the impeller while at the same time limiting to a minimum degree reductions in blow noise. Further, in cases where the notches 17 are formed on the outer edge 15a of the blade 15, it is possible to prevent a reflow vortex that has been formed within the impeller from being increased, and at both ends of the impeller it is possible to make it difficult for unstable behavior to occur at a time of the high pressure loss. The reflow vortex is formed by an increase in leakages of air flow from the gap between the impeller at the position where the notches 17 are formed on the blade 15X, and a member provided so as to face the impeller (for example, a tongue portion 11 preventing a back flow of air flow blowing out of the impeller).
In accordance with the present invention, as a ninth aspect for solving the problem mentioned above, an air conditioner is provided comprising: the impeller for the blower as recited in any one of the second to eighth aspects described above. In accordance with this structure, it is possible to obtain a low noise type of air conditioner.
In accordance with the present invention, as a tenth aspect for solving the problem mentioned above, an air conditioner is provided comprising: the impeller 7 for the blower as recited in any one of the second, fourth, fifth, seventh and eighth aspects mentioned above; and a casing 1 that has a tongue portion 11 and that surrounds the impeller 7. The tongue portion 11 prevents a back flow of air flow blown out from the impeller 7. A plurality of notches 17 having the same shape are formed coaxially on an outer edge 15a of each of the blades 15. A plurality of projections 19 are provided in the tongue portion 11, and the respective projections 19 correspond to the respective notches 17 provided on the outer edge 15a.
In accordance with the structure mentioned above, it is possible to enhance blowing performance of the blower by preventing the gap between the tongue portion 11 and the impeller 7 from expanding at positions where notches 17 are formed, by projections 19, and by preventing the air flow from leaking via the gap.
In accordance with the present invention, as an eleventh aspect for solving the problem mentioned above, an air conditioner is provided comprising: the impeller 7 for the blower as recited in any one of the second, fourth, fifth, seventh and eighth aspects mentioned above; and a casing 1 that surrounds the impeller 7 and that has a guide portion 10 guiding an air flow blowing out of the impeller 7. A plurality of notches 17 having the same shape are formed coaxially on an outer edge 15a of each of the blades 15. A plurality of projections 20 are provided on the guide portion 10, and the respective projections 20 correspond to the respective notches 17 provided in the outer edge 15a.
In accordance with the structure mentioned above, it is possible to enhance the blowing performance of the blower by preventing gaps between the guide portion 10 and the impeller 7 from being expanded at positions where the notches 17 are formed, by projections 20, and by preventing the air flow from leaking via the gap.
a) is a perspective view illustrating a blade and an air flow in accordance with prior art,
A description will be given below, with reference to the accompanying drawings, of several preferable embodiments in accordance with the present inventions.
First, with reference to
The air conditioner Z is provided with a box-shaped casing 1, a heat exchanger 2 arranged within the casing 1, and a multi-blade blower 3 arranged on a secondary side of the heat exchanger 2, and is structured as a wall mounted type. An air suction port 4 is formed on an upper surface of the casing 1, and an air blowout port 5 is formed on a front side (the left side in
The heat exchanger 2 is configured by a front face heat exchanging portion 2a positioned on a front face side of the casing 1, and by a back face heat exchanging portion 2b positioned at a back face side of the casing 1. The front face heat exchanging portion 2a and the back face heat exchanging portion 2b are coupled to each other at their upper end portions. An air flow W is supplied from the air suction port 4 to the front face heat exchanging portion 2a via an air passage 6 formed at the front face side of the casing 1.
As the blower 3, a cross flow fan is employed that is provided with an impeller 7 rotationally driven by a drive source (not shown). Accordingly, in the following description, this blower is described as the cross flow fan.
As shown in
The air flow W sucked into the air conditioner Z from the air suction port 4 passes through the heat exchanger 2. At this time, the air is cooled or heated by the heat exchanger 2. Further, the air flows through the cross flow fan 3 so as to be orthogonal to a rotational axis of the cross flow fan 3, and is thereafter blows out of the air blowout port 5 into a room.
As shown in
As shown in
As shown in
As illustrated in
As shown in
As shown in
In the first to third embodiments described above, and as shown in
As shown in
As shown in
In the present embodiment, the respective notches 17 are arranged in a zigzag form by setting the intervals between the respective notches 17 of the adjacent blades 15 and 15 to 0.5 S. However, the respective notches 17 may be arranged in a zigzag form by using the blade group configured by blades 15 the number of which is N, in which the intervals between the notches 17 are set to S/N (N is an integral number equal to or more than 3).
Further, as shown in
As shown in
In this case, as shown in
In this case, in the embodiment mentioned above, the notches 17 are formed in the outer edge 15a of the blade 15, however, the notches 17 may be formed in the inner edge 15b or both of the outer edge 15a and the inner edge 15b, as in the second or third embodiment. Since the other structures and operations and effects of the impellers 7 and 7Z are the same as those of the first, second or third embodiment, they will be omitted.
As shown in
As shown in
The blade 15 in accordance with the first to eighth embodiments may be used as a blade for a sirocco fan or a turbo fan. Further, in the same manner as described in the first to third embodiments described above each of the notches 17 in accordance with the fourth to eighth embodiments may be formed in a triangular shape other than a regular triangular shape; in a triangular shape having an arcuate portion in a bottom portion; in a trapezoidal shape; in an arcuate shape; or in a rectangular shape. In this case, it is difficult for the destruction to occur from the bottom portion of the notches 17 at a time when a load (for example, a centrifugal force) is applied to the blade 15, and the strength of the blade 15 is thereby enhanced.
Number | Date | Country | Kind |
---|---|---|---|
2004-286760 | Sep 2004 | JP | national |
2005-269765 | Sep 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/018129 | 9/30/2005 | WO | 00 | 8/9/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/035933 | 4/6/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4089618 | Patel | May 1978 | A |
20030175121 | Shibata et al. | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
01167494 | Jul 1989 | JP |
3-249400 | Nov 1991 | JP |
9-327156 | Dec 1997 | JP |
10-252689 | Sep 1998 | JP |
11-141494 | May 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20070177971 A1 | Aug 2007 | US |