This application is directed to pumps for mechanical circulatory support of a heart. In particular, this application is directed to various implementations of an impeller that can be used in a catheter pump.
Heart disease is a major health problem that has high mortality rate. Physicians increasingly use mechanical circulatory support systems for treating heart failure. The treatment of acute heart failure requires a device that can provide support to the patient quickly. Physicians desire treatment options that can be deployed quickly and minimally-invasively.
Intra-aortic balloon pumps (IABP) are currently the most common type of circulatory support devices for treating acute heart failure. IABPs are commonly used to treat heart failure, such as to stabilize a patient after cardiogenic shock, during treatment of acute myocardial infarction (MI) or decompensated heart failure, or to support a patient during high risk percutaneous coronary intervention (PCI). Circulatory support systems may be used alone or with pharmacological treatment.
In a conventional approach, an IABP is positioned in the aorta and actuated in a counterpulsation fashion to provide partial support to the circulatory system. More recently minimally-invasive rotary blood pump have been developed in an attempt to increase the level of potential support (i.e. higher flow). A rotary blood pump is typically inserted into the body and connected to the cardiovascular system, for example, to the left ventricle and the ascending aorta to assist the pumping function of the heart. Other known applications pumping venous blood from the right ventricle to the pulmonary artery for support of the right side of the heart. An aim of acute circulatory support devices is to reduce the load on the heart muscle for a period of time, to stabilize the patient prior to heart transplant or for continuing support.
There is a need for improved mechanical circulatory support devices for treating acute heart failure. Fixed cross-section ventricular assist devices designed to provide near full heart flow rate are either too large to be advanced percutaneously (e.g., through the femoral artery without a cutdown) or provide insufficient flow.
There is a need for a pump with improved performance and clinical outcomes. There is a need for a pump that can provide elevated flow rates with reduced risk of hemolysis and thrombosis. There is a need for a pump that can be inserted minimally-invasively and provide sufficient flow rates for various indications while reducing the risk of major adverse events. In one aspect, there is a need for a heart pump that can be placed minimally-invasively, for example, through a 15FR or 12FR incision. In one aspect, there is a need for a heart pump that can provide an average flow rate of 4 Lpm or more during operation, for example, at 62 mmHg of head pressure. While the flow rate of a rotary pump can be increased by rotating the impeller faster, higher rotational speeds are known to increase the risk of hemolysis, which can lead to adverse outcomes and in some cases death. Accordingly, in one aspect, there is a need for a pump that can provide sufficient flow at significantly reduced rotational speeds. These and other problems are overcome by the inventions described herein.
There is an urgent need for a pumping device that can be inserted percutaneously and also provide full cardiac rate flows of the left, right, or both the left and right sides of the heart when called for.
In one embodiment, an impeller for a pump is disclosed. The impeller can comprise a hub having a proximal end portion and a distal end portion. A blade can be supported by the hub. The blade can have a fixed end coupled to the hub and a free end. Further, the impeller can have a stored configuration when the impeller is at rest, a deployed configuration when the impeller is at rest, and an operational configuration when the impeller rotates. The blade in the deployed and operational configurations can extend away from the hub. The blade in the stored configuration can be compressed against the hub. The blade can include a curved surface having a radius of curvature. The radius of curvature can be larger in the operational configuration than when the impeller is in the deployed configuration.
In another embodiment, a percutaneous heart pump is disclosed. The pump can comprise a catheter body and an impeller coupled to a distal end portion of the catheter body. The impeller can comprise a hub. A blade can be supported by the hub and can have a front end portion and a back end portion. The blade can include a ramped surface at the back end portion. A sheath can be disposed about the catheter body and can have a proximal end and a distal end. The distal end of the sheath can be configured to compress the blade from an expanded configuration to a stored configuration when the distal end of the sheath is urged against the ramped surface of the blade.
In yet another embodiment, a method for storing an impeller is disclosed. The method can comprise urging a sheath against a ramped surface of a back end of a blade of an impeller. The impeller can have one or more blades. Further, the impeller can have a stored configuration and a deployed configuration. Each blade in the stored configuration can be compressed against a hub of the impeller. Each blade in the deployed configuration can extend away from the hub. The method can further comprise collapsing the blade against the hub to urge the impeller into the stored configuration.
In another embodiment, a percutaneous heart pump system is disclosed. The system can comprise an impeller disposed at a distal portion of the system. The impeller can be sized and shaped to be inserted through a vascular system of a patient. The impeller can be configured to pump blood through at least a portion of the vascular system at a flow rate of at least about 3.5 liters per minute when the impeller is rotated at a speed less than about 21,000 revolutions per minute.
In another embodiment, a method of pumping blood through the vascular system of a patient is disclosed. The method can comprise inserting an impeller through a portion of the vascular system of the patient to a heart chamber. The method can further include rotating the impeller at a speed less than about 21,000 revolutions per minute to pump blood through at least a portion of the vascular system at a flow rate of at least about 3.5 liters per minute.
In yet another embodiment, an impeller configured for use in a catheter pump is disclosed. The impeller can comprise a hub having a distal portion, a proximal portion, and a diameter. The impeller can also include a blade having a fixed end at the hub and a free end. The blade can have a height defined by a maximum distance between the hub and the free end. A value relating to a ratio of the blade height to the hub diameter can be in a range of about 0.7 to about 1.45.
In another embodiment, a percutaneous heart pump system is disclosed. The system can comprise an impeller disposed at a distal portion of the system, the impeller sized and shaped to be inserted into a vascular system of a patient through a percutaneous access site having a size less than about 21 FR. The impeller can be configured to pump blood in the vascular system at a flow rate of at least about 3.5 liters per minute.
In another embodiment, a percutaneous heart pump system is disclosed. The system can include an impeller comprising one or more blades in a single row. The impeller can be disposed at a distal portion of the system. The impeller can be sized and shaped to be inserted through a vascular system of a patient. The impeller can be configured to pump blood through at least a portion of the vascular system at a flow rate of at least about 2.0 liters per minute when the impeller is rotated at a speed less than about 21,000 revolutions per minute.
A more complete appreciation of the subject matter of this application and the various advantages thereof can be realized by reference to the following detailed description, in which reference is made to the accompanying drawings in which:
More detailed descriptions of various embodiments of components for heart pumps useful to treat patients experiencing cardiac stress, including acute heart failure, are set forth below.
This application is directed to apparatuses for inducing motion of a fluid relative to the apparatus. In particular, the disclosed embodiments generally relate to various configurations for an impeller disposed at a distal portion of a percutaneous catheter pump. For example,
In some embodiments, the impeller assembly 92 includes a self-expanding material that facilitates expansion. The catheter body 84 on the other hand preferably is a polymeric body that has high flexibility. When the impeller assembly 92 is collapsed, as discussed above, high forces are applied to the impeller assembly 92. These forces are concentrated at a connection zone, where the impeller assembly 92 and the catheter body 84 are coupled together. These high forces, if not carefully managed can result in damage to the catheter assembly 80 and in some cases render the impeller within the impeller assembly 92 inoperable. Robust mechanical interface, are provided to assure high performance.
The mechanical components rotatably supporting the impeller within the impeller assembly 92 permit high rotational speeds while controlling heat and particle generation that can come with high speeds. The infusion system 26 delivers a cooling and lubricating solution to the distal portion of the catheter system 80 for these purposes. However, the space for delivery of this fluid is extremely limited. Some of the space is also used for return of the infusate. Providing secure connection and reliable routing of infusate into and out of the catheter assembly 80 is critical and challenging in view of the small profile of the catheter body 84.
When activated, the pump 10 can effectively increase the flow of blood out of the heart and through the patient's vascular system. In various embodiments disclosed herein, the pump 10 can be configured to produce a maximum flow rate (e.g. low mm Hg) of greater than 4 Lpm, greater than 4.5 Lpm, greater than 5 Lpm, greater than 5.5 Lpm, greater than 6 Lpm, greater than 6.5 Lpm, greater than 7 Lpm, greater than 7.5 Lpm, greater than 8 Lpm, greater than 9 Lpm, or greater than 10 Lpm. In various embodiments, the pump can be configured to produce an average flow rate at about 62 mmHg during operation of greater than 2 Lpm, greater than 2.5 Lpm, greater than 3 Lpm, greater than 3.5 Lpm, greater than 4 Lpm, greater than 4.5 Lpm, greater than 5 Lpm, greater than 5.5 Lpm, or greater than 6 Lpm. In various embodiments, the pump can be configured to produce an average flow rate of at least about 4.25 Lpm at 62 mmHg. In various embodiments, the pump can be configured to produce an average flow rate of at least about 4 Lpm at 62 mmHg. In various embodiments, the pump can be configured to produce an average flow rate of at least about 4.5 Lpm at 62 mmHg.
Various aspects of the pump and associated components are similar to those disclosed in U.S. Pat. Nos. 7,393,181, 8,376,707, 7,841,976, 7,022,100, and 7,998,054 and U.S. Pub. Nos. 2011/0004046, 2012/0178986, 2012/0172655, 2012/0178985, and 2012/0004495, the entire contents of which are incorporated herein for all purposes by reference. In addition, this application incorporates by reference in its entirety and for all purposes the subject matter disclosed in each of the following concurrently filed applications: U.S. patent application Ser. No. 13/802,556 entitled “DISTAL BEARING SUPPORT,” filed on Mar. 13, 2013; U.S. Patent Application No. 61/780,656, entitled “FLUID HANDLING SYSTEM,” filed on Mar. 13, 2013; U.S. patent application Ser. No. 13/801,833, entitled “SHEATH SYSTEM FOR CATHETER PUMP,” filed on Mar. 13, 2013; U.S. patent application Ser. No. 13/801,833, entitled “CATHETER PUMP,” filed on Mar. 13, 2013; and U.S. patent application Ser. No. 13/802,468, entitled “MOTOR ASSEMBLY FOR CATHETER PUMP,” filed on Mar. 13, 2013.
