The present invention relates to turbomachine components having an aerofoil, and more particularly to cooling of platform of a turbomachine component having an aerofoil, particularly a vane platform or a blade platform, in gas turbine engines.
To effectively use cooling air for cooling of gas turbine components is a constant challenge and an important area of interest in gas turbine engine designs. For example, for cooling different parts of a turbomachine component having an aerofoil, such as a vane or a blade, conventional design uses various ways including film cooling and circulation of cooling fluid through different parts of the vane or the blade. However, the conventional designs are inefficient in effectively cooling all parts of the vane or the blade of the turbomachine, for example the conventional designs are inept at cooling certain parts of the platform of the vanes and/or the blades.
A turbine vane generally includes an inner platform and an outer platform, whereas a turbine blade usually has only one platform and may optionally have a shroud. When installed in a gas turbine engine, the inner platform of the turbine vane is usually connected to or fixed to a stationary turbine component positioned towards the rotational axis of the turbine such as a turbine vane carrier ring or a stator. Several turbine vanes may be fixed to a given turbine vane carrier ring. Similarly, the outer platform of the turbine vane is fixed to another stationary component of the turbine towards an outer casing of the turbine. Similarly, the platform of the turbine blade is fixed to rotating disks or discs mounted on a main shaft of the turbine. Several turbine blades are fixed to a given rotating disc. To be arranged properly around a given turbine vane carrier ring or a given rotating disc, the platforms of the turbine vanes or the turbine blades are usually axially extending beyond the region of the platform required to support the aerofoil and thus forming platform overhangs next to the leading edge and/or the trailing edge of the aerofoil. Such platform overhangs are prominently present in guide vanes of a gas turbine. Usually, in a gas turbine, any platform in a turbomachine component having an aerofoil has one or more platform overhangs.
U.S. Pat. No. 4,573,865 discloses a multiple-impingement cooled structure, such as for use as a turbine shroud assembly. The structure includes a plurality of baffles which define with an element to be cooled, such as a shroud, a plurality of cavities. Impingement cooling air is directed through holes in one of the baffles to impinge upon only the portion of the shroud in a first cavity. That cooling air is then directed to impinge again upon the portion of the shroud in a second cavity.
In the present description the turbine vane of a gas turbine has been used as an example of a turbomachine component having an aerofoil, however, it may be noted that for the purposes of the present technique, examples of the turbomachine component having an aerofoil also include the blade of a gas turbine. In the conventional design certain regions of the platforms of such turbomachine component having an aerofoil, hereinafter also referred to as the vane or the turbomachine component, are cooled, for example the region of the platform that is directly covered by the aerofoil has cavities through which cooling fluid flows into the aerofoil and thus the region of the platform bordering the cavity is cooled by the flow of the cooling fluid. However, the platform overhangs adjacent to the region of the platform directly beneath or above the aerofoil are not subjected to efficient cooling and thus prone to failure under the high operational temperatures and corroding effects of the hot gases coming from the combustor section when the turbine is operated. Thus there is a need to provide a technique to cool the platform overhangs, particularly side of the platform overhang that are in or towards hot gas path in the gas turbine.
Thus an object of the present disclosure is to provide a technique wherein the platform overhangs are cooled efficiently. It is desirable to cool side of the platform overhangs that are in or towards the hot gas path in the gas turbine.
The above objects are achieved by a turbomachine component and an array of turbomachine components of the present technique. Advantageous embodiments of the present technique are provided in dependent claims. Features of independent claims may be combined with features of dependent claims, and features of dependent claims can be combined together.
In an aspect of the present technique, a turbomachine component, particularly a blade or a vane for a gas turbine engine, is presented. The turbomachine component includes an aerofoil and a first platform. The first platform extends both circumferentially and axially. The aerofoil has a pressure side and a suction side that meet at a trailing edge and a leading edge. The first platform includes an aerofoil side wherefrom the aerofoil extends radially, an opposite side of the aerofoil side, and a first-platform cavity positioned in a first overhang region of the first platform. The first-platform cavity extends within the first platform and includes an aerofoil-side cavity wall along the aerofoil side and a plurality of impingement plates. The first platform cavity extends circumferentially and axially. The impingement plates are arranged successively in an axial direction within the first-platform cavity. Each impingement plate includes an aerofoil-side part, a flow-input-side part and a central plate.
