The present embodiments relate to a laundry washing machine, more specifically an impeller for a laundry washing machine.
Typical wash drums with a rotating wash plate or impeller may twist back and forth and/or rotate relative to the surrounding wash drum to rub or contact clothes against each other. This practice of using an impeller generates the washing water flow to separate dirt from the clothes by friction between the water flow above the impeller and/or the clothing. Thus, there is a need to direct or lift fluid surrounding (e.g. below) the impeller to aid friction, cleaning characteristics, and/or fluid flow characteristics to clean the clothes.
In some embodiments of the invention, for example, an impeller for a laundry washing machine may include a rotating member having one or more openings extending from a top surface to a bottom surface. In various embodiments, the rotating member may be positioned within a wash drum. In some embodiments, at least one scooping member may be positioned within the one or more openings and may be positionable between at least a first position and a second position. In various embodiments, wherein in the first position the opening may define a first fluid pathway from the bottom surface to the top surface and wherein in the second position the opening may define a second fluid pathway different from the first fluid pathway.
In some embodiments, at least one scooping member may be in the first position when the rotating member rotates in a first rotational direction. In various embodiments, at least one scooping member may be in the second position when the rotating member rotates in a second rotational direction opposite to the first rotational direction. In addition, in some embodiments, at least one scooping member may project below the bottom surface of the rotating member when in one or more of the first position and the second position. In various embodiments, the impeller may include a cover positioned on the top surface of the rotating member and disposed over at least one scooping member and the one or more openings. In some embodiments, the cover may define one or more second openings in fluid communication with the one or more openings of the rotating member. In various embodiments, one or more of the first fluid pathway and the second fluid pathway may be open to fluid communication between the bottom surface and the top surface. Moreover, in some embodiments, wherein when the rotating member is rotating in one or more rotational directions, the first fluid pathway and the second fluid pathway may be open to fluid communication between the bottom surface and the top surface. In various embodiments, at least one scooping member pivots between the first position and the second position.
In some embodiments, an impeller for a laundry washing machine may include a rotating member within a wash drum having one or more openings extending from a top surface to a bottom surface of the rotating member. In various embodiments, the rotating member may include one or more scooping members positioned adjacent the one or more openings of the rotating member to define one or more fluid pathways through the one or more openings between the bottom surface and the top surface of the rotating member.
In addition, in various embodiments, the one or more scooping members may define a first fluid pathway of the one or more fluid pathways when the rotating member rotates in a first rotational direction and a second fluid pathway of the one or more fluid pathways when the rotating member rotates in a second rotational direction opposite to the first rotational direction, and wherein the second fluid pathway is different from the first fluid pathway. In some embodiments, the one or more scooping members may pivot into and out of the opening defined by the bottom surface of the rotating member in at least one rotational direction of the rotating member. In various embodiments, the impeller may include a cover positioned over the one or more scooping members and projecting from the top surface of the rotating member. In some embodiments, one or more scooping members may include a top surface and a bottom surface, wherein the top surface includes one or more arcuate surfaces. In various embodiments, the top surface of the one or more scooping members may include opposing arcuate surfaces of the one or more arcuate surfaces on lateral sides of a pivoting axis of the one or more scooping members. In addition, in some embodiments, the impeller may include a laundry washing machine with a wash drum therein.
Other embodiments may include the method of directing fluid from beneath an impeller of a laundry washing machine. In some embodiments, the method may include rotating at least one rotating member of the impeller in a first rotational direction, wherein at least one rotating member includes at least one scooping member proximal an opening of at least one rotating member. In various embodiments, the method may include directing fluid from between a bottom surface of at least one rotating member and a wash drum upwardly through the opening of at least one rotating member with at least one scooping member when rotating at least one rotating member of the impeller in the first rotational direction.
In addition, in some embodiments, the method may include pivoting a leading edge of at least one scooping member downwardly and into a space between the bottom surface of at least one rotating member and the wash drum in the first rotational direction. In various embodiments, the method may include pivoting at least one scooping member to a first position when rotating at least one rotating member in the first rotational direction. Moreover, in various embodiments, the method may include pivoting at least one scooping member to a second position when rotating at least one rotating member in a second rotational direction opposite to the first rotational direction. In some embodiments, the method may include directing fluid upwardly and in a direction opposite to the first rotational direction. In various embodiments, the method may include directing fluid from between the bottom surface of at least one rotating member and the wash drum occurs in both the first rotational direction and in a second rotational direction opposite to the first rotational direction.