Blade & Impeller Configurations
With reference to
As shown in
In the stored configuration, the impeller 300 and housing 202 have a diameter that is preferably small enough to be inserted percutaneously into a patient's vascular system. Thus, it can be advantageous to fold the impeller 300 and housing 202 into a small enough stored configuration such that the housing 202 and impeller 300 can fit within the patient's veins or arteries. In some embodiments, therefore, the impeller 300 can have a diameter in the stored configuration corresponding to a catheter size between about 8 FR and about 21 FR. In one implementation, the impeller 300 can have a diameter in the stored state corresponding to a catheter size of about 9 FR. In other embodiments, the impeller 300 can have a diameter in the stored configuration between about 12 FR and about 21 FR. For example, in one embodiment, the impeller 300 can have a diameter in the stored configuration corresponding to a catheter size of about 12 FR or about 12.5 FR.
When the impeller 300 is positioned within a chamber of the heart, however, it can be advantageous to expand the impeller 300 to have a diameter as large as possible in the expanded or deployed configuration. In general, increased diameter of the impeller 300 can advantageously increase flow rate through the pump. In some implementations, the impeller 300 can have a diameter corresponding to a catheter size greater than about 12 FR in the deployed configuration. In other embodiments, the impeller 300 can have a diameter corresponding to a catheter size greater than about 21 FR in the deployed or expanded configuration.
In various embodiments, it can be important to increase the flow rate of the heart pump while ensuring that the operation of the pump does not harm the subject. For example, increased flow rate of the heart pump can advantageously yield better outcomes for a patient by improving the circulation of blood within the patient. Furthermore, the pump should avoid damaging the subject. For example, if the pump induces excessive shear stresses on the blood and fluid flowing through the pump (e.g., flowing through the cannula), then the impeller can cause damage to blood cells, e.g., hemolysis. If the impeller damages a large number of blood cells, then hemolysis can lead to negative outcomes for the subject, or even death. As will be explained below, various blade parameters can affect the pump's flow rate as well as conditions within the subject's body.
Various embodiments of an impeller for use in a heart pump are disclosed herein. In particular,
In order to improve patient outcomes, it can be advantageous to provide a heart pump capable of pumping blood at high flow rates while minimizing damage to the blood or the patient's anatomy. For example, it can be desirable to increase flow rate while reducing the motor speed, as higher motor speeds are known to increase the hemolysis risk. Furthermore, for percutaneous insertion heart pump systems, it can be advantageous to make the diameter of the impeller and the cannula as small as possible for insertion into the patient's vasculature. Accordingly, the various impeller embodiments disclosed herein can provide high flow rate while maintaining a diameter small enough for insertion into the patient's vasculature and while reducing the risk that the patient's anatomy and blood are damaged during operation of the pump.
For some or all of the impellers 300-300J illustrated in
Furthermore, when the impeller is urged out of an external sleeve, the impeller can self-expand into a deployed configuration, in which the impeller is deployed from the sleeve and expanded into a deployed diameter larger than a stored diameter. In various embodiments, the self-expansion of the impeller can be induced by strain energy stored in the blades 303, such as strain or potential energy stored near the root of the blades 303. When the sleeve is urged away from the impeller, the blades 303 can be free to expand into the deployed configuration. It should be appreciated that when the blades 303 are in the deployed configuration, the blade(s) 303 can be in a relaxed state, such that there are no or minimal external forces (such as torque- or flow-induced loads) and internal forces (such as strain energy stored in the blades) applied to the impeller or blades. A radius of curvature RD of the blades 303 in the deployed configuration may be selected to improve flow characteristics of the pump while reducing the risk of hemolysis or other damage to the patient. For example, in some embodiments, the impeller can be molded to form blades 303 having the desired deployed radius of curvature RD, such that in a relaxed (e.g., deployed) state, the blades 303 have a radius of curvature RD that may be selected during manufacturing (e.g., molding). In some arrangements, the radius of curvature RD of the blades in the deployed configuration may be about the same as the radius of curvature RS of the blades in the stored configuration. In other arrangements, however, the radius of curvature of the blades 303 in the stored and deployed configurations may be different.
When the heart pump is activated to rotate the impeller, the impeller and blades 303 may be in an operational configuration. In the operational configuration, the impeller may rotate to drive blood through the housing 202. The rotation of the impeller and/or the flow of blood past the impeller can cause the blades 303 to deform such that an operational radius of curvature Ro may be induced when the impeller is in the operational configuration. For example, when the impeller rotates, the blades 303 may slightly elongate such that the free ends of the blades 303 extend further radially from the hub 301 relative to when the blades 303 are in the deployed configuration. As the blades 303 deform radially outward in the operational configuration, the operational radius of curvature Ro may therefore be larger than the deployed radius of curvature RD. For example, in some embodiments, in the operational configuration, the blades 303 may substantially flatten such that there is little curvature of the blades during operation of the pump. Indeed, in the operational configuration, the blades 303 may extend to an operational height ho that is larger than the height h of the blades 303 when in the deployed configuration (see h as illustrated in the impellers 300-300J of
It should be appreciated that the various parameters described herein may be selected to increase flow rate, even while reducing the rotational speed of the impeller. For example, even at relatively low impeller rotational rates of 21,000 revolutions per minute (RPM) or less (e.g., rates in a range of about 18,000 RPM to about 20,000 RPM, or more particularly, in a range of about 18,500 RPM to about 19,500 RPM in some arrangements), the blades 303 can be designed to yield relatively high flow rates in a range of about 4 liters/minute (LPM) to about 5 liters/minute. Conventional percutaneous rotary blood pumps have been found to deliver less than ideal flow rates even at rotational speeds in excess of 40,000 RPM. It should be appreciated that higher impeller rotational rates may be undesirable in some aspects, because the high rate of rotation, e.g., higher RPMs, lead to higher shear rates that generally increase hemolysis and lead to undesirable patient outcomes. By reducing the impeller rotational rate while maintaining or increasing flow rate, the pump in accordance with aspects of the invention can reduce the risk of hemolysis while significantly improving patient outcomes over conventional designs.
Furthermore, to enable percutaneous insertion of the operative device of the pump into the patient's vascular system, the impellers 300-300J disclosed herein in
The impellers disclosed herein may be formed of any suitable material and by any suitable process. For example, in preferred embodiments, the impeller is formed from a flexible material, e.g., an elastic material such as a polymer. Any suitable polymer can be used. In some embodiments, for example, Hapflex 598, Hapflex 798, or Steralloy or Thoralon may be used in various portions of the impeller body. In some arrangements, the impeller body can be molded to form a unitary body.
Various Impeller Designs
Turning to
Furthermore, each blade 303 can include a suction side 305 and a pressure side 307. In general, fluid can flow from the suction side 305 of the blade 303 toward the pressure side 307 of the blade 303, e.g., from the distal end portion of the impeller 300 to the proximal end portion of the impeller 300. The pressure side 307 can be include a curved, concave surface having a predetermined radius of curvature R, as best seen in
Moreover, each blade 303 can have a thickness designed to improve impeller performance. As shown in
Each blade 303 can wrap around the hub 301 by a desired wrapping angle. The wrapping angle can be measured along the circumference of the hub 301. As shown in the illustrated embodiments, each blade 303 can separately track a helical pattern along the surface of the hub 301 as the blade 303 wraps around the hub 301 along the length L of the hub. Table 2 and the disclosure below illustrate example wrapping angles for blades 303 in various embodiments. The blades can wrap around the hub any suitable number of turns or fractions thereof. Further, a first fillet 311 can be formed at the fixed end of each blade on the suction side 305, and a second fillet 313 can be formed at the fixed end of each blade 303 on the pressure side 307. As shown each fillet 311, 313 can follow the fixed end of each blade 303 as it wraps around the hub 301. As explained below, the first fillet 311 can be sized and shaped to provide support to the blade 303 as the impeller 300 rotates. The second fillet 313 can be sized and shaped to assist in folding or compressing the blade 303 into the stored configuration.
In addition, each blade 303 can form various blade angles α, β, and γ. As shown in
Further, the trailing edge of each blade 303 can include a ramp 315 forming a ramp angle θ with the plane perpendicular to the hub 301, as best illustrated in
Turning to
The impellers 300 illustrated in the disclosed embodiments may have other features. For example, for impellers with multiple blade rows, the blade(s) in one row may be angularly clocked relative to the blade(s) in another row. It should be appreciated that the blades may be configured in any suitable shape or may be wrapped around the impeller hub in any manner suitable for operation in a catheter pump system.
Impeller Parameters
As explained above, various impeller parameters can be important in increasing flow rate while ensuring that the pump operates safely within the subject. Further, various properties and parameters of the disclosed impellers 300-300J of
Hub Diameter and Length
One impeller parameter is the size of the hub, e.g., the diameter and/or the length of the hub. As illustrated in
One of skill in the art will appreciate from the disclosure herein that the impeller parameters may be varied in accordance with the invention. The hub diameter can vary. In some embodiments, D1 can range between about 0.06 inches and about 0.11 inches. D2 can range between about 0.1 inches and about 0.15 inches. For example, in the impeller shown in
Moreover, the length, Lb, of each blade can be designed in various embodiments to achieve a desired flow rate and pressure head. In general, longer blades can have higher flow rates and pressure heads. Without being limited by theory, it is believed that longer blades can support more blade material and surface area to propel the blood through the cannula. Thus, both the length of the blades and the first and second diameters D1 and D2 can be varied to achieve optimal flow rates. For example, D1 can be made relatively small while Lb can be made relatively long to increase flow rate.
Blade Height
Another impeller parameter is the height h of the blades of the impeller in the deployed, or relaxed, configuration. The height h of the blades can be varied to achieve a stable flow field and to reduce turbulence, while ensuring adequate flow rate. For example, in some embodiments, the blade can be formed to have a height h large enough to induce adequate flow through the cannula. However, because the blades are preferably flexible so that they can fold against the hub in the stored configuration, rotation of the impeller may also cause the blades to flex radially outward due to centrifugal forces. As explained above with respect to
On the other hand, as explained above, the height h of the blades 303 in the deployed configuration can be selected such that when the impeller rotates, the tip or free end of the blades 303 can extend or elongate to an operational height ho, which extends further radially than when in the deployed configuration, in order to increase flow rate. Thus, as explained herein, the height h and the radius of curvature RD of the blades 303 in the deployed configuration can be selected to both increase flow rate while reducing the risk of hemolysis caused by inadequate tip gap G.
