The present invention relates to an impeller, and more particularly to an impeller of a fan.
With increasing development of science and technology, the functions and operating speeds of various electronic devices or mechanical systems are gradually enhanced. For maintaining normal operations, a forced convection mechanism (e.g. a fan) is installed in the electronic device or the mechanical system to dissipate heat that is generated by the electronic components of the electronic device or the mechanical system and maintain normal operating temperature. In view of power-saving efficacy, various electronic devices should have enhanced operating efficiency if the power consumption is fixed. For example, it is important to provide a fan having enhanced working efficiency in a power-saving manner.
As known, increasing the solidity of the blades 11 is a way of enhancing the working efficiency of the impeller 1. In the impeller 1, the ratio of the total area of the hub 10 and the blades 11 to the area of a circle whose radius R is from a center A to an outer periphery of the blades 11 is defined as the solidity. Moreover, for further increasing the working efficiency of the impeller 1, the blades 11 should be uniformly distributed. Since the length of the connecting end 111 and the stagger angle of each blade 11 are restricted by the perimeter of the hub 10, the number of blades 11 fails to be largely increased. Under this circumstance, the working efficiency of the impeller 1 is usually unsatisfactory.
Please refer to
The present invention provides an impeller having increased solidity of blades and an increased number of blades, thereby enhancing the operating efficiency thereof.
In accordance with an aspect of the present invention, there is provided an impeller. The impeller includes a hub and a plurality of blades. The blades are disposed around an outer periphery of the hub. Each of the blades includes a connecting end, a sweep-back part and a sweep-forward part. The connecting end is coupled with the hub. The sweep-back part is disposed at an edge of the blade and extended from the connecting end. An extending direction of the sweep-back part is opposed to a rotating direction of the impeller. The sweep-forward part is extended from the sweep-back part. An extending direction of the sweep-forward part is the same as the rotating direction of the impeller.
In an embodiment, the impeller is installed in an axial-flow fan.
In an embodiment, the sweep-back part and the sweep-forward part are arranged at a front edge of the blade.
In an embodiment, the front edge of the blade is a windward edge, and a rear edge of the blade is opposed to the front edge.
In an embodiment, the blade further includes another sweep-back part and another sweep-forward part, which are arranged at the rear edge of the blade.
In an embodiment, the sweep-forward part of a specified blade and the rear edge of a previous blade are substantially parallel with each other.
In an embodiment, the impeller is rotated with respect to a rotating axis, the blade has a centerline, a stagger angle is defined between the centerline and a plane perpendicular to the rotating axis, and the stagger angle ranges between 10 and 60 degrees.
In an embodiment, the hub has a center. A base point is located between the hub and the sweep-back part, a sweep-back terminal point is located between the sweep-back part and the sweep-forward part, and a sweep-forward terminal point is located at the end of the sweep-forward part.
In an embodiment, a sweep-back angle is formed between a first line defined by the center and the base point and a second line defined by the center and the sweep-back terminal point. In addition, a sweep-forward angle is formed between the second line and a third line defined by the center and the sweep-forward terminal point.
In an embodiment, the sweep-back angle ranges between −10 and −60 degrees with respect to the first line.
In an embodiment, the sweep-forward angle ranges between 10 and 60 degrees with respect to the second line.
In an embodiment, a first radius R1 is defined from the center to the base point, a second radius R2 is defined from the center to the sweep-back terminal point, a third radius R3 is defined from the center to the outermost periphery of the blade, and a relationship between the R1, R2, and R3 is: 0.1<(R2−R1)/(R3−R1)<0.35.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
In a case that the stagger angle D ranges between 10 and 60 degrees, the sweep-back angle D1 ranges between −10 and −60 degrees with respect to the first line, and the sweep-forward angle D2 ranges between 10 and 60 degrees with respect to the second line. Since the impeller 2 is designed according to the relationship between the first radius R1, the second radius R2 and the third radius R3, the power consumption is reduced by about 10% if the airflow amount and the airflow pressure are fixed.
Please refer to
From the above description, the impeller of the present invention comprises a plurality of blades. Each of the blades comprises a connecting end, a sweep-back part and a sweep-forward part. The sweep-back part is extended from the connecting end. The sweep-forward part is extended from the sweep-back part. The sweep-back part and the sweep-forward part define a front edge of the blade. Since the sweep-forward part is arranged behind the sweep-back part, the number of blades can be increased but every two adjacent blades are not overlapped with each other. In this situation, the solidity of the plurality of blades will be increased, and thus the operating efficiency of the impeller is enhanced. That is, in the condition that the airflow amount and the airflow pressure are identical, the power consumption of the impeller of the present invention is largely reduced when compared with the conventional impeller.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
099135169 | Oct 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4569631 | Gray, III | Feb 1986 | A |
4684324 | Perosino | Aug 1987 | A |
5000660 | Van Houten et al. | Mar 1991 | A |
5273400 | Amr | Dec 1993 | A |
5961289 | Lohmann | Oct 1999 | A |
6394754 | Choi | May 2002 | B1 |
6595744 | Van Houten | Jul 2003 | B2 |
7585155 | Park et al. | Sep 2009 | B2 |
20070258812 | Lee et al. | Nov 2007 | A1 |
20070258822 | Spaggiari | Nov 2007 | A1 |
20080145230 | Harman et al. | Jun 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20120093655 A1 | Apr 2012 | US |