These and other advantages and features, which characterize the embodiments, are set forth in the claims annexed hereto and form a further part hereof. However, for a better understanding of the embodiments, and of the advantages and objectives attained through its use, reference should be made to the Drawings and to the accompanying descriptive matter, in which there is described example embodiments. This summary is merely provided to introduce a selection of concepts that are further described below in the detailed description, and is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
Numerous variations and modifications will be apparent to one of ordinary skill in the art, as will become apparent from the description below. Therefore, the invention is not limited to the specific implementations discussed herein.
The embodiments discussed hereinafter will focus on the implementation of the hereinafter-described techniques within a top-load residential laundry washing machine such as laundry washing machine 10, such as the type that may be used in single-family or multi-family dwellings, or in other similar applications. However, it will be appreciated that the herein-described techniques may also be used in connection with other types of laundry washing machines in some embodiments. For example, they may be used in commercial applications in some embodiments. Moreover, they may be used in connection with other laundry washing machine configurations. For example, a front-load laundry washing machine that includes a front-mounted door in a cabinet or housing that provides access to a horizontally-oriented wash drum housed within the cabinet or housing may be used. Implementation of the herein-described techniques within a front-load laundry washing machine would be well within the abilities of one of ordinary skill in the art having the benefit of the instant disclosure, so the invention is not limited to the top-load implementation discussed further herein.
Turning now to the drawings, wherein like numbers denote like parts throughout the several views,
Disposed within wash tub 16 is the wash drum 15 and/or impeller 20 that is rotatable about a generally vertical axis A by one or more drive systems. Wash drum 15 is generally perforated or otherwise provides fluid communication between the wash chamber 18 of the wash drum 15 and a space 19 between wash drum 15 and wash tub 16. The drive system(s) may include, for example, an electric motor and a transmission and/or clutch for selectively rotating the wash drum 15 and/or impeller 20. In some embodiments, the drive system may be a direct drive system, whereas in other embodiments, a belt or chain drive system may be used.
In some implementations, as the one shown, embodiments of the impeller 20, disposed in the interior or wash chamber 18 of wash drum 15 may agitate items within wash drum 15 during one or more washing operations. Impeller 20 may be driven by the drive system, e.g., for rotation about the same axis A as wash drum 15, and a transmission and/or clutch within drive system may be used to selectively rotate impeller 20. In other embodiments, separate drive systems may be used to rotate wash drum 15 and impeller 20. Implementation of the herein-described techniques within an agitator would be well within the abilities of one of ordinary skill in the art having the benefit of the instant disclosure, so the invention is not limited to the impeller implementation discussed further herein. Other agitators such as an auger or other agitation element may be used in some embodiments.
In some embodiments, control over washing machine 10 by a user is generally managed through a control panel 11 and/or remote device. The control panel 11 may be disposed on one or more surfaces of the machine 10 and implementing a user interface 11a. It will be appreciated that in different washing machine designs, control panel 11 may include various types of input and/or output devices, including various knobs, buttons, lights, switches, textual and/or graphical displays, touch screens, etc. through which a user may configure one or more settings or cycles.
As is shown in the Figures, the impeller 20 embodiment illustrated may include one or more scooping or lifting members 30 forcing water or fluid surrounding the impeller 20 upwardly and/or through the impeller 20 towards the articles of clothing within the wash chamber 18. The one or more scooping members 30 may direct water from below or beneath the impeller 20, more specifically a space 40 between the impeller 20 (e.g. a bottom surface 21) and the wash drum 15, to a top surface 22 of the impeller. This fluid occupying the space 40 between the bottom surface 21 of the impeller and the wash drum 15 may be forced, propelled, or channeled in a variety of directions and/or speeds (e.g. upwardly, opposite rotation, with rotation, radially inward, radially outward, etc.) through one or more fluid pathways 42, 44 through the impeller 20 and/or rotating/plate member 23 to create a variety of fluid flow/cleaning characteristics to increase cleaning performance or efficiency. Some advantages may be, but is not limited to, lowering the water level for washing without increasing wear on the clothing or reducing performance, increase the mixing of detergent/water, increase the turnover of clothing, increase mechanical action, increase bubble generation, etc.