In various implementations, the height of the blades near the middle of the impeller hub can range between about 0.06 inches and about 0.15 inches, for example, in a range of about 0.09 inches to about 0.11 inches. Of course, the height of the blades can be designed in conjunction with the design of the hub diameters and length, and with the radius of curvature R. As an example, for the impeller in
Number of Blades
As mentioned above, impellers 300 can have any suitable number of blades 303. In general, in impellers with more blades 303, the flow rate of blood flowing through the cannula or housing 202 can be advantageously increased while reducing the required angular velocity of the drive shaft. Thus, absent other constraints, it can be advantageous to use as many blades as possible to maximize flow rate. However, because the impellers disclosed herein can be configured to fold against the hub 301 in the stored configuration for insertion into a patient's vasculature, using too many blades 303 can increase the overall volume of the impeller in the stored configuration. If the thickness of the impeller 300 in the stored configuration exceeds the diameter of the sheath or sleeve (or the diameter of the patient's artery or vein), then the impeller 300 may not collapse into the sheath for storing.
Moreover, increasing the number of blades 303 accordingly increases the number of shear regions at the free end of the blades 303. As the impeller 300 rotates, the free ends of the blades 303 induce shear stresses on the blood passing by the blades 303. In particular, the tip or free edge of the blades 303 can induce significant shear stresses. By increasing the overall number of blades 303, the number of regions with high shear stresses are accordingly increased, which can disadvantageously cause an increased risk of hemolysis in some situations. Thus, the number of blades can be selected such that there is adequate flow through the pump, while ensuring that the impeller 300 can still be stored within the sheath and that the blades 303 do not induce excessive shear stresses. In various arrangements, for example, an impeller having three blades (such as the impellers shown in
Radius of Curvature
Yet another design parameter for the impeller is the radius of curvature, R, of the blades 303 on the pressure side 307 of the blades, as explained in detail above. As shown in
In addition, as explained above, when the impeller rotates and is in the operational configuration, the free end of the blades 303 may extend radially outward such that the radius of curvature in the operational configuration, Ro, may be higher than the radius of curvature in the operational configuration, RD, which is illustrated as R in
The radius of curvature can range between about 0.06 inches and about 0.155 inches in various embodiments. In some embodiments, the radius of curvature can range between about 0.09 inches and about 0.14 inches. For example, in the implementation of
Blade Thickness
In addition, the thickness of the blades 303 can be controlled in various implementations. In general, the thickness of the blades can range between about 0.005 inches and about 0.070 inches in some embodiments, for example in a range of about 0.01 inches to about 0.03 inches. It should be appreciated that the thickness can be any suitable thickness. The thickness of the blade 303 can affect how the blade 303 collapses against the hub 301 when compressed into the stored configuration and how the blade deforms when rotating in an operational configuration. For example, thin blades can deform more easily than thicker blades. Deformable blades can be advantageous when they elongate or deform by a suitable amount to increase flow rate, as explained above. However, as explained above, if the blade 303 deforms outward by an excessive amount, then the free end of the blade can disadvantageously contact the inner wall of the housing 202 when the impeller 300 rotates. On the other hand, it can be easier to fold thin blades against the hub 301 because a smaller force can sufficiently compress the blades 303. Thus, it can be important in some arrangements to design a blade sufficiently stiff such that the blade 303 does not outwardly deform into the cannula or housing 202, while still ensuring that the blade 303 is sufficiently flexible such that it can be easily compressed into the stored configuration and such that it deforms enough to achieve desired flow rates.
In some embodiments, the thickness of each blade can vary along the height h of the blade. For example, the blades can be thinner at the root of the blade 303, e.g., near the hub 301, and thicker at the free end of the blade 303, e.g., near the wall W of the cannula housing 202. As best seen in
As an example, the first thickness t1a of the leading edge of the blade in
Fillets at Root of Blades
As explained above, a first fillet 311 can extend along the suction side 305 of each blade 303 at the proximal end of the blade 303 (e.g., at the root of the blade), and a second fillet 313 can extend along the pressure side 307 of each blade at the proximal end of the blade 303. In general the first fillet 311 can have a larger radius than the second fillet 313. The larger fillet 311 can be configured to apply a restoring force when the impeller 300 rotates in the operational configuration. As the impeller 300 rotates, the blades 303 may tend to deform in the distal direction in some situations (e.g., toward the distal portion of the hub 301). By forming the fillet 311 at the suction side 305 of the blade, the curvature of the fillet can advantageously apply a restoring force to reduce the amount of deformation and to support the blade.
By contrast, the second fillet 313 formed on the pressure side 307 of the blade 303 can have a smaller radius than the first fillet 311. The second fillet 313 can be configured to enhance the folding of the blade against the impeller when the blades 303 are urged into the stored configuration.
The radius r of each fillet can be any suitable value. For example, the radius r1 of the first fillet 311 can range between about 0.006 inches and about 0.035 inches. The radius r2 of the second fillet 313 can range between about 0.001 inches and about 0.010 inches. Other fillet radiuses may be suitable. For the implementation of
Wrapping Angle
In some implementations, the wrapping angle of each blade can be designed to improve pump performance and to enhance folding of the impeller into the stored configuration. In general, the blades can wrap around the hub at any suitable angle. It has been found that wrapping angles of between about 150 degrees and about 220 degrees can be suitable for folding the blades into the stored configuration. Further, wrapping angles of between about 180 degrees and about 200 degrees can be particularly suitable for folding the blades into the stored configuration.
Ramping Surface
Furthermore, as explained above, the trailing edge or the proximal end of each blade can include a ramp or chamfer formed at an angle θ with a plane perpendicular to the hub 301, as illustrated above in, e.g.,
An outer sheath or sleeve 1275 can be provided around an elongate body that extends between an operative device of the pump and the motor in the system. The sleeve 1275 can be used to deploy the impeller 1200 from the stored configuration to the deployed configuration and to compress the impeller 1200 from the deployed configuration back into the stored configuration. When compressing and storing the impeller 1200 and the housing 1202, for example, a user, such as a clinician, can advance the sleeve 1275 in the +x-direction, as shown in
Improving Patient Outcomes
As explained herein, it can be desirable to pump blood at relatively high flow rates in order to provide adequate cardiac assistance to the patient and to improve patient outcomes. It should be appreciated that, typically, higher impeller rotational speeds may increase flow rates because the impeller is driven at a higher speed. However, one potential disadvantage of high impeller speeds is that blood passing across or over the rotating components (e.g., the impeller and/or impeller shaft or hub) may be damaged by the shearing forces imparted by the relatively rotating components. Accordingly, it is generally desirable to increase flow rates for given rotational impeller speeds.
The various features disclosed herein can enable a skilled artisan to provide an impeller capable of increasing or maintaining flow rates at lower rotational impeller speeds. These improvements are not realized by mere increases in rotational speed or optimization of the impeller design. Rather, the improvements lead to a significant shift in the performance factor of the impeller, which reflect structural advantages of the disclosed impellers.
As shown in
In
For example, with the impeller 300J of
By contrast, the impeller 300D of
The exemplary impeller 300D of
Further, the impeller 300D of
The impeller 300D of
Curve B plots approximate flow rate versus motor speed for the heart pump disclosed in the article of J. Stolinski, C. Rosenbaum, Willem Flameng, and Bart Meyns, “The heart-pump interaction: effects of a microaxial blood pump,” International Journal of Artificial Organs, vol:25 issue:11 pages:1082-8, 2002, which is incorporated by reference herein in its entirety and for all purposes. The test data from Curve B was obtained under test conditions having a back pressure of about 60 mmHg.
Curve C plots approximate flow rate versus motor speed for the heart pump disclosed in the article of David M. Weber, Daniel H. Raess, Jose P. S. Henriques, and Thorsten Siess, “Principles of Impella Cardiac Support,” Supplement to Cardiac Interventions Today, August/September 2009, which is incorporated by reference herein in its entirety and for all purposes. The test data from Curve C was obtained under test conditions having a back pressure of about 60 mmHg.
Data point D plots approximate flow rate versus motor speed for the heart pump disclosed in Federal and Drug Administration 510(k) Summary for Predicate Device IMPELLA 2.5 (K112892), prepared on Sep. 5, 2012, which is incorporated by reference herein in its entirety and for all purposes. In particular, for data point D, the disclosed pump was capable of mean flow rates of up to 3.3 LPM at pump speeds of 46,000 RPM at a 60 mmHg differential pressure.
As shown in
In addition, the data of Curves B-C and data point D of
By contrast, as shown in Curve A of
Indeed, the impeller of Curve A may be configured to be inserted into vascular system of a patient through a percutaneous access site having a size less than 21 FR. The impeller of Curve A (e.g., which may be similar to or the same as impeller 300D) may include one or more blades in a single row. In some embodiments, the impeller can be configured to pump blood through at least a portion of the vascular system at a flow rate of at least about 2.0 liters per minute when the impeller is rotated at a speed less than about 21,000 revolutions per minute. In some embodiments, the blades are expandable.
Blade Height-to-Hub Diameter Ratio
In some embodiments, a ratio σ of blade height (h) to hub diameter (D) can be defined. As explained above, the hub 301 can have a first diameter D1 at a distal end portion of the impeller 300 (e.g., near a leading edge of the blade(s) 303) and a second diameter D2 at a proximal end portion of the impeller 300 (e.g., near a trailing edge of the blade(s) 303). As used herein, the ratio σ may be defined relative to a diameter D, which, in some embodiments, may correspond to the first diameter D1 or the second diameter D2, or to an average of D1 and D2. The blade height h may be identified relative to the deployed configuration in some embodiments. As shown in
The ratio σ may be relatively large compared to conventional impellers. For example, as explained herein, it can be advantageous to provide for an impeller 300 having a low profile suitable, for example, for percutaneous insertion into the patient's vascular system. One way to provide a low profile impeller 300 is to reduce the volume of impeller material that is compressed within the outer sheath, e.g., the sheath within which the impeller 300 is stored during percutaneous delivery and insertion. Impellers having relatively large blade height-to-hub diameter ratios σ may allow for such compact insertion, while maintaining high flow rates. For example, larger blade heights h can allow for the use of smaller hub diameters D, and the larger blade heights h are also capable of inducing high flow rates that are advantageous for catheter pump systems. For example, in some embodiments, the blade height-to-hub diameter ratio σ can be at least about 0.95, at least about 1, at least about 1.1, and/or at least about 1.2, in various arrangements. In some embodiments, for example, the ratio σ can be in a range of about 0.7 to about 1.45 in various embodiments. In particular, the ratio σ can be in a range of about 0.7 to about 1.1 in some embodiments (such as the embodiment of
Example Impeller Parameters
It should be appreciated that the values for the disclosed impeller parameters are illustrative only. Skilled artisans will appreciate that the blade parameters can vary according to the particular design situation. However, in particular embodiments, the blade parameters can include parameter values similar to those disclosed in Tables 1-2 below. Note that length dimensions are in inches and angles are in degrees.
