This application claims priority from German Patent Application No. DE 10 2017 107 643.3, filed Apr. 10, 2017 in the German Patent and Trademark Office, the disclosure of which is incorporated herein by reference in its entirety.
The present invention relates to an impeller pump having an improved geometry of the inlet and outlet openings.
Impeller pumps use an impeller wheel having a plurality of elastic impeller blades (also known as impeller vanes), which rotate in a pump housing. The diameter of the impeller wheel, i.e. the length of the impeller blades, is selected here such that the free end of the impeller blades bears against the inner wall of the pump housing in every position of the impeller wheel. Between the outlet opening and the inlet opening of the pump housing, the distance of the inner wall from the axis of rotation of the impeller wheel decreases. As a result, the impeller blades are bent (to a greater extent) during the movement from the outlet opening to the inlet opening than during the movement from the inlet opening to the outlet opening. As a result, the volume that is delivered from the outlet opening to the inlet opening during a rotation of the impeller wheel is less than the volume that is delivered from the inlet opening to the outlet opening during a rotation of the impeller wheel. This results in the medium to be pumped being delivered from the inlet opening to the outlet opening.
Impeller pumps are particularly suitable for delivering liquids contaminated with suspended solids and fibres—for example containing food waste. A further advantage is that impeller pumps are self-priming on account of the sealing off of the impeller blades from the pump housing.
Since, in order to ensure this sealing off, the impeller blades bear firmly against the inner wall of the pump housing, they are subject to wear. This is exacerbated by the fact that, when they sweep over the inlet opening and the outlet opening, the impeller blades are pushed into these openings, and particularly against the edges thereof, on account of their elasticity and also on account of centrifugal forces.
From the prior art, it is previously known to provide the inlet and/or outlet opening with a grating or “comb” in order to reduce this impact on the impeller blades. However, in the case of liquids containing suspended solids, in particular when the latter contain fibrous constituents, this results in the possibility of the contaminants getting caught on the grating bars, thereby reducing the delivery capacity of the pump. Furthermore, there are hygienic concerns in this case, when the contaminants are located in the pump housing for a relatively long time.
Furthermore, EP 2 646 691 B1 discloses an impeller pump in which the inlet or the outlet is configured in an elliptical manner. As a result, although the depth to which the impeller blades are pushed in can be reduced, on account of the elliptical shape of the inlet or outlet, only some of the impeller blades come into contact with the edge of the ellipse in each case, and so the impeller blades wear down to a greater extent there and thus unevenly, with the possible consequence of leaks.
Proceeding from the known prior art, an impeller pump that addresses the abovementioned drawbacks of the prior art are resolved.
Accordingly, an impeller pump having a housing, which has an inlet and an outlet, and having an impeller wheel, which is accommodated in the housing interior, with a plurality of elastic impeller blades is described. The cross section of the inlet and/or of the outlet on the side facing the housing interior is substantially in the shape of a polygon in one embodiment.
The inlet and the outlet have an inner inlet opening and an inner outlet opening, respectively, at which they transition in each case into the housing interior, in which the impeller wheel with the plurality of elastic impeller blades (made for example of rubber) is located.
The term “cross section” should be understood herein as meaning that in particular the inlet or the outlet is viewed from the interior of the housing along an axis defined by the inlet or outlet. This means for example that an inlet which is provided by a pipe having a circular cross section has a circular cross section even when the actual shape of the inlet opening in the housing is no longer circular when it is developed onto a plane of the pump housing.
Since the inlet and the outlet are openings, the polygon is usually a closed polygon.
Since the cross section of the inlet and/or of the outlet on the side facing the housing interior is substantially in the shape of a polygon, when an impeller blade moves over the inlet or outlet, even sweeping of the impeller blade over the edges of the inlet or the outlet can be achieved. In other words, the contact point between the impeller blade and the respective edge of the inlet or outlet is shifted substantially evenly, such that more even wearing down of the impeller blades occurs and thus a longer lifetime of the individual impeller blades and thus a longer service life of the impeller wheel is achieved.
The polygon can, in various embodiments, have a number of from 3 to 17 corners.
The shape of the cross section of the inlet and of the outlet can be the same or different.
In another embodiment, the polygon has a longitudinal extent and a transverse extent, wherein the ratio of the length of the transverse extent to the length of the longitudinal extent is less than or equal to 1:2, for example about 1:3 or about 1:4. As a result, with the same inlet or outlet cross-sectional area, the width of the inlet or outlet opening is correspondingly smaller, and so it is also the case that only a correspondingly narrower section of the impeller blades does not come into contact with the housing wall during the movement over the inlet or outlet opening. As a result, the impact on the impeller blades by deformation decreases correspondingly, when the latter are moved over the inlet or outlet opening.
The term “longitudinal extent” should be understood herein as meaning the maximum length of the cross section and the orientation thereof. The term “transverse extent” describes a maximum width, oriented differently from the orientation of the longitudinal extent, of the cross section.