The aerofoil-side part extends towards and is connected to the aerofoil-side cavity wall of the first-platform cavity. The flow-input-side part extends towards a direction opposite to the aerofoil-side cavity wall of the first-platform cavity. The central plate is between the aerofoil-side part and the flow-input-side part, and is suspended by the aerofoil-side part and the flow-input-side part in the first-platform cavity. The central plate is suspended, extending circumferentially and axially, along the aerofoil-side cavity wall such that the impingement plate defines, within the first-platform cavity in a radial direction, an aerofoil-side segment and a flow-input-side segment corresponding to said impingement plate. The central plate has impingement holes such that cooling air entering the first-platform cavity flows within the first-platform cavity from the flow-input-side segment of one impingement plate through the impingement holes to the aerofoil-side segment of said impingement plate as impingement jets, and thus cooling the aerofoil-side cavity wall along the aerofoil side of the first platform, which in turn results in the cooling of the aerofoil side of the first platform. Subsequently, the cooling air from the aerofoil-side segment of said impingement plate flows to the flow-input-side segment of a following impingement plate. From the flow-input-side segment of the following impingement plate the cooling air flows through the impingement holes of said following impingement plate as impingement jets towards the aerofoil-side cavity wall of the first-platform cavity, thus cooling of the aerofoil side of the first platform, and therefrom to the flow-input-side segment of a subsequent following impingement plate.
In turbomachine component, particularly in the first-platform cavity, as a result of the serially arranged impingement plates, two pockets of air corresponding to each impingement plate are created in sections of the first-platform cavity corresponding to each of the serially arranged impingement plates, namely the flow-input-side segment and the aerofoil-side segment. The flow-input-side segment and the aerofoil-side segment are in fluid communication through the impingement holes of the impingement plate creating the flow-input-side and the aerofoil-side segments. As a net result of all the impingement plates, a series of flow-input-side segments and aerofoil-side segments are created i.e. for example a flow-input-side segment of a first impingement plate fluidly connected to an aerofoil-side segment of the first impingement plate which in turn is fluidly connected to a flow-input-side segment of a second impingement plate which in turn is fluidly connected to an aerofoil-side segment of the second impingement plate which in turn is fluidly connected to a flow-input-side segment of a third impingement plate and so on and so forth. As an effect of the flow of the cooling air serially flowing through the impingement plates so arranged in the first-platform cavity buildup of strong cross flow with respect to impingement jets corresponding to a given impingement plate is minimized and thus the impingement jets are able to reach the aerofoil-side cavity wall of the first-platform cavity and provide effective cooling to the aerofoil side within the first overhang region of the first platform. Furthermore, sizes of the impingement holes can be controlled individually for different impingement plates and thus parameters of the impingement jets produced by different impingement plates, such as velocity of the impingement jets, can be controlled and thereby different degrees of cooling can be achieved locally for different impingement plates.
Moreover, since all the cooling air passes through the impingement holes of every impingement plate, individually and serially, the entire volume of the cooling air is used to serially cool each of the different sections of the aerofoil side within the first overhang region of the first platform created by the different impingement plates, and thus less cooling air is required to cool the aerofoil side within the first overhang region of the first platform.
In an embodiment of the turbomachine component, the first-platform cavity includes an opposite-side cavity wall along the opposite side of the first platform and the flow-input-side part of the impingement plate arranged within the first-platform cavity is connected to the opposite-side cavity wall.
In another embodiment of the turbomachine component, the first platform includes an additional first-platform cavity positioned in a second overhang region of the first platform. The additional first-platform cavity extends circumferentially and axially within the first platform and includes an aerofoil-side cavity wall along the aerofoil side and a plurality of impingement plates arranged similarly as the impingement plates are arranged in the first-platform cavity. Thus cooling is provided to second overhang region of the first platform.
In another embodiment of the turbomachine component, the additional first-platform cavity includes an opposite-side cavity wall along the opposite side of the first platform and the flow-input-side part of each of the impingement plates arranged within the additional first-platform cavity is connected to the opposite-side cavity wall.