One will appreciate from the description herein that the configuration of the blades may be modified depending on the application. For example, the angle of attack of the blades may be modified to provide for mixed flow, axial flow, or a combination thereof. The exemplary blades of the illustrated figures are dimensioned and configured to improve axial flow and reduce hemolysis risk. The exemplary blades are shaped and dimensioned to achieve the desired pressure head and flow rate. In addition, the single blade row design is thought to reduce the turbulent flow between blade rows with other designs and thus may reduce hemolysis.
Although the inventions herein have been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present inventions. It is therefore to be understood that numerous modifications can be made to the illustrative embodiments and that other arrangements can be devised without departing from the spirit and scope of the present inventions as defined by the appended claims. Thus, it is intended that the present application cover the modifications and variations of these embodiments and their equivalents.
The present application is a Continuation of U.S. patent application Ser. No. 15/589,366, filed on May 8, 2017, and issued as U.S. patent Ser. No. 10,039,872, which is a Continuation of U.S. patent application Ser. No. 15/142,522, filed on Apr. 29, 2016, and issued as U.S. Pat. No. 9,675,740, which is a Continuation of U.S. patent application Ser. No. 14/401,096, filed on Nov. 13, 2014 and issued as U.S. Pat. No. 9,327,067, which claims the benefit of priority to P.C.T. Application No. PCT/US2013/040809, filed on May 13, 2013, which claims the benefit of priority to U.S. patent application Ser. No. 13/802,570, filed on Mar. 13, 2013 and issued as U.S. Pat. No. 8,721,517, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/667,875, filed on Jul. 3, 2012, and U.S. Provisional Patent Application No. 61/646,827, filed on May 14, 2012, all of which are hereby incorporated by reference herein. Any and all applications not listed above for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Number | Name | Date | Kind |
---|---|---|---|
1002833 | Giddings | Sep 1911 | A |
1031629 | De Los Rios | Jul 1912 | A |
1814175 | Miller | Jul 1931 | A |
1902418 | Pilgrim | Mar 1933 | A |
2356659 | Paiva | Aug 1944 | A |
2649052 | Weyer | Aug 1953 | A |
2664050 | Abresch | Dec 1953 | A |
2684035 | Kemp | Jul 1954 | A |
2789511 | Warren | Apr 1957 | A |
2896926 | Chapman | Jul 1959 | A |
2935068 | Shearman | May 1960 | A |
3080824 | Boyd | Mar 1963 | A |
3455540 | Marcmann | Jul 1969 | A |
3510229 | Smith | May 1970 | A |
3812812 | Hurwitz | May 1974 | A |
3860968 | Shapiro | Jan 1975 | A |
3904901 | Renard et al. | Sep 1975 | A |
3995617 | Watkins et al. | Dec 1976 | A |
4115040 | Knorr | Sep 1978 | A |
4129129 | Amrine | Dec 1978 | A |
4135253 | Reich et al. | Jan 1979 | A |
4143425 | Runge | Mar 1979 | A |
4149535 | Volder | Apr 1979 | A |
4304524 | Coxon | Dec 1981 | A |
D264134 | Xanthopoulos | Apr 1982 | S |
4382199 | Isaacson | May 1983 | A |
4392836 | Sugawara | Jul 1983 | A |
4458366 | MacGregor et al. | Jul 1984 | A |
4537561 | Xanthopoulos | Aug 1985 | A |
4540402 | Aigner | Sep 1985 | A |
4560375 | Schulte et al. | Dec 1985 | A |
4589822 | Clausen et al. | May 1986 | A |
4625712 | Wampler | Dec 1986 | A |
4655745 | Corbett et al. | Apr 1987 | A |
4673334 | Allington et al. | Jun 1987 | A |
4686982 | Nash | Aug 1987 | A |
4696667 | Masch | Sep 1987 | A |
4704121 | Moise | Nov 1987 | A |
4728319 | Masch et al. | Mar 1988 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4769006 | Papantonakos | Sep 1988 | A |
4817586 | Wampler | Apr 1989 | A |
4846152 | Wampler | Jul 1989 | A |
4895557 | Moise et al. | Jan 1990 | A |
4900227 | Trouplin | Feb 1990 | A |
4902272 | Milder et al. | Feb 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4908012 | Moise et al. | Mar 1990 | A |
4919647 | Nash | Apr 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4955856 | Phillips | Sep 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4964864 | Summers et al. | Oct 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4976270 | Parl et al. | Dec 1990 | A |
4985014 | Orejola | Jan 1991 | A |
4994017 | Yozu | Feb 1991 | A |
4995857 | Arnold | Feb 1991 | A |
5000177 | Hoffmann et al. | Mar 1991 | A |
5021048 | Buckholtz | Jun 1991 | A |
5044902 | Malbec | Sep 1991 | A |
5045072 | Castillo et al. | Sep 1991 | A |
5049134 | Golding | Sep 1991 | A |
5059174 | Vaillancourt | Oct 1991 | A |
5061256 | Wampler | Oct 1991 | A |
5089016 | Millner et al. | Feb 1992 | A |
5092844 | Schwartz et al. | Mar 1992 | A |
5098256 | Smith | Mar 1992 | A |
5106368 | Uldall et al. | Apr 1992 | A |
5112200 | Isaacson et al. | May 1992 | A |
5112292 | Hwang et al. | May 1992 | A |
5112349 | Summers et al. | May 1992 | A |
5129883 | Black | Jul 1992 | A |
5142155 | Mauze et al. | Aug 1992 | A |
5147186 | Buckholtz | Sep 1992 | A |
5163910 | Schwartz et al. | Nov 1992 | A |
5169378 | Figuera | Dec 1992 | A |
5171212 | Buck et al. | Dec 1992 | A |
5190528 | Fonger et al. | Mar 1993 | A |
5195960 | Hossain et al. | Mar 1993 | A |
5201679 | Velte, Jr. et al. | Apr 1993 | A |
5211546 | Isaacson et al. | May 1993 | A |
5221270 | Parker | Jun 1993 | A |
5234407 | Teirstein et al. | Aug 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5290227 | Pasque | Mar 1994 | A |
5300112 | Barr | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5344443 | Palma et al. | Sep 1994 | A |
5346458 | Affeld | Sep 1994 | A |
5360317 | Clausen et al. | Nov 1994 | A |
5376114 | Jarvik | Dec 1994 | A |
5393197 | Lemont et al. | Feb 1995 | A |
5393207 | Maher | Feb 1995 | A |
5405341 | Martin | Apr 1995 | A |
5405383 | Barr | Apr 1995 | A |
5415637 | Khosravi | May 1995 | A |
5437541 | Vainrub | Aug 1995 | A |
5449342 | Hirose et al. | Sep 1995 | A |
5458459 | Hubbard et al. | Oct 1995 | A |
5490763 | Abrams et al. | Feb 1996 | A |
5505701 | Anaya Fernandez de Lomana et al. | Apr 1996 | A |
5527159 | Bozeman, Jr. | Jun 1996 | A |
5533957 | Aldea | Jul 1996 | A |
5534287 | Lukic | Jul 1996 | A |
5554114 | Wallace et al. | Sep 1996 | A |
5586868 | Lawless et al. | Dec 1996 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5609574 | Kaplan et al. | Mar 1997 | A |
5613935 | Jarvik | Mar 1997 | A |
5643226 | Cosgrove et al. | Jul 1997 | A |
5678306 | Bozeman, Jr. et al. | Oct 1997 | A |
5692882 | Bozeman, Jr. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5704926 | Sutton | Jan 1998 | A |
5707218 | Maher et al. | Jan 1998 | A |
5722930 | Larson, Jr. et al. | Mar 1998 | A |
5725513 | Ju et al. | Mar 1998 | A |
5725570 | Heath | Mar 1998 | A |
5730628 | Hawkins | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741429 | Donadio et al. | Apr 1998 | A |
5746709 | Rom et al. | May 1998 | A |
5749855 | Reitan | May 1998 | A |
5755784 | Jarvik | May 1998 | A |
5776111 | Tesio | Jul 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5776190 | Jarvik | Jul 1998 | A |
5779721 | Nash | Jul 1998 | A |
5807311 | Palestrant | Sep 1998 | A |
5814011 | Corace | Sep 1998 | A |
5824070 | Jarvik | Oct 1998 | A |
5851174 | Jarvik et al. | Dec 1998 | A |
5859482 | Crowell et al. | Jan 1999 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5868703 | Bertolero et al. | Feb 1999 | A |
5888241 | Jarvik | Mar 1999 | A |
5888242 | Antaki et al. | Mar 1999 | A |
5911685 | Siess et al. | Jun 1999 | A |
5921913 | Siess | Jul 1999 | A |
5927956 | Lim et al. | Jul 1999 | A |
5941813 | Sievers et al. | Aug 1999 | A |
5951263 | Taylor et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
5993420 | Hyman et al. | Nov 1999 | A |
6007478 | Siess et al. | Dec 1999 | A |
6007479 | Rottenberg et al. | Dec 1999 | A |
6015272 | Antaki et al. | Jan 2000 | A |
6015434 | Yamane | Jan 2000 | A |
6018208 | Maher et al. | Jan 2000 | A |
6027863 | Donadio | Feb 2000 | A |
6053705 | Schoeb et al. | Apr 2000 | A |
6056719 | Mickley | May 2000 | A |
6058593 | Siess | May 2000 | A |
6059760 | Sandmore et al. | May 2000 | A |
6068610 | Ellis et al. | May 2000 | A |
6071093 | Hart | Jun 2000 | A |
6083260 | Aboul-Hosn | Jul 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6086570 | Aboul-Hosn et al. | Jul 2000 | A |
6106494 | Saravia et al. | Aug 2000 | A |
6109895 | Ray et al. | Aug 2000 | A |