In various embodiments, the shape of the inlet or outlet is configured such that the longitudinal extent and the transverse extent are formed substantially perpendicularly to one another.
In order to achieve even wearing down of the impeller blades during the movement of the impeller blades over the inlet or outlet opening, and in order to achieve uniform flow conditions in the regions between the impeller blades and in the inlet and/or outlet, in an additional embodiment, the polygon is configured in a symmetrical manner with respect to the longitudinal extent and/or is configured in a symmetrical manner with respect to the transverse extent.
In certain embodiments, the ratio of the length of the transverse extent of the polygon to the width of the impeller blades is less than 1:1, for example less than or equal to 1:2, or about 1:3 or about 1:4. In this way, it is possible to ensure that a sufficiently large part of the impeller blades is always in contact with the housing wall on sweeping over the inlet or outlet opening. As a result, deformation of the impeller blade as a result of the passing into the inlet or outlet opening is limited. In addition, good sealing off between the housing wall and the little-deformed impeller blade is always ensured. The polygon is in this case typically oriented such that the longitudinal extent extends in the direction of movement of the impeller blades.
In some embodiments, the polygon has at least one rounded corner, wherein generally all the corners of the polygon are rounded. This results in more uniform flow conditions during pump operation.
In several embodiments, the cross section of the inlet and/or of the outlet on the side facing away from the housing interior is substantially in the shape of a circle or the shape of a polygon, for example of a rectangle, and in some embodiments, of a square. This makes it possible to attach the impeller pump described here to conventional pipelines or fit it into special arrangements.
Generally, the area of the associated cross section on the side facing the housing interior and the area of the associated cross section on the side facing away from the housing interior differ substantially by less than 10%, and they are typically substantially the same size. This allows a uniform inlet into the pump or outlet out of the pump, since the medium to be delivered cannot back up at a constriction, or turbulence cannot develop on account of a large increase in cross section.
Alternatively, the area of the associated cross section on the side facing the housing interior and the area of the associated cross section on the side facing away from the housing interior can differ, for example by 15%-75%, by 30%-60%, or by about 50%. In this way, a cross section with a particularly small or short transverse extent can be employed, such that the impeller blades are correspondingly deformed and worn only a little.
An impeller pump having a housing, which has an inlet and an outlet, and having an impeller wheel, which is accommodated in the housing interior and rotatable about an axis of rotation, with a plurality of elastic impeller blades is described. The cross section of the inlet and/or of the outlet on the side facing the housing interior has a longitudinal extent and a transverse extent, wherein the length of the longitudinal extent is greater than the length of the transverse extent. The longitudinal extent encloses an angle with the axis of rotation.
Since the longitudinal extent encloses an angle with the axis of rotation, more even wearing down of the individual impeller blades is achieved. The impeller blade does not, as in conventional impeller pumps, come into contact symmetrically with the edge of the inlet or outlet opening in each case at the same points of the impeller blades before and after sweeping over the middle of the inlet or outlet opening. Rather, the blade sweeps over the inlet or outlet opening in a substantially uniform progression from one side of the impeller blade to the other side of the impeller blade.
In other words, the contact point of the impeller blade shifts on moving past the inlet or outlet opening in the transverse direction to the direction of movement of the impeller blades. At the same time, the maximum width with which the individual impeller blades do not come into contact with the housing wall in each case is still relatively small on account of the greater longitudinal extent compared to the transverse extent, and so still only little deformation of the impeller blades and reduced passing of the impeller blade into the inlet or outlet opening occurs.
The term “angle” should be understood here as being the angle which forms when the cross section between the longitudinal extent—or possibly the elongation thereof—and the axis of rotation is seen in plan view. In other words, in order to determine the angle, the axis of rotation of the impeller wheel should be projected onto a plane defined by the cross section. The angle corresponds then to the angular dimension between the longitudinal extent and the projection of the axis of rotation.
The orientation of the longitudinal extent may be different for the inlet and the outlet, but may also have the same orientation.
Generally, in this case, the angle is greater than 0° and less than 90°, for example greater than or equal to 15° and less than or equal to 75°, greater than or equal to 30° and less than or equal to 60°, or about 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40° or 45°.
In a further embodiment, the cross section is substantially in the shape of an ellipse or polygon.
In order to further adapt the flow conditions during pumping, in various embodiments, the polygon has at least one rounded corner, wherein typically all the corners are rounded. If the polygon is in the shape of an elongated rectangle, the radii of the roundings in this case correspond generally to half the width of the rectangle, and therefore they are then selected such that an oblong hole is formed.
In several embodiments, the ratio of the length of the transverse extent to the width of the impeller blades is less than 1:1, for example less than or equal to 1:2, or about 1:3 or about 1:4.
In order to keep the deformation of the impeller blades as the impeller blades move over the inlet or outlet opening low, the ratio of the length of the transverse extent to the length of the longitudinal extent is, according to some embodiments, less than or equal to 1:2, for example less than or equal to 1:3 or about 1:4.