In another embodiment of the turbomachine component, the first overhang region of the first platform is downstream of the trailing edge when viewed from the leading edge towards the trailing edge, and optionally the second overhang region of the first platform is upstream of the leading edge. In another embodiment of the turbomachine component, the first overhang region of the first platform is downstream of the leading edge when viewed from the trailing edge towards the leading edge, and optionally the second overhang region of the first platform is upstream of the leading edge.
In another embodiment of the turbomachine component, such as when the turbomachine component is a turbine vane, the turbomachine component includes a second platform. The second platform extends circumferentially and axially. The second platform includes an aerofoil side whereto the radially extending aerofoil extends, an opposite side of the aerofoil side, and a second-platform cavity positioned in a first overhang region of the second platform. The second-platform cavity extends circumferentially and axially within the second platform and includes an aerofoil-side cavity wall along the aerofoil side, and a plurality of impingement plates arranged similarly as the impingement plates are arranged in the first-platform cavity of the first platform. Thus cooling is provided to the second platform, for example the outer platform of a turbine vane.
In another embodiment of the turbomachine component, the second-platform cavity includes an opposite-side cavity wall along the opposite side of the second platform and the flow-input-side part of the impingement plate arranged within the second-platform cavity is connected to the opposite-side cavity wall.
In another embodiment of the turbomachine component, the second platform includes an additional second-platform cavity positioned in a second overhang region of the second platform. The additional second-platform cavity extends circumferentially and axially within the second platform and includes an aerofoil-side cavity wall along the aerofoil side and a plurality of impingement plates arranged similarly as the impingement plates are arranged in the second-platform cavity.
In another embodiment of the turbomachine component, the additional second-platform cavity includes an opposite-side cavity wall along the opposite side of the second platform and the flow-input-side part of each of the impingement plates arranged within the additional second-platform cavity is connected to the opposite-side cavity wall.
In another embodiment of the turbomachine component, the first overhang region of the second platform is downstream of the trailing edge when viewed from the leading edge towards the trailing edge, and optionally the second overhang region of the second platform is upstream of the leading edge.
In another embodiment of the turbomachine component, the first overhang region of the second platform is downstream of the leading edge when viewed from the trailing edge towards the leading edge, and optionally the second overhang region of the second platform is upstream of the leading edge.
Another aspect of the present technique presents an array of turbomachine components, such as turbine vanes or turbine blades for a gas turbine. The array includes a plurality of turbomachine components having aerofoils and a turbomachine components carrying ring. Each of the turbomachine components having aerofoils is circumferentially arranged on the turbomachine components carrying ring. The plurality of turbomachine components having aerofoils includes at least one turbomachine component according to the aspect of the present technique presented hereinabove.
In an embodiment of the array, the turbomachine components having aerofoils are blades for the gas turbine engine and the turbomachine components carrying ring is a rotor disc for the gas turbine engine.
In another embodiment of the array, the turbomachine components having aerofoils are vanes of the gas turbine engine and the turbomachine components carrying ring is a vane carrier ring of the gas turbine engine.
The above mentioned attributes and other features and advantages of the present technique and the manner of attaining them will become more apparent and the present technique itself will be better understood by reference to the following description of embodiments of the present technique taken in conjunction with the accompanying drawings, wherein:
Hereinafter, above-mentioned and other features of the present technique are described in details. Various embodiments are described with reference to the drawing, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purpose of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be noted that the illustrated embodiments are intended to explain, and not to limit the invention. It may be evident that such embodiments may be practiced without these specific details.
In operation of the gas turbine engine 10, air 24, which is taken in through the air inlet 12 is compressed by the compressor section 14 and delivered to the combustion section or burner section 16. The burner section 16 comprises a burner plenum 26, one or more combustion chambers 28 extending along a longitudinal axis 35 and at least one burner 30 fixed to each combustion chamber 28. The combustion chambers 28 and the burners 30 are located inside the burner plenum 26. The compressed air passing through the compressor 14 enters a diffuser 32 and is discharged from the diffuser 32 into the burner plenum 26 from where a portion of the air enters the burner 30 and is mixed with a gaseous or liquid fuel. The air/fuel mixture is then burned and the combustion gas 34 or working gas from the combustion is channelled through the combustion chamber 28 to the turbine section 18 via a transition duct 17. An inner surface 55 of the transition duct 17 defines a part of the hot gas path.
