The present invention relates generally to bone anchored implant devices, and more particularly, to a percutaneous implant abutment for bone anchored implant devices adapted to be anchored in the craniofacial region of a person.
There are a variety of medical devices that include a bone anchored implant device. An example of such medical devices is the, bone conduction hearing aid devices such as bone anchored hearing implants. An example of a bone anchored hearing implant is the Baha®, commercially available from Cochlear Bone Anchored Solutions AB in Goteborg, Sweden. The Baha® and other bone anchored implant devices comprise an external unit which transforms sound to mechanical vibrations which are conducted via the abutment and the fixture into the bone of the skull. The vibrations are transmitted mechanically via the skull bone directly to the inner ear of a person with impaired hearing and allows for the hearing organ to register the sound. A hearing aid device of the BAHA® type is connected to an anchoring element in the form of an implanted titanium screw installed in the bone behind the external ear. Sound is transmitted via the skull bone to the cochlea irrespective of a disease in the middle ear. The bone anchoring principle means that the skin is penetrated which makes the vibratory transmission very efficient.
This type of hearing aid device has been a revolution for the rehabilitation of patients with certain types of impaired hearing, but also as anti-stuttering means. It is very convenient for the patient and almost invisible with normal hair styles. It can easily be connected to the implanted titanium fixture by means of a bayonet coupling or a snap in coupling. One example of this type of hearing aid device is described in U.S. Pat. No. 4,498,461 and in SE 9702164-6 it is described a one-piece implant of this type, in which the fixture is integrated with a first coupling device. In WO 2005/037153 it is described how this type of hearing aid device can be used as an anti-stuttering device.
A well known problem with percutaneous implants is the infections and inflammation at the skin-implant interface. The infections are a result of bacterial colonization occurring at the area around the interface. There is generally a lack of integration of the skin to the implant which results in a gap between the two. This gap is unfortunately an ideal environment for the bacteria and if this zone is not properly managed, it is likely that an infection will occur. By creating an integration of the skin to the implant the adverse skin reactions associated with bone anchored percutaneous implants are expected to be reduced.
Creating integration between the skin and the implant requires that the implant is suitable for this purpose and that the soft tissue does not dissociate itself from the skin penetrating implant abutment by encapsulating the abutment in fibrous tissue.
In the field of dental implants it is previously known to use different types of abutments which penetrate the oral mucosa. However, it should be understood that there is a physiological difference between breaching the skin barrier compared to the oral mucosa. In the oral cavity the skin is not involved and there is another type of force situation. In contrast to dental implants the present invention relates to extraoral implants.
It is recognized that bone anchored percutaneously implants are subjected to mostly shear forces, while percutaneously implants which are not bone anchored are subjected to several other types of forces, such as pull and torsion. Such different types of forces are also mostly involved in dental applications. Mostly shear forces are especially the case for implants with inherent movements such as bone anchored hearing implants due to the generation of vibratory movements.
It is also recognized that the effect that the shear forces has on the skin leads to tissue damage not only from a mechanical point of view but, more importantly, an indirect biological reaction which leads to foreign body reaction or dissociation from the material (encapsulation of the implant by fibrous tissue, etc). Some reactions are acute and some are noticed after several weeks.
In one aspect of the present invention, a percutaneous implant for bone anchored implant devices adapted to be anchored in the craniofacial region of a person is provided. The implant comprises: a screw-shaped bone anchoring element; an abutment, comprising: a skin penetration body having a skin contacting surface; and a biocompatible coating disposed on the skin contacting surface.
Illustrative embodiments of the present invention will be described herein with reference to the accompanying figures, in which:
The present invention relates generally to bone anchored implant devices, and more particularly, to a percutaneous implant abutment for bone anchored implant devices adapted to be anchored in the craniofacial region of a person, such as bone anchored hearing aids. Implant devices of this type normally comprise a screw-shaped bone anchoring element (fixture) for permanent anchorage in the bone tissue and an abutment sleeve for skin penetration. The complete structure can either be in one piece or the skin penetrating abutment could be connected to the fixture prior, during or after the implantation procedure by means of a screw connection or the like.
The skin penetrating part, the abutment 4 of the implant, comprises a substantially conical abutment sleeve. Conical abutment sleeves are previously known per se as separate components or as an integral part with the fixture, a one-piece implant. The abutment sleeve is provided with a first coupling part in order to cooperate with a second coupling part (not shown) by means of snap-in action or the like.
According to embodiments of the present invention the shear modulus of the skin contacting part of the percutaneous implant abutment 4 has been reduced. Preferably the shear modulus should be less than approximately 35 GPa.
Specifically, the shear modulus is reduced by a modification of the surface of the skin contacting part of the percutaneous implant abutment, illustrated by the structured abutment surface in
The polymer coating is comparatively soft and decreases the shear stresses on the skin. In certain embodiments, a layer of a porous polymer is used for the coating with a thickness of about 30 nm. Such design is allowing the skin to heal into the polymer matrix.
Also a polymer containing a pharmaceutical drug that increases the production of extra-cellular matrix proteins in the soft tissue, such as collagen or keratin, might be used. The increased stability of the tissue increases the resistance to shear stress.
Also other types of materials might be used for increasing the skin tissue integration. Specifically, chemical substances such as pharmaceutical drugs and antioxidants, or biochemical substances such as proteins, biopolymers, growth factors, DNA, RNA or biominerals might be used. These substances are then associated to the implant with a purpose of increasing the amount of, or number of connections to extra cellular matrix proteins. Antibiotic, steroid or anti-inflammatory substances might also be used.