In certain embodiments, the ratio of the width of the impeller blades to a cross-sectional width parallel to the width of the impeller blades is greater than or equal to 3:2, for example greater than or equal to 2:1. As a result, the deformation of the impeller blades on moving over the inlet or outlet opening can still be kept low.
In several embodiments, the cross section of the inlet and/or of the outlet on the side facing away from the housing interior is substantially in the shape of a circle or the shape of a polygon, for example of a rectangle, and in some embodiments, of a square, wherein generally the area of the cross section on the side facing the housing interior and the area of the associated cross section on the side facing away from the housing interior differ substantially by less than 10%, and are typically substantially the same size. Alternatively, the area of the associated cross section on the side facing the housing interior and the area of the associated cross section on the side facing away from the housing interior can differ, for example by 15%-75%, such as by 30%-60% or by about 50%. As a result, the abovementioned advantages are achieved.
In additional embodiments of the abovementioned impeller pumps, at least one edge of the inlet and/or of the outlet has a chamfer or is rounded at the transition to the housing interior, wherein typically all the edges of the inlet and/or of the outlet have a chamfer or are rounded at the transition to the housing interior. As a result, the pressure which is applied to the impeller blade by the edge on account of the deformation and the pressure force of the impeller blade is reduced. This also results in smooth pressure-point progress on the impeller blade. It is also possible here for at least one edge to be rounded and for at least one other edge to have a chamfer.
In other embodiments of the abovementioned impeller pumps, the transition of the inner wall of the housing from a region with a maximum diameter to a region with a reduced diameter coincides substantially with the transverse extent of the cross section of the inlet or outlet opening. In this case, this transition does not take place abruptly, but the distance of the housing inner wall from the axis of rotation of the impeller wheel decreases continuously from the maximum distance, at which the impeller blades are not bent or are bent to the least extent, to the minimum distance, at which the impeller blades are bent to the greatest extent.
Further embodiments are explained in more detail by the following description of the figures, in which:
Exemplary embodiments are described in the following text with reference to the figures. Here, identical, similar or identically acting elements are provided with identical reference signs in the different figures, and a repeated description of these elements is to some extent dispensed with in order to avoid redundancies.
The operating principle of an impeller pump is readily visible from the illustration according to
The inlet opening 8 and the outlet opening (not shown) each have a cross section in the shape of a diamond-shaped polygon in this embodiment. As can also be seen from
The continuous transition from the region with the maximum distance to the region with the minimum distance starts at the level of the maximum transverse extent of the diamond of the inlet opening 8 or of the outlet opening 9, that is to say approximately in the middle of the inlet opening 8 or of the outlet opening 9. The housing 1 shown in
Clamping screws 15 at the inlet 2 and at the outlet 3 can be used to connect connection pipes to the inlet 2 or outlet 3 of the housing 1.
In
Although the shape of the inlet opening 8 in
The embodiment of the impeller pump that is shown in
The cross section of the inlet opening 8 in
However, alternatively, the angle α can also have other values, for example 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°. 60°, 65°, 70°, 75°, 80°, or 85°, and be arranged in a positive and a negative direction of rotation.
Generally, the longitudinal extent L of the inlet opening 8 and the longitudinal extent of the outlet opening 9 are arranged in a parallel manner. Alternatively, the two longitudinal extents can also be oriented in different manners.
In the embodiments of the impeller pump that are illustrated in the figures, the inlet 2 and the outlet 3 are in the shape of a circle at their outer ends facing away from the housing interior, in order for it to be possible to connect normal, round connection pipes easily to the inlet 2 and the outlet 3.
In this regard, it is readily apparent from
In the embodiment shown in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
The cross section schematically illustrated in
In the cross sections shown in
As a rule, the longitudinal extent in these embodiments is arranged perpendicularly to the axis of rotation D. In the cross sections shown in
The cross section schematically illustrated in
The cross section schematically shown in
The cross section schematically shown in
The cross section schematically illustrated in
Where applicable, all the individual features which are illustrated in the exemplary embodiments can be combined and/or exchanged for one another, without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 107 643.3 | Apr 2017 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
945953 | Hughes | Jan 1910 | A |
2663263 | See | Dec 1953 | A |
20100226809 | Kadaia | Sep 2010 | A1 |
20110236241 | Diekmann | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1596343 | Mar 2005 | CN |
830161 | Jan 1952 | DE |
1191231 | Apr 1965 | DE |
1236340 | Mar 1967 | DE |
8223151 | Nov 1982 | DE |
102010062298 | Jun 2012 | DE |
2646691 | Jun 2015 | EP |
1059902 | Feb 1967 | GB |
WO 2014123325 | Aug 2014 | WO |
Entry |
---|
DE102010062298A1—Finsterwalder—Impellerpumpe—Jun. 6, 2012—Copy of the English Translation (Year: 2012). |
Extended European Search Report, European Patent Application No. 18166533.2, dated Sep. 5, 2018, 13 Pages. |
Chinese Office Action, Chines Patent Application No. 201810315434.9, dated Apr. 19, 2019, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20180291897 A1 | Oct 2018 | US |