In some implementations, the one or more scooping members, lifters, or diverters 30 may funnel or propel fluid upwardly through one or more openings 24 within the impeller 20 or rotating member 23 towards the clothing or other articles. The one or more openings 24, defining at least a portion of the fluid pathways 42, 44, may extend through the impeller 20 (e.g. from the bottom surface 21 to the top surface 22) or portions thereof. The scooping member 30 directs fluid from the space 40 between the bottom surface 21 of the impeller 20 upwards through the opening 24 towards the top surface 22. The one or more scooping members 30 may direct or channel the fluid when the impeller 20 or rotating member 23 rotates in one or more rotational directions (e.g. clockwise and/or counter clockwise) about the axis A. For example, as illustrated in
The one or more scooping members 30 may be a variety of constructions adjacent the opening 24. Although the pathway, bore, or opening 24 may extend substantially parallel to the axis A of rotation as shown in
One or more of the scooping members 30 may include a fixed orientation or position. In some implementations, one or more of the scooping members 30 may be fixed in orientation relative to the rotating member 23. At least one scooping member 30 may be fixed to lift or direct fluid (e.g. upwardly through the rotating member) in at least one rotational direction (e.g. clockwise or counterclockwise). In some embodiments, the impeller 20 may include one or more first scooping members fixed to lift or direct fluid when the rotating member rotates in the one rotational direction and/or one or more second scooping member fixed to lift or direct fluid with the rotating member rotates in the other or opposing rotational direction. Alternatively, it should be understood that one or more positionable or movable scooping members may be releasably fixed in one or more positions or orientations, if desired, to lift in one or more rotational directions of the rotating member. For example, a locking mechanism (e.g. pin, lock, catch, or releasable device) may fix the position of the scooping member per the application or desired fluid flow characteristic in one or more rotational directions. Moreover, the fixed position may be released manually and/or automatically if and when conditions are met.
In some implementations, the movable scooping members 30 (e.g. pivoting scooping members) may be adjusted, set, or limited to one or more angles/directions/orientations as desired or predetermined for an application corresponding to one or more positions within a range of positions available for one or more rotational directions of the impeller. In some embodiments, a selection by the user, the article(s) being sensed, soiled conditions are sensed, and/or the washing cycle may control the angle, projected depth of the scooping member from the bottom surface 21, and/or position/orientation of the scooping member to adjust the direction and/or amount of fluid lifted from the space 40 from a range of available angles, inner flow diameters, openings, pathways, desired flow/cleaning characteristics, etc. In some embodiments, the scooping members and their corresponding position when the impeller rotates in one or more rotational directions may be manually set or selected by a user from a variety of positions available. Alternatively, as in the one embodiment shown, the scooping members and their positions may be automatically controlled or predetermined relative to the impeller, scooping member, or appliance characteristics. In the one embodiment shown in the Figures, the scooping member 30 may be constructed to rest at a first/home position (
In some implementations, one or more of the scooping members 30 may be positionable or moved between one or more positions. The one or more positions may define one or more fluid pathways 42, 44. In the one embodiment shown, the scooping member 30 may pivot between one or more positions or orientations within the opening 24. The scooping member 30 may pivot into and/or out of the opening 24 defined by the bottom surface 21 of the rotating member 23 in one or more rotational directions. In the one embodiment shown, the scooping member 30 pivots between a first position (see
Although the scooping member 30 pivots in the one embodiment shown, the scooping member may be positionable or moveable between a plurality of positions in a variety of different methods/constructions and still lift/direct fluid from below the bottom surface 21 of the impeller 20 or portion thereof. For example, a scooping member may slide/translate between positions when the impeller rotates. Moreover, in some implementations, the scooping member 30 may operate between one or more positions without impeller or rotating member's rotation. For example, the scooping member may be urged to one or more positions by a bias mechanism (e.g. spring). In another example, wash drum rotation or another portion of the appliance may propel water with the one or more scooping members with or without impeller rotation. Further, one or more scooping members may propel fluid downward if desired.