This exemplary gas turbine engine 10 has a cannular combustor section arrangement 16, which is constituted by an annular array of combustor cans 19 each having the burner 30 and the combustion chamber 28, the transition duct 17 has a generally circular inlet that interfaces with the combustor chamber 28 and an outlet in the form of an annular segment. An annular array of transition duct outlets form an annulus for channelling the combustion gases to the turbine 18.
The turbine section 18 comprises a number of blade carrying discs 36 attached to the shaft 22. In the present example, two discs 36 each carry an annular array of turbine blades 38. However, the number of blade carrying discs could be different, i.e. only one disc or more than two discs. In addition, guiding vanes 40, which are fixed to a stator 42 of the gas turbine engine 10, are disposed between the stages of annular arrays of turbine blades 38. Between the exit of the combustion chamber 28 and the leading turbine blades 38 inlet guiding vanes 44 are provided and turn the flow of working gas onto the turbine blades 38.
The combustion gas 34 from the combustion chamber 28 enters the turbine section 18 and drives the turbine blades 38 which in turn rotate the shaft 22. The guiding vanes 40, 44, hereinafter also referred to as the vanes 40,44, serve to optimise the angle of the combustion or working gas 34 on the turbine blades 38.
The turbine section 18 drives the compressor section 14. The compressor section 14 comprises an axial series of vane stages 46 and rotor blade stages 48. The rotor blade stages 48 comprise a rotor disc supporting an annular array of blades. The compressor section 14 also comprises a casing 50 that surrounds the rotor stages and supports the vane stages 48. The guide vane stages include an annular array of radially extending vanes that are mounted to the casing 50. The vanes are provided to present gas flow at an optimal angle for the blades at a given engine operational point. Some of the guide vane stages have variable vanes, where the angle of the vanes, about their own longitudinal axis, can be adjusted for angle according to air flow characteristics that can occur at different engine operations conditions.
The casing 50 defines a radially outer surface 52 of the passage 56 of the compressor 14. A radially inner surface 54 of the passage 56 is at least partly defined by a rotor drum 53 of the rotor which is partly defined by the annular array of blades 48.
The present technique is described with reference to the above exemplary turbine engine having a single shaft or spool connecting a single, multi-stage compressor and a single, one or more stage turbine. However, it should be appreciated that the present technique is equally applicable to two or three shaft engines and which can be used for industrial, aero or marine applications. Furthermore, the cannular combustor section arrangement 16 is also used for exemplary purposes and it should be appreciated that the present technique is equally applicable to annular type and can type combustion chambers.
The terms upstream and downstream refer to the flow direction of the airflow and/or working gas flow 34 through the engine unless otherwise stated. The terms forward and rearward refer to the general flow of gas through the engine. The terms axial, axially, axial direction, radial, radially, radial direction, circumferential, circumferentially and circumferential direction are made with reference to the rotational axis 20 of the engine, unless otherwise stated. The phrase a first element “along” a second element, and like phrases, means the first element runs or extends or is arranged in the same directions as the second element, i.e. for example to explain further, if the second element is a surface or a side and extends in x-z coordinates in Cartesian coordinate system then the first element “along” the second element means the first element also extends in x-z coordinate albeit the first element may be removed by a distance from the second element in x coordinate and/or in z coordinate. Simply put, the first element “along” the second element may be understood as the first element extending in such dimensions as to be parallel or substantially parallel to the second element for example the first element and the second element may form an angle between 0 degree and 20 degree.
The inlet guiding vane 44, hereinafter also referred to the vane 44, has an aerofoil 110 extending from an inner platform 61, arranged towards the rotational axis 20, which in turn is adapted to be connected, or is connected when the vane 44 is installed within the gas turbine engine 10, to the vane carrying ring 70. The aerofoil 110 has a leading edge 58 and a trailing edge 60. The aerofoil 110 covers a part 91 of the inner platform 61, i.e. the part of the inner platform 61 that lies directly beneath the aerofoil 110, however one or more other parts 62, 63 of the inner platform 61 extend beyond the part 91 of the inner platform 61 that lies directly beneath, or in direct contact with, the aerofoil 110 and thereby form a first overhang 62 downstream of the trailing edge 60 and a second overhang 63 upstream of the leading edge 58. Similarly the turbine blade 38 has a platform 39 and the guiding vane 40 has an inner platform 71 and one or both of the platform 39 and the inner platform 71 may have one or more overhangs (not shown). The turbine blade 38 may have a heat shield 37 on the other end.