6113536 | Aboul-Hosn et al. | Sep 2000 | A |
6123659 | Le Blanc et al. | Sep 2000 | A |
6123725 | Aboul-Hosn | Sep 2000 | A |
6132363 | Freed et al. | Oct 2000 | A |
6135729 | Aber | Oct 2000 | A |
6135943 | Yu et al. | Oct 2000 | A |
6136025 | Barbut et al. | Oct 2000 | A |
6139487 | Siess | Oct 2000 | A |
6152704 | Aboul-Hosn et al. | Nov 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6176822 | Nix et al. | Jan 2001 | B1 |
6176848 | Rau et al. | Jan 2001 | B1 |
6178922 | Denesuk et al. | Jan 2001 | B1 |
6186665 | Maher et al. | Feb 2001 | B1 |
6190304 | Downey et al. | Feb 2001 | B1 |
6190357 | Ferrari et al. | Feb 2001 | B1 |
6200260 | Bolling | Mar 2001 | B1 |
6203528 | Deckert et al. | Mar 2001 | B1 |
6210133 | Aboul-Hosn et al. | Apr 2001 | B1 |
6210318 | Lederman | Apr 2001 | B1 |
6210397 | Aboul-Hosn et al. | Apr 2001 | B1 |
6214846 | Elliott | Apr 2001 | B1 |
6217541 | Yu | Apr 2001 | B1 |
6227797 | Watterson et al. | May 2001 | B1 |
6228063 | Aboul Hosn | May 2001 | B1 |
6234960 | Aboul-Hosn et al. | May 2001 | B1 |
6234995 | Peacock, III | May 2001 | B1 |
6245007 | Bedingham et al. | Jun 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6248091 | Voelker | Jun 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6254564 | Wilk et al. | Jul 2001 | B1 |
6287319 | Aboul-Hosn et al. | Sep 2001 | B1 |
6287336 | Globerman et al. | Sep 2001 | B1 |
6295877 | Aboul-Hosn et al. | Oct 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6305962 | Maher et al. | Oct 2001 | B1 |
6387037 | Bolling et al. | May 2002 | B1 |
6395026 | Aboul-Hosn et al. | May 2002 | B1 |
6413222 | Pantages et al. | Jul 2002 | B1 |
6422990 | Prem | Jul 2002 | B1 |
6425007 | Messinger | Jul 2002 | B1 |
6428464 | Bolling | Aug 2002 | B1 |
6447441 | Yu et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6494694 | Lawless et al. | Dec 2002 | B2 |
6503224 | Forman et al. | Jan 2003 | B1 |
6508777 | MacOviak et al. | Jan 2003 | B1 |
6508787 | Erbel et al. | Jan 2003 | B2 |
6517315 | Belady | Feb 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6527699 | Goldowsky | Mar 2003 | B1 |
6532964 | Aboul-Hosn et al. | Mar 2003 | B2 |
6533716 | Schmitz-Rode et al. | Mar 2003 | B1 |
6544216 | Sammler et al. | Apr 2003 | B1 |
6547519 | DeBlanc et al. | Apr 2003 | B2 |
6565598 | Lootz | May 2003 | B1 |
6572349 | Sorensen et al. | Jun 2003 | B2 |
6609883 | Woodard et al. | Aug 2003 | B2 |
6610004 | Viole et al. | Aug 2003 | B2 |
6613008 | Aboul-Hosn et al. | Sep 2003 | B2 |
6616323 | McGill | Sep 2003 | B2 |
6623420 | Reich et al. | Sep 2003 | B2 |
6623475 | Siess | Sep 2003 | B1 |
6641093 | Coudrais | Nov 2003 | B2 |
6641558 | Aboul-Hosn et al. | Nov 2003 | B1 |
6645241 | Strecker | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6660014 | Demarais et al. | Dec 2003 | B2 |
6673105 | Chen | Jan 2004 | B1 |
6692318 | McBride | Feb 2004 | B2 |
6709418 | Aboul-Hosn et al. | Mar 2004 | B1 |
6716189 | Jarvik et al. | Apr 2004 | B1 |
6749598 | Keren et al. | Jun 2004 | B1 |
6776578 | Belady | Aug 2004 | B2 |
6776794 | Hong et al. | Aug 2004 | B1 |
6783328 | Lucke et al. | Aug 2004 | B2 |
6790171 | Gruendeman et al. | Sep 2004 | B1 |
6794784 | Takahashi et al. | Sep 2004 | B2 |
6794789 | Siess et al. | Sep 2004 | B2 |
6814713 | Aboul Hosn et al. | Nov 2004 | B2 |
6817836 | Nose et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6835049 | Ray | Dec 2004 | B2 |
6860713 | Hoover | Mar 2005 | B2 |
6866625 | Ayre et al. | Mar 2005 | B1 |
6866805 | Hong et al. | Mar 2005 | B2 |
6887215 | McWeeney | May 2005 | B2 |
6889082 | Bolling et al. | May 2005 | B2 |
6901289 | Dahl et al. | May 2005 | B2 |
6926662 | Aboul-Hosn et al. | Aug 2005 | B1 |
6935344 | Aboul-Hosn et al. | Aug 2005 | B1 |
6942611 | Siess | Sep 2005 | B2 |
6949066 | Bearnson et al. | Sep 2005 | B2 |
6962488 | Davis et al. | Nov 2005 | B2 |
6966748 | Woodard et al. | Nov 2005 | B2 |
6972956 | Franz et al. | Dec 2005 | B2 |
6974436 | Aboul-Hosn et al. | Dec 2005 | B1 |
6981942 | Khaw et al. | Jan 2006 | B2 |
6984392 | Bechert et al. | Jan 2006 | B2 |
7010954 | Siess et al. | Mar 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7014417 | Salomon | Mar 2006 | B2 |
7018182 | O'Mahony et al. | Mar 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7027875 | Siess et al. | Apr 2006 | B2 |
7037069 | Arnold et al. | May 2006 | B2 |
7070555 | Siess | Jul 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7125376 | Viole et al. | Oct 2006 | B2 |
7144365 | Bolling et al. | Dec 2006 | B2 |
7150711 | Nusser et al. | Dec 2006 | B2 |
7160243 | Medvedev | Jan 2007 | B2 |
7172551 | Leasure | Feb 2007 | B2 |
7175588 | Morello | Feb 2007 | B2 |
7214038 | Saxer et al. | May 2007 | B2 |
7229258 | Wood et al. | Jun 2007 | B2 |
7238010 | Hershberger et al. | Jul 2007 | B2 |
7241257 | Ainsworth et al. | Jul 2007 | B1 |
7262531 | Li et al. | Aug 2007 | B2 |
7264606 | Jarvik et al. | Sep 2007 | B2 |
7267667 | Houde et al. | Sep 2007 | B2 |
7284956 | Nose et al. | Oct 2007 | B2 |
7284958 | Dundas et al. | Oct 2007 | B2 |
7288111 | Holloway et al. | Oct 2007 | B1 |
7290929 | Smith et al. | Nov 2007 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7331921 | Viole et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7381179 | Aboul-Hosn et al. | Jun 2008 | B2 |
7393181 | McBride et al. | Jul 2008 | B2 |
7455497 | Lee | Nov 2008 | B2 |
7469716 | Parrino et al. | Dec 2008 | B2 |
7478999 | Limoges | Jan 2009 | B2 |
7491163 | Viole et al. | Feb 2009 | B2 |
7534258 | Gomez et al. | May 2009 | B2 |
7605298 | Bechert et al. | Oct 2009 | B2 |
7619560 | Penna et al. | Nov 2009 | B2 |
7633193 | Masoudipour et al. | Dec 2009 | B2 |
7645225 | Medvedev et al. | Jan 2010 | B2 |
7657324 | Westlund et al. | Feb 2010 | B2 |
7682673 | Houston et al. | Mar 2010 | B2 |
7722568 | Lenker et al. | May 2010 | B2 |
7731675 | Aboul-Hosn et al. | Jun 2010 | B2 |
7736296 | Siess et al. | Jun 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7780628 | Keren et al. | Aug 2010 | B1 |
7785246 | Aboul-Hosn et al. | Aug 2010 | B2 |
7811279 | John | Oct 2010 | B2 |
7819833 | Ainsworth et al. | Oct 2010 | B2 |
7820205 | Takakusagi et al. | Oct 2010 | B2 |
7828710 | Shifflette | Nov 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7878967 | Khanal | Feb 2011 | B1 |
7918828 | Lundgaard et al. | Apr 2011 | B2 |
7927068 | McBride et al. | Apr 2011 | B2 |
7934912 | Voltenburg, Jr. et al. | May 2011 | B2 |
7935102 | Breznock et al. | May 2011 | B2 |
7942804 | Khaw | May 2011 | B2 |
7942844 | Moberg et al. | May 2011 | B2 |
7955365 | Doty | Jun 2011 | B2 |
7993259 | Kang et al. | Aug 2011 | B2 |
7998054 | Bolling | Aug 2011 | B2 |
7998190 | Gharib et al. | Aug 2011 | B2 |
8012079 | Delgado | Sep 2011 | B2 |
8025647 | Siess et al. | Sep 2011 | B2 |
8052399 | Stemple et al. | Nov 2011 | B2 |
8062008 | Voltenburg, Jr. et al. | Nov 2011 | B2 |
8079948 | Shifflette | Dec 2011 | B2 |
8110267 | Houston et al. | Feb 2012 | B2 |
8114008 | Hidaka et al. | Feb 2012 | B2 |
8123669 | Siess et al. | Feb 2012 | B2 |
8142400 | Rotem et al. | Mar 2012 | B2 |
8177703 | Smith et al. | May 2012 | B2 |
8206350 | Mann et al. | Jun 2012 | B2 |
8209015 | Glenn | Jun 2012 | B2 |
8216122 | Kung et al. | Jul 2012 | B2 |
8235943 | Breznock et al. | Aug 2012 | B2 |
8236040 | Mayberry et al. | Aug 2012 | B2 |
8236044 | Robaina | Aug 2012 | B2 |
8255050 | Mohl | Aug 2012 | B2 |
8257312 | Duffy | Sep 2012 | B2 |
8262619 | Chebator et al. | Sep 2012 | B2 |
8277470 | Demarais et al. | Oct 2012 | B2 |
8317715 | Belleville et al. | Nov 2012 | B2 |
8329913 | Murata et al. | Dec 2012 | B2 |
8333687 | Farnan et al. | Dec 2012 | B2 |
8348991 | Weber et al. | Jan 2013 | B2 |
8364278 | Pianca et al. | Jan 2013 | B2 |
8376707 | McBride et al. | Feb 2013 | B2 |
8382818 | Davis et al. | Feb 2013 | B2 |
8388565 | Shifflette | Mar 2013 | B2 |
8409128 | Ferrari | Apr 2013 | B2 |
8414645 | Dwork et al. | Apr 2013 | B2 |
8439859 | Pfeffer | May 2013 | B2 |
8449443 | Rodefeld et al. | May 2013 | B2 |
8485961 | Campbell et al. | Jul 2013 | B2 |
8489190 | Pfeffer et al. | Jul 2013 | B2 |
8535211 | Campbell et al. | Sep 2013 | B2 |
8540615 | Aboul-Hosn et al. | Sep 2013 | B2 |
8545379 | Marseille et al. | Oct 2013 | B2 |
8545380 | Farnan et al. | Oct 2013 | B2 |
8579858 | Reitan et al. | Nov 2013 | B2 |
8585572 | Mehmanesh | Nov 2013 | B2 |
8591393 | Walters et al. | Nov 2013 | B2 |