In some implementations, the impeller 20 may include fixed scooping members, reconfiguring/movable scooping members 30 (e.g. pivoting), or a combination thereof. For example, in some embodiments, the rotating member 23 may include one or more fixed scooping members and/or one or more pivoting/movable scooping members. In the embodiment shown in
In some implementations, the impeller 20 and/or scooping member 30 may include one or more covers 50. The cover 50, if used, may reduce articles of clothing from being held within the opening/scooping members. The cover 50 may be positioned on or project from the top surface 22 of the rotating member 23. The cover 50 may be disposed over at least a portion of the scooping member(s) 30 and/or the one or more openings 24. As shown in
The scooping member 30 may be a variety of constructions and still direct or lift water upwardly towards the articles of clothing from the space 40 beneath the impeller 20. One or more portions of the scooping member 30 may define the one or more fluid pathways 42, 44 along with other structures of the impeller and/or appliance. In the one embodiment shown, the scooping member 30 may include a top surface 33 and a bottom surface 34. The top surface 33 may include one or more cam surfaces 33a, 33b contacting the fluid during rotation of the rotating member to drive the scooping member between the positions, if any movement, (e.g. pivoted positions) about a hinge or axis B. Each arcuate surface 33a, 33b (e.g. top surface or scooping member portions) adjacent the leading edge 31 in the direction of the impeller rotation may be pushed downwardly by the opposing rotational fluid forces applied thereto in reaction to the rotational direction(s) of the impeller. The one or more top/cam surfaces may propel or lift the fluid upwardly from the space 40. The cam surfaces 33a, 33b may be one or more arcuate surfaces. As shown in the one embodiment, the arcuate/cam surfaces 33a, 33b may straddle or be on lateral sides of the pivoting axis B. The cam surfaces 33a, 33b may be opposing to each other to propel the water or fluid from beneath the impeller upward.
In use, the rotating member 23 rotates relative to the axis A via the drive system in one or more rotational directions. The scooping member 30, if not already pivoted or fixed in position, may pivot to a lifting position or pivot into the space 40 between the bottom surface 21 of the impeller 20 and the surrounding wash drum 15. During the rotation of the impeller 20, the scooping member 30 lifts or directs the fluid upwardly from the space 40 and into the wash chamber 18 above the top surface 22 of the impeller 20 or rotating member 23 in one or more fluid pathways 42, 44. The scooping member 30 directs the fluid between the bottom surface 21 of the rotating member 23 and the wash drum 15 through the opening 24 or portions thereof of the rotating member and/or scooping member. The leading edge 31 or portion of the scooping member 30 may be positioned within the space 40 between the bottom surface 21 of the rotating member 23 and the wash drum 15 in the one or more rotational directions. With the scooping member 30 proximal the opening 24 of the rotating member, the fluid may be directed upwardly and/or in a direction opposite to the rotational direction of the rotating member 23. However, a variety of fluid pathways propelled by the scooping members may be configured or constructed in the one or more rotational directions. The lifted or propelled water may provide more water motion and/or mixing. The clothes may turn over more with the lifting water/fluid. When the impeller or agitator changes rotational direction, the scooping member, if not fixed, may pivot or move to another or second/lifting position having another or second fluid flow path (e.g. different, same, combination/overlap, etc.). As shown in
Although an embodiment of the cover 50, scooping member 30, and/or impeller 20 is shown in the figures, it should be understood that they may be a variety of shapes, sizes, quantities, and constructions and still be within the scope of the invention.
While several embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, embodiments may be practiced otherwise than as specifically described and claimed. Embodiments of the present disclosure are directed to each individual feature, system, article, material, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, and/or methods, if such features, systems, articles, materials, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure. In some embodiments,
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
It is to be understood that the embodiments are not limited in its application to the details of construction and the arrangement of components set forth in the description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Unless limited otherwise, the terms “connected,” “coupled,” “in communication with,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
The foregoing description of several embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching.
Number | Name | Date | Kind |
---|---|---|---|
2642733 | McCormick | Jun 1953 | A |
3033015 | Stutrud | May 1962 | A |
3388570 | Cobb et al. | Jun 1968 | A |
5839299 | Lee | Nov 1998 | A |
5927105 | Cho | Jul 1999 | A |
8448481 | Park et al. | May 2013 | B2 |
20120144877 | Byrne | Jun 2012 | A1 |
20120180532 | Park et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1203971 | Jan 1999 | CN |
2488937 | May 2002 | CN |
2732796 | Oct 2005 | CN |
203144741 | Aug 2013 | CN |
105133242 | Dec 2015 | CN |
105155193 | Dec 2015 | CN |
205171181 | Apr 2016 | CN |
205171190 | Apr 2016 | CN |
2015223318 | Dec 2015 | JP |
0124394 | Dec 1998 | KR |
20010000993 | Jan 2001 | KR |
20010111543 | Dec 2001 | KR |
WO-2019120117 | Jun 2019 | WO |
2020248921 | Dec 2020 | WO |
Entry |
---|
Machine Translation of Nagai et al., WO-2019120117-A1, Jun. 2019. (Year: 2019). |
International Search Report and Written Opinion issued in Application No. PCT/CN2020/094816, 9 pages, dated Sep. 23, 2020. |
Number | Date | Country | |
---|---|---|---|
20200392659 A1 | Dec 2020 | US |