Conventionally, cooling air is fed from internal cooling channels (not shown) and through the platforms 61, 39, 71, into the aerofoils 110 of the vane 40, turbine blade 38 and the guiding vane 40, for example through a space 77 beneath the platform 61 and then through part 91 into the aerofoil 110 of the vane 44, though it has not been depicted in
The vane 44 also has an outer platform 64 to which the aerofoil 110 extends. The aerofoil 110 covers a part 94 of the outer platform 64, i.e. the part of the outer platform 64 that lies directly above, or in direct contact with, the aerofoil 110, however one or more other parts 65, 66 of the outer platform 64 extend beyond the part 94 of the outer platform 64 and thereby form a first overhang 65 downstream of the trailing edge 60 and a second overhang 66 upstream of the leading edge 58. Similarly the guiding vane 40 has an outer platform 72 and may have similar overhangs in the outer platform 72.
The present technique is implemented in one or more overhangs 62,63,65,66 of the vane 44 or similar overhangs (not shown) of the platforms 39, 71, 72 of the turbine blade 38 and the guiding vane 40.
As shown in
The first platform 120 has generally two sides along the radial direction 99 i.e. an aerofoil side 122 from which the aerofoil 110 extends radially and an opposite side 124 which is positioned towards the vane carrying ring 70 or the blade carrying disc 36 i.e. towards the rotational axis 20 when the turbomachine component 100, hereinafter also referred to as the component 100, is installed in the gas turbine engine 10, hereinafter also referred to as the gas turbine 10. The component 100 includes a first-platform cavity 125 positioned in a first overhang region 128 of the first platform 120. The first overhang region 128 may be understood as any of the overhangs 62,63,65,66 of the vane 44 of
As shown in
As shown in
As shown in
As shown in
Hereinafter, the impingement plates 80 and the flow of the cooling air within the cavities 125, 135, 145, 155 is explained. The flow of the cooling air within the cavities 125, 135, 145, 155 has been depicted by arrows marked with reference numeral 9.
As shown in
As depicted in
As a result of attaching the part 86 to the wall 126 and the part 87 to the wall 127 or a part of the vane carrying ring 70, the central plate 82 between the part 86 and the part 87 is suspended in the first-platform cavity 125. Referring again to
The central plate 82 has impingement holes 84 as depicted in
Similarly for the impingement plates 80 arranged in the additional first-platform cavity 135, the aerofoil-side part 86 of the impingement plate 80 extending towards and is connected to the aerofoil-side cavity wall 136 of the additional first-platform cavity 135; and the flow-input-side part 87 extends towards a direction opposite to the aerofoil-side cavity wall 136 of the additional first-platform cavity 135 and is connected to the opposite-side cavity wall 137 or to a part of the vane carrying ring 70. The impingement plates 80 are similarly arranged in the additional first-platform cavity 135 as explained for the impingement plates 80 arranged in the first-platform cavity 125 and create similarly the segments 6 and 7 and have a direction of flow of cooling air similar to that of the direction of flow of cooling air explained hereinabove for
Similarly for the impingement plates 80 arranged in the additional second-platform cavity 155, the aerofoil-side part 86 of the impingement plate 80 extends towards and is connected to the aerofoil-side cavity wall 156 of the additional second-platform cavity 155; and the flow-input-side part 87 extends towards and is connected to the opposite-side cavity wall 157. The impingement plates 80 are similarly arranged in the additional second-platform cavity 155 as explained for the impingement plates 80 arranged in the first-platform cavity 125 and create similarly the segments 6 and 7 and have a direction of flow of cooling air similar to that of the direction of flow of cooling air explained hereinabove for
Furthermore, referring to
In an exemplary embodiment of the component 100, one or more of the cavities 125,135,145,155 is completely limited to the overhang regions 128,129,148,149, respectively does not extend to the part of the platforms 120,140 that are directly beneath or above the aerofoil 110. The advantage is that the cooling air directed to the aerofoil cavity through the part of the platforms 120,140 that are directly beneath or above the aerofoil 110 is not affected by the flow of the cooling air into the cavities 125,135,145,155. The cooling air after flowing through the cavities 125,135,145,155 is exited in the hot gas flow path from the platform 120,140 directly or into a rim seal cavity 73 as depicted in