As an alternative to said coatings or substances, or in combination, a surface enlargement treatment can be provided to the surface of the skin contacting part of the percutaneous implant in order to increase the surface roughness. Such treatment can be achieved by using techniques that includes grit-blasting, polishing, micro-machining, laser treatment, turning, anodic oxidation, oxidation, chemical etching, sintering or plasma deposition of a titanium surface. Preferably such treatment should result in a 10% surface increase, compared to a conventional machined surface and a roughness value Sa of approximately 0.5 μm to approximately-10 μm, measured by means of White Light Interferometry.
It should be understood that only that part of the abutment surface which is in contact with the skin need to be modified. Other parts of the abutment such as the lower and upper end surfaces, i.e. the surfaces connected to the fixture and the coupling device respectively, might have a conventional, machined and/or polished surface.
According to one embodiment of the present invention, the surface of the skin contacting part of the percutaneously implant abutment is coated with a biocompatible polymer with a thickness of approximately 0.001 μm-to approximately 50 μm. According to a another embodiment, the surface of the skin contacting part of the percutaneously implant abutment is coated with a ceramic material with a thickness of 0.001 μm-to approximately 50 μm.
According to another embodiment, a surface enlargement treatment has been provided to the surface of the skin contacting part of the percutaneously implant abutment. Preferably a 10% surface increase, compared to a conventional machined surface, is created resulting in a roughness value Sa of 0.5 μm-to approximately 10 μm.
It should be understood that there are percutaneous implant as such that are made of polymers (catheters etc) but they are not bone anchored and they are not exposed to the typical shear forces that are the case for implants with inherent movements such as bone anchored hearing implants due to the generation of vibratory movements.
An advantage of embodiments of the present invention is to provide an implant abutment in which the shear forces between the implant abutment and the skin have been reduced. This improves wound healing and integration around bone anchored percutaneous implants.
According to another feature of embodiments of the present invention, the shear modulus of the skin contacting part of the percutaneously implant abutment is reduced. Preferably the shear modulus should be less than approximately 35 GPa.
In certain embodiments, the implant design includes a flange or a skirt perpendicular to the abutment orientation in order to mechanically increase the surface area and stability and thereby also reduce the shear stress on the implant-skin interface. Also the implant design might include one or more retention grooves or waists. Otherwise, however, the abutment should be designed without any sharp edges or corners in order to simplify the surface modification procedure.
Further features and advantages of the present invention are described in commonly owned and co-pending U.S. Utility Patent Application entitled “VIBRATOR FOR BONE CONDUCTING HEARING DEVICES,” filed Nov. 24, 2009, which is a national stage application of PCT Application No. PCT/SE2008/000336, filed May 21, 2008; and commonly owned and co-pending U.S. Utility Patent Application entitled “ANCHORING ELEMENT” which is a national stage application under 35 USC § 371 (c) of PCT Application No. PCT/SE2008/000338, filed on May 21, 2008. The content of these applications are hereby incorporated by reference herein.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. Specifically it should be understood that any combinations of the said surface modifications could be used, e.g. using composites, structured ceramic coatings, polymer/pharmaceutical drug coatings, anodized flange etc. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
0701244 | May 2007 | SE | national |
This application is a continuation application of U.S. application Ser. No. 14/685,048, filed Apr. 13, 2015, which is a continuation application of U.S. application Ser. No. 12/601,801, filed on May 21, 2010, now U.S. Pat. No. 9,005,202, which is a national stage application under 35 USC § 371 (c) of PCT Application No. PCT/SE2008/000337, entitled “IMPLANT ABUTMENT,” filed on May 20, 2008, which claims priority from Swedish Patent Application No. 0701244-6, filed on May 24, 2007. This application is related to commonly owned and co-pending U.S. Utility Patent Application entitled “VIBRATOR FOR BONE CONDUCTING HEARING DEVICES,” filed Nov. 24, 2009, which is a national stage application of PCT Application No. PCT/SE2008/000336, filed May 21, 2008. This application is also related to commonly owned and co-pending U.S. Utility Patent Application entitled “ANCHORING ELEMENT” which is a national stage application under 35 USC § 371 (c) of PCT Application No. PCT/SE2008/000338, filed on May 21, 2008. The entire disclosure and contents of the above applications are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3043000 | Hatfield | Jul 1962 | A |
3487403 | Pihl | Dec 1969 | A |
3573812 | Pihl | Apr 1971 | A |
D227118 | Muraoka | Jun 1973 | S |
3771685 | Micallef | Nov 1973 | A |
3801767 | Marks | Apr 1974 | A |
3987967 | Kuznetsov et al. | Oct 1976 | A |
4003521 | Hess | Jan 1977 | A |
4038990 | Thompson | Aug 1977 | A |
4052754 | Homsy | Oct 1977 | A |
4197840 | Beck et al. | Apr 1980 | A |
4199741 | Paulet | Apr 1980 | A |
4226164 | Carter | Oct 1980 | A |
4240428 | Akhavi | Dec 1980 | A |
4257936 | Matsumoto et al. | Mar 1981 | A |
4317969 | Riegler et al. | Mar 1982 | A |
D267541 | Kanemitsu | Jan 1983 | S |
4414701 | Johnson | Nov 1983 | A |
4498461 | Hakansson | Feb 1985 | A |
4596971 | Hirabayashi et al. | Jun 1986 | A |
4606329 | Hough | Aug 1986 | A |
4610621 | Taber et al. | Sep 1986 | A |
4612915 | Hough et al. | Sep 1986 | A |
4628907 | Epley | Dec 1986 | A |
4645504 | Byers | Feb 1987 | A |
4676772 | Hooven | Jun 1987 | A |
4696287 | Hortmann et al. | Sep 1987 | A |
4726378 | Kaplan | Feb 1988 | A |
4731718 | Sheu | Mar 1988 