8597170 | Walters et al. | Dec 2013 | B2 |
8608635 | Yomtov et al. | Dec 2013 | B2 |
8617239 | Reitan | Dec 2013 | B2 |
8684904 | Campbell et al. | Apr 2014 | B2 |
8690749 | Nunez | Apr 2014 | B1 |
8721516 | Scheckel | May 2014 | B2 |
8721517 | Zeng et al. | May 2014 | B2 |
8727959 | Reitan et al. | May 2014 | B2 |
8734331 | Evans et al. | May 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8790236 | Larose et al. | Jul 2014 | B2 |
8795576 | Tao et al. | Aug 2014 | B2 |
8801590 | Mohl | Aug 2014 | B2 |
8814776 | Hastie et al. | Aug 2014 | B2 |
8814933 | Siess | Aug 2014 | B2 |
8849398 | Evans | Sep 2014 | B2 |
8944748 | Liebing | Feb 2015 | B2 |
8992406 | Corbett | Mar 2015 | B2 |
8998792 | Scheckel | Apr 2015 | B2 |
9028216 | Schumacher et al. | May 2015 | B2 |
9089634 | Schumacher et al. | Jul 2015 | B2 |
9089670 | Scheckel | Jul 2015 | B2 |
9162017 | Evans et al. | Oct 2015 | B2 |
9217442 | Wiessler et al. | Dec 2015 | B2 |
9308302 | Zeng | Apr 2016 | B2 |
9314558 | Er | Apr 2016 | B2 |
9327067 | Zeng et al. | May 2016 | B2 |
9328741 | Liebing | May 2016 | B2 |
9358330 | Schumacher | Jun 2016 | B2 |
9381288 | Schenck et al. | Jul 2016 | B2 |
9421311 | Tanner et al. | Aug 2016 | B2 |
9446179 | Keenan et al. | Sep 2016 | B2 |
20020010487 | Evans et al. | Jan 2002 | A1 |
20020047435 | Takahashi et al. | Apr 2002 | A1 |
20020094287 | Davis | Jul 2002 | A1 |
20020107506 | McGuckin et al. | Aug 2002 | A1 |
20020111663 | Dahl et al. | Aug 2002 | A1 |
20020151761 | Viole et al. | Oct 2002 | A1 |
20030018380 | Craig et al. | Jan 2003 | A1 |
20030023201 | Aboul-Hosn et al. | Jan 2003 | A1 |
20030100816 | Siess | May 2003 | A1 |
20030135086 | Khaw et al. | Jul 2003 | A1 |
20030187322 | Siess | Oct 2003 | A1 |
20030205233 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030208097 | Aboul-Hosn et al. | Nov 2003 | A1 |
20030231959 | Snider | Dec 2003 | A1 |
20040010229 | Houde et al. | Jan 2004 | A1 |
20040044266 | Siess et al. | Mar 2004 | A1 |
20040101406 | Hoover | May 2004 | A1 |
20040113502 | Li et al. | Jun 2004 | A1 |
20040116862 | Ray | Jun 2004 | A1 |
20040152944 | Medvedev et al. | Aug 2004 | A1 |
20040253129 | Sorensen et al. | Dec 2004 | A1 |
20050049696 | Siess et al. | Mar 2005 | A1 |
20050085683 | Bolling et al. | Apr 2005 | A1 |
20050090883 | Westlund et al. | Apr 2005 | A1 |
20050095124 | Arnold et al. | May 2005 | A1 |
20050113631 | Bolling et al. | May 2005 | A1 |
20050135942 | Wood et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050165269 | Aboul Hosn et al. | Jul 2005 | A9 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050250975 | Carrier et al. | Nov 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060005886 | Parrino et al. | Jan 2006 | A1 |
20060008349 | Khaw | Jan 2006 | A1 |
20060018943 | Bechert et al. | Jan 2006 | A1 |
20060036127 | Delgado, III et al. | Feb 2006 | A1 |
20060058869 | Olson et al. | Mar 2006 | A1 |
20060062672 | McBride | Mar 2006 | A1 |
20060063965 | Aboul-Hosn et al. | Mar 2006 | A1 |
20060089521 | Chang | Apr 2006 | A1 |
20060155158 | Aboul-Hosn | Jul 2006 | A1 |
20060167404 | Pirovano et al. | Jul 2006 | A1 |
20060264695 | Viole et al. | Nov 2006 | A1 |
20060270894 | Viole et al. | Nov 2006 | A1 |
20070100314 | Keren et al. | May 2007 | A1 |
20070142785 | Lundgaard et al. | Jun 2007 | A1 |
20070156006 | Smith et al. | Jul 2007 | A1 |
20070203442 | Bechert et al. | Aug 2007 | A1 |
20070212240 | Voyeux et al. | Sep 2007 | A1 |
20070217932 | Voyeux et al. | Sep 2007 | A1 |
20070217933 | Haser et al. | Sep 2007 | A1 |
20070233270 | Weber et al. | Oct 2007 | A1 |
20070237739 | Doty | Oct 2007 | A1 |
20070248477 | Nazarifar et al. | Oct 2007 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004690 | Robaina | Jan 2008 | A1 |
20080031953 | Takakusagi et al. | Feb 2008 | A1 |
20080103442 | Kesten et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080103591 | Siess | May 2008 | A1 |
20080114339 | McBride et al. | May 2008 | A1 |
20080119943 | Armstrong et al. | May 2008 | A1 |
20080132748 | Shifflette | Jun 2008 | A1 |
20080167679 | Papp | Jul 2008 | A1 |
20080275290 | Viole et al. | Nov 2008 | A1 |
20080306327 | Shifflette | Dec 2008 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090023975 | Marseille et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090053085 | Thompson et al. | Feb 2009 | A1 |
20090062597 | Shifflette | Mar 2009 | A1 |
20090073037 | Penna et al. | Mar 2009 | A1 |
20090087325 | Voltenburg, Jr. et al. | Apr 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090093765 | Glenn | Apr 2009 | A1 |
20090093796 | Pfeffer et al. | Apr 2009 | A1 |
20090099638 | Grewe | Apr 2009 | A1 |
20090112312 | Larose et al. | Apr 2009 | A1 |
20090118567 | Siess | May 2009 | A1 |
20090163864 | Breznock et al. | Jun 2009 | A1 |
20090171137 | Farnan et al. | Jul 2009 | A1 |
20090182188 | Marseille et al. | Jul 2009 | A1 |
20090234378 | Escudero et al. | Sep 2009 | A1 |
20100030161 | Duffy | Feb 2010 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100041939 | Siess | Feb 2010 | A1 |
20100047099 | Miyazaki et al. | Feb 2010 | A1 |
20100087773 | Ferrari | Apr 2010 | A1 |
20100094089 | Litscher et al. | Apr 2010 | A1 |
20100127871 | Pontin | May 2010 | A1 |
20100137802 | Yodfat et al. | Jun 2010 | A1 |
20100174239 | Yodfat et al. | Jul 2010 | A1 |
20100191035 | Kang et al. | Jul 2010 | A1 |
20100197994 | Mehmanesh | Aug 2010 | A1 |
20100210895 | Aboul-Hosn et al. | Aug 2010 | A1 |
20100268017 | Siess et al. | Oct 2010 | A1 |
20100274330 | Burwell et al. | Oct 2010 | A1 |
20100286210 | Murata et al. | Nov 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20110004046 | Campbell et al. | Jan 2011 | A1 |
20110004291 | Davis et al. | Jan 2011 | A1 |
20110009687 | Mohl | Jan 2011 | A1 |
20110015610 | Plahey et al. | Jan 2011 | A1 |
20110034874 | Reitan et al. | Feb 2011 | A1 |
20110071338 | McBride et al. | Mar 2011 | A1 |
20110076439 | Zeilon | Mar 2011 | A1 |
20110098805 | Dwork et al. | Apr 2011 | A1 |
20110106004 | Eubanks et al. | May 2011 | A1 |
20110152831 | Rotem et al. | Jun 2011 | A1 |
20110152906 | Escudero et al. | Jun 2011 | A1 |
20110152907 | Escudero et al. | Jun 2011 | A1 |
20110218516 | Grigorov | Sep 2011 | A1 |
20110237863 | Ricci et al. | Sep 2011 | A1 |
20110257462 | Rodefeld et al. | Oct 2011 | A1 |
20110270182 | Breznock et al. | Nov 2011 | A1 |
20110275884 | Scheckel | Nov 2011 | A1 |
20110300010 | Jarnagin et al. | Dec 2011 | A1 |
20120004495 | Bolling et al. | Jan 2012 | A1 |
20120029265 | LaRose et al. | Feb 2012 | A1 |
20120059213 | Spence et al. | Mar 2012 | A1 |
20120059460 | Reitan | Mar 2012 | A1 |
20120083740 | Chebator et al. | Apr 2012 | A1 |
20120142994 | Toellner | Jun 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120172655 | Campbell et al. | Jul 2012 | A1 |
20120172656 | Walters et al. | Jul 2012 | A1 |
20120178985 | Walters et al. | Jul 2012 | A1 |
20120178986 | Campbell et al. | Jul 2012 | A1 |
20120184803 | Simon et al. | Jul 2012 | A1 |
20120203056 | Corbett | Aug 2012 | A1 |
20120220854 | Messerly et al. | Aug 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120226097 | Smith et al. | Sep 2012 | A1 |
20120234411 | Scheckel et al. | Sep 2012 | A1 |
20120237357 | Schumacher et al. | Sep 2012 | A1 |
20120245404 | Smith et al. | Sep 2012 | A1 |
20120265002 | Roehn et al. | Oct 2012 | A1 |
20130041202 | Toellner et al. | Feb 2013 | A1 |
20130053622 | Corbett | Feb 2013 | A1 |
20130053623 | Evans et al. | Feb 2013 | A1 |
20130066140 | McBride et al. | Mar 2013 | A1 |
20130085318 | Toellner et al. | Apr 2013 | A1 |
20130085319 | Evans et al. | Apr 2013 | A1 |
20130096364 | Reichenbach et al. | Apr 2013 | A1 |
20130103063 | Escudero et al. | Apr 2013 | A1 |
20130106212 | Nakazumi et al. | May 2013 | A1 |
20130129503 | McBride et al. | May 2013 | A1 |
20130138205 | Kushwaha et al. | May 2013 | A1 |
20130204362 | Toellner et al. | Aug 2013 | A1 |
20130209292 | Baykut et al. | Aug 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20130245360 | Schumacher et al. | Sep 2013 | A1 |
20130303831 | Evans et al. | Nov 2013 | A1 |
20130303969 | Keenan et al. | Nov 2013 | A1 |
20130303970 | Keenan et al. | Nov 2013 | A1 |
20130331639 | Campbell et al. | Dec 2013 | A1 |
20130345492 | Pfeffer et al. | Dec 2013 | A1 |
20140005467 | Farnan et al. | Jan 2014 | A1 |