Referring now to
An advantage of the present cooling arrangement is that it is compact and can provide a thin impingement cooling arrangement. In other words, the present cooling arrangement is thin or has a relatively small thickness in a direction perpendicular to the plane of the surface or wall 126 being cooled. This is particularly helpful in applications such as a blade or vane where thicknesses of parts, such as wall 126 defining a gas-washed surface, are important to minimize aerodynamic losses. The thickness or the distance between the walls 126 and 127 can be a minimum whilst maintaining sufficient impingement cooling. Thus for the platform 120 shown in
Another advantage of the present arrangement is that the distance from the central plate 82 to the cooled wall 126 may be an optimum distance for maximum impingement cooling effect for the impingement cooling jets. The central plate 82 may be located nearer to the wall 126, on to which the impingement jets strike, than the wall 127. In other examples, the central plate 82 may be located nearer to the wall 127 than the wall 126. Thus the wall 126 may be optimally cooled. Bespoke cooling arrangements are then possible for many different applications of the present invention. For optimum cooling the impingement jets' effectiveness can be dependent on the pressure of the cooling fluid, the size of the impingement hole and the distance from the impingement hole in the central plate 82 to the target surface such as the wall 126.
Furthermore, each consecutive impingement plate 80 may have its central plate 82 located at a different distance from the cooled wall 126 compared to one or more of the other central plates 82. The different distances of each central plate 82 may be dependent on a number of factors such as the pressure of the cooling air 9 immediately adjacent each central plate 82 and/or the temperature of the wall 126 and/or the temperature of the cooling air 9. For example, and with respect to the direction of the cooling flow 9, a first central plate 82 is a first distance away from the cooled wall 126 and a downstream central plate 82 is a second distance from the cooled wall 126; the second distance is smaller than the first distance. Further, each consecutive central plate 82, after the first central plate 82, may be closer to the cooled wall 126 than its immediately upstream neighbour. In another example, the second distance from the cooled wall 126 is greater than the first distance. Further, each consecutive central plate 82, after the first central plate 82, may be further from the cooled wall 126 than its immediately upstream neighbour.
Yet further the two walls 126, 127 may not be parallel and may converge or diverge such that the aerofoil-side part 86 and the flow-input-side part 87 are different lengths. Thus, where the two walls 126, 127 are converging or diverging the central plate 82 may be parallel to the cooled wall 126 and not parallel to the wall 127. Alternatively, the central plate 126 may converge or diverge with respect to the cooled wall 126.
It should be appreciated that two, three or more impingement plates 80 may be sequentially or consecutively located to use and reuse cooling air 9.
In the present disclosure, orientation terms such as “radial”, “inner”, “outer”, “circumferential”, “beneath” “below” and the like are to be taken relative to a turbine axis i.e. the rotational axis 20. “Inner” means radially inner, or closer to the rotational axis 20, whereas “outer” means radially outer, or away from the rotational axis 20.
While the present technique has been described in detail with reference to certain embodiments, it should be appreciated that the present technique is not limited to those precise embodiments. Rather, in view of the present disclosure which describes exemplary modes for practicing the invention, many modifications and variations would present themselves, to those skilled in the art without departing from the scope and spirit of this invention. The scope of the invention is, therefore, indicated by the following claims rather than by the foregoing description. All changes, modifications, and variations coming within the meaning and range of equivalency of the claims are to be considered within their scope.
Number | Date | Country | Kind |
---|---|---|---|
16179848.3 | Jul 2016 | EP | regional |
This application is the US National Stage of International Application No. PCT/EP2017/067938 filed Jul. 14, 2017, and claims the benefit thereof. The International Application claims the benefit of European Application No. EP16179848 filed Jul. 18, 2016. All of the applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/067938 | 7/14/2017 | WO | 00 |