20140010686 | Tanner et al. | Jan 2014 | A1 |
20140012065 | Fitzgerald et al. | Jan 2014 | A1 |
20140039465 | Schulz et al. | Feb 2014 | A1 |
20140051908 | Khanal et al. | Feb 2014 | A1 |
20140067057 | Callaway et al. | Mar 2014 | A1 |
20140088455 | Christensen et al. | Mar 2014 | A1 |
20140148638 | LaRose et al. | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140255176 | Bredenbreuker et al. | Sep 2014 | A1 |
20140275725 | Schenck et al. | Sep 2014 | A1 |
20140275726 | Zeng | Sep 2014 | A1 |
20140301822 | Scheckel | Oct 2014 | A1 |
20140303596 | Schumacher et al. | Oct 2014 | A1 |
20150025558 | Wulfman et al. | Jan 2015 | A1 |
20150031936 | Larose et al. | Jan 2015 | A1 |
20150051435 | Siess et al. | Feb 2015 | A1 |
20150051436 | Spanier et al. | Feb 2015 | A1 |
20150080743 | Siess et al. | Mar 2015 | A1 |
20150087890 | Spanier et al. | Mar 2015 | A1 |
20150141738 | Toellner et al. | May 2015 | A1 |
20150141739 | Hsu et al. | May 2015 | A1 |
20150151032 | Voskoboynikov et al. | Jun 2015 | A1 |
20150209498 | Franano et al. | Jul 2015 | A1 |
20150250935 | Anderson et al. | Sep 2015 | A1 |
20150290372 | Muller et al. | Oct 2015 | A1 |
20150343179 | Schumacher et al. | Dec 2015 | A1 |
20160184500 | Zeng | Jun 2016 | A1 |
20160250399 | Tiller et al. | Sep 2016 | A1 |
20160250400 | Schumacher | Sep 2016 | A1 |
20160256620 | Schekel Mario et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2701810 | Apr 2009 | CA |
0453234 | Oct 1991 | EP |
0533432 | Mar 1993 | EP |
1207934 | May 2002 | EP |
1393762 | Mar 2004 | EP |
1591079 | Nov 2005 | EP |
2263732 | Dec 2010 | EP |
2298374 | Mar 2011 | EP |
2267800 | Nov 1975 | FR |
2239675 | Jul 1991 | GB |
S48-23295 | Mar 1973 | JP |
S4823295 | Mar 1973 | JP |
S58190448 | Nov 1983 | JP |
H02211169 | Aug 1990 | JP |
H06114101 | Apr 1994 | JP |
H08196624 | Aug 1996 | JP |
H1099447 | Apr 1998 | JP |
H10099447 | Apr 1998 | JP |
3208454 | Sep 2001 | JP |
500877 | Sep 2002 | TW |
8905164 | Jun 1989 | WO |
9526695 | Oct 1995 | WO |
9737697 | Apr 1996 | WO |
9715228 | May 1997 | WO |
12148 | Mar 2000 | WO |
0019097 | Apr 2000 | WO |
0043062 | Jul 2000 | WO |
61207 | Oct 2000 | WO |
0069489 | Nov 2000 | WO |
117581 | Mar 2001 | WO |
0124867 | Apr 2001 | WO |
02070039 | Sep 2002 | WO |
03103745 | Dec 2003 | WO |
2005089674 | Sep 2005 | WO |
2005123158 | Dec 2005 | WO |
2009073037 | Jun 2009 | WO |
2009076460 | Jun 2009 | WO |
2010127871 | Nov 2010 | WO |
2010133567 | Nov 2010 | WO |
2010149393 | Dec 2010 | WO |
2011035926 | Mar 2011 | WO |
2011035929 | Mar 2011 | WO |
2011039091 | Apr 2011 | WO |
2011076439 | Jun 2011 | WO |
2011089022 | Jul 2011 | WO |
2012007140 | Jan 2012 | WO |
2012007141 | Jan 2012 | WO |
2013148697 | Oct 2013 | WO |
2013160407 | Oct 2013 | WO |
2014019274 | Feb 2014 | WO |
2015063277 | May 2015 | WO |
Entry |
---|
Schmitz-Rode et al., “Axial flow catheter pump for circulatory support,” Biomedizinische Technik, 2002, Band 4 7, Erganzungsband 1, Tei I 1, pp. 142-143. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026025, dated Oct. 22, 2015, in 12 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/045370, dated Feb. 25, 2016, in 10 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014371, dated Jul. 28, 2016, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014379, dated Jul. 29, 2016, in 17 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/014391, dated Jul. 28, 2016, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2016/051553, dated Mar. 23, 2017, in 11 pages. |
International Search Report received in International Patent Application No. PCT/US2003/004401, dated Jan. 22, 2004, in 7 pages. |
International Search Report received in International Patent Application No. PCT/US2003/004853, dated Nov. 10, 2003, in 5 pages. |
JOMED Reitan Catheter Pump RCP, Feb. 18, 2003, in 4 pages. |
JOMED Reitan Catheter Pump RCP, Percutaneous Circulatory Support, in 10 pages, believed to be published prior to Oct. 15, 2003. |
Krishnamani et al., “Emerging Ventricular Assist Devices for Long-Term Cardiac Support,” National Review, Cardiology, Feb. 2010, pp. 71-76, vol. 7. |
Kunst et al., “Integrated unit for programmable control of the 21F Hemopump and registration of physiological signals,” Medical & Biological Engineering & Computing, Nov. 1994, pp. 694-696. |
Mihaylov et al., “Development of a New Introduction Technique for the Pulsatile Catheter Pump,” Artificial Organs, 1997, pp. 425-427; vol. 21(5). |
Mihaylov et al., “Evaluation of the Optimal Driving Mode During Left Ventricular Assist with Pulsatile Catheter Pump in Calves,” Artificial Organs, 1999, pp. 1117-1122; vol. 23(12). |
Minimally Invasive Cardiac Assist JOMED Catheter PumpTM, in 6 pages, believed to be published prior to Jun. 16, 1999. |
Morgan, “Medical Shape Memory Alloy Applications—The Market and its Products,” Materials Science and Engineering, 2004, pp. 16-23, vol. A 378. |
Morsink et al., “Numerical Modelling of Blood Flow Behaviour in the Valved Catheter of the PUCA-Pump, a LVAD,”The International Journal of Artificial Organs, 1997, pp. 277-284; vol. 20(5). |
Nishimura et al, “The Enabler Cannula Pump: A Novel Circulatory Support System,” The International Journal of Artificial Organs, 1999, pp. 317-323; vol. 22(5). |
Nullity Action against the owner of the German part DE 50 2007 005 015.6 of European patent EP 2 047 872 B1, dated Jul. 13, 2015, in 61 pages. |
Petrini et al., “Biomedical Applications of Shape Memory Alloys,” Journal of Metallurgy, 2011, pp. 1-15. |
Raess et al., “Impella 2.5,” J. Cardiovasc. Transl. Res., 2009, pp. 168-172, vol. 2(2). |
Reitan et al., “Hemodynamic Effects of a New Percutaneous Circulatory Support Device in a Left Ventricular Failure Model,” ASAIO Journal, 2003, pp. 731-736, vol. 49. |
Reitan et al., “Hydrodynamic Properties of a New Percutaneous Intra-Aortic Axial Flow Pump,” ASAIO Journal 2000, pp. 323-328. |
Reitan, Evaluation of a New Percutaneous Cardiac Assist Device, Department of Cardiology, Faculty of Medicine, Lund University, Sweden, 2002, in 172 pages. |
Rothman, “The Reitan Catheter Pump: A New Versatile Approach for Hemodynamic Support”, London Chest Hospital Barts & The London NHS Trust, Oct. 22-27, 2006 (TCT 2006: Transcatheter Cardiovascular Therapeutics 18th Annual Scientific Symposium, Final Program), in 48 pages. |
Schmitz-Rode et al., “An Expandable Percutaneous Catheter Pump for Left Ventricular Support,” Journal of the American College of Cardiology, 2005, pp. 1856-1861, vol. 45(11). |
Shabari et al., “Improved Hemodynamics with a Novel Miniaturized Intra-Aortic Axial Flow Pump in a Porcine Model of Acute Left Ventricular Dysfunction,” ASAIO Journal, 2013, pp. 240-245; vol. 59. |
Sharony et al, “Cardiopulmonary Support and Physiology—The Intra-Aortic Cannula Pump: A Novel Assist Device for the Acutely Failing Heart,” The Journal of Thoracic and Cardiovascular Surgery, Nov. 1992, pp. 924-929, vol. 118(5). |
Sharony et al., “Right Heart Support During Off-Pump Coronary Artery Surgery—A Multi-Center Study,” The Heart Surgery Forum, 2002, pp. 13-16, vol. 5(1). |
Siess et al., “Basic design criteria for rotary blood pumps,” H. Masuda, Rotary Blood Pumps, Springer, Japan, 2000, pp. 69-83. |
Siess et al., “Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump,” Artificial Organs, 1995, pp. 644-652, vol. 19, No. 7, Blackwell Science, Inc., Boston, International Society for Artificial Organs. |
Siess et al., “From a lab type to a product: A retrospective view on Impella's assist technology,” Artificial Organs, 2001, pp. 414-421, vol. 25, No. 5, Blackwell Science, Inc., International Society for Artificial Organs. |
Siess et al., “System analysis and development of intravascular rotation pumps for cardiac assist,” Dissertation, Shaker Verlag, Aachen, 1999, 39 pages. |
Sieß et al., “Hydraulic refinement of an intraarterial microaxial blood pump”, The International Journal of Artificial Organs, 1995, vol. 18, No. 5, pp. 273-285. |
Sieß , “Systemanalyse und Entwicklung intravasaler Rotationspumpen zur Herzunterstützung”, Helmholtz-Institut fur Blomedixinische Technik an der RWTH Aachen, Jun. 24, 1998, in 105 pages. |
Smith et al., “First-In-Man Study of the Reitan Catheter Pump for Circulatory Support in Patients Undergoing High-Risk Percutaneous Coronary Intervention,” Catheterization and Cardiovascular Interventions, 2009, pp. 859-865, vol. 73(7). |
Sokolowski et al., “Medical Applications of Shape Memory Polymers,” Biomed. Mater. 2007, pp. S23-S27, vol. 2. |
Stoeckel et al., “Self-Expanding Nitinol Stents—Material and Design Considerations,” European Radiology, 2003, in 13 sheets. |
Stolinski et al., “The heart-pump interaction: effects of a microaxial blood pump,” International Journal of Artificial Organs, 2002, pp. 1082-1088, vol. 25, Issue 11. |
Supplemental European Search Report received from the European Patent Office in EP Application No. EP 05799883 dated Mar. 19, 2010, 3 pages. |
Takagaki et al., “A Novel Miniature Ventricular Assist Device for Hemodynamic Support,” ASAIO Journal, 2001, pp. 412-416; vol. 47. |
Throckmorton et al., “Flexible Impeller Blades in an Axial Flow Pump for Intravascular Cavopulmonary Assistance of the Fontan Physiology,” Cardiovascular Engineering and Technology, Dec. 2010, pp. 244-255, vol. 1(4). |
Throckmorton et al., “Uniquely shaped cardiovascular stents enhance the pressure generation of intravascular blood pumps,” The Journal of Thoracic and Cardiovascular Surgery, Sep. 2012, pp. 704-709, vol. 133, No. 3. |
Verkerke et al., “Numerical Simulation of the PUCA Pump, A Left Ventricular Assist Device,” Abstracts of the XIXth ESAO Congress, The International Journal of Artificial Organs, 1992, p. 543, vol. 15(9). |
Verkerke et al., “Numerical Simulation of the Pulsating Catheter Pump: A Left Ventricular Assist Device,” Artificial Organs, 1999, pp. 924-931, vol. 23(10). |
Verkerke et al., “The PUCA Pump: A Left Ventricular Assist Device,” Artificial Organs, 1993, pp. 365-368, vol. 17(5). |
Wampler et al., “The Sternotomy Hemopump, A Second Generation Intraarterial Ventricular Assist Device,” ASAIO Journal, 1993, pp. M218-M223, vol. 39. |
Weber et al., “Principles of Impella Cardiac Support,” Supplemental to Cardiac Interventions Today, Aug./Sep. 2009. |
Written Opinion received in International Patent Application No. PCT/US2003/04853, dated Feb. 25, 2004, 5 pages. |
“Statistical Analysis and Clinical Experience with the Recover® Pump Systems”, Impella CardioSystems GmbH, Sep. 2005, 2 sheets. |
ABIOMED—Recovering Hearts. Saving Lives., Impella 2.5 System, Instructions for Use, Jul. 2007, in 86 sheets. |
ABIOMED, “Impella 5.0 with the Impella Console, Circulatory Support System, Instructions for Use & Clinical Reference Manual,” Jun. 2010, in 122 pages. |
Aboul-Hosn et al., “The Hemopump: Clinical Results and Future Applications”, Assisted Circulation 4, 1995, in 14 pages. |
Barras et al., “Nitinol—Its Use in Vascular Surgery and Other Applications,” Eur. J. Vasc. Endovasc. Surg., 2000, pp. 564-569; vol. 19. |
Biscarini et al., “Enhanced Nitinol Properties for Biomedical Applications,” Recent Patents on Biomedical Engineering, 2008, pp. 180-196, vol. 1(3). |
Cardiovascular Diseases (CVDs) Fact Sheet No. 317; World Health Organization [Online], Sep. 2011. http://www.who.int/mediacentre/factsheets/fs317/en/index.html, accessed on Aug. 29, 2012. |
Compendium of Technical and Scientific Information for the HEMOPUMP Temporary Cardiac Assist System, Johnson & Johnson Interventional Systems, 1988, in 15 pages. |
Dekker et al., “Efficacy of a New Intraaortic Propeller Pump vs the Intraaortic Balloon Pump*, An Animal Study”, Chest, Jun. 2003, vol. 123, No. 6, pp. 2089-2095. |
Duerig et al., “An Overview of Nitinol Medical Applications,” Materials Science Engineering, 1999, pp. 149-160; vol. A273. |
European Search Report received in European Patent Application No. 05799883.3, dated May 10, 2011, in 4 pages. |
Extended EP Search Report, dated Mar. 15, 2018, for related EP patent application No. EP 15833166.0, in 7 pages. |
Extended European Search Report received in European Patent Application No. 07753903.9, dated Oct. 8, 2012, in 7 pages. |
Extended European Search Report received in European Patent Application No. 13790890.1, dated Jan. 7, 2016, in 6 pages. |
Extended European Search Report received in European Patent Application No. 13791118.6, dated Jan. 7, 2016, in 6 pages. |
Extended European Search Report received in European Patent Application No. 13813687.4, dated Feb. 24, 2016, in 6 pages. |
Extended European Search Report received in European Patent Application No. 13813867.2, dated Feb. 26, 2016, in 7 pages. |
Extended European Search Report received in European Patent Application No. 14764392.8, dated Oct. 27, 2016, in 7 pages. |
Extended European Search Report received in European Patent Application No. 14779928.2, dated Oct. 7, 2016, in 7 pages. |
Federal and Drug Administration 510(k) Summary for Predicate Device IMPELLA 2.5 (K112892), prepared Sep. 5, 2012. |
Grech, “Percutaneous Coronary Intervention. I: History and Development,” BMJ., May 17, 2003, pp. 1080-1082, vol. 326. |
Hsu et al., “Review of Recent Patents on Foldable Ventricular Assist Devices,” Recent Patents on Biomedical Engineering, 2012, pp. 208-222, vol. 5. |
Ide et al., “Evaluation of the Pulsatility of a New Pulsatile Left Ventricular Assist Device—the Integrated Cardioassist Catheter-in Dogs,” J. of Thorac and Cardiovasc Sur, Feb. 1994, pp. 569-0575, vol. 107(2). |
Ide et al., “Hemodynamic Evaluation of a New Left Ventricular Assist Device: An Integrated Cardioassist Catheter as a Pulsatile Left Ventricle-Femoral Artery Bypass,” Blackwell Scientific Publications, Inc., 1992, pp. 286-290, vol. 16(3). |
Impella CP®—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Jul. 2014, 148 pages, www.abiomed.com. |
Impella LD® with the Impella® Controller—Circulatory Support System—Instructions for Use & Clinical Reference Manual (United States only), Abiomed, Inc., Sep. 2010, 132 pages, www.abiomed.com. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04401, dated May 18, 2004, in 4 pages. |
International Preliminary Examination Report received in International Patent Application No. PCT/US2003/04853, dated Jul. 26, 2004, in 5 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2005/033416, dated Mar. 20, 2007, in 7 pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent Application No. PCT/US2007/007313, dated Sep. 23, 2008, in 6 pages. |
International Preliminary Report on Patentability and Written Opinion received in International Patent Application No. PCT/US2014/020878, dated Sep. 15, 2015, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2005/033416, dated Dec. 11, 2006, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2007/007313, dated Mar. 4, 2008, in 6 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2010/040847, dated Jan. 6, 2011, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020369, dated Jul. 30, 2012, in 10 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020382, dated Jul. 31, 2012, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020383, dated Aug. 17, 2012; in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2012/020553, dated Aug. 17, 2012, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040798, dated Aug. 21, 2013, in 16 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040799, dated Aug. 21, 2013, in 19 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/040809, dated Sep. 2, 2013, in 25 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048332, dated Oct. 16, 2013, in 14 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2013/048343, dated Oct. 11, 2013, in 15 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020790, dated Oct. 9, 2014, in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2014/020878, dated May 7, 2014, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025959, dated Oct. 22, 2015, in 9 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/025960, dated Oct. 22, 2015, in 11 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026013, dated Oct. 22, 2015, in 8 pages. |
International Search Report and Written Opinion received in International Patent Application No. PCT/US2015/026014, dated Oct. 22, 2015, in 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180311423 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
61667875 | Jul 2012 | US | |
61646827 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15589366 | May 2017 | US |
Child | 16026995 | US | |
Parent | 15142522 | Apr 2016 | US |
Child | 15589366 | US | |
Parent | 14401096 | US | |
Child | 15142522 | US | |
Parent | 13802570 | Mar 2013 | US |
Child | 14401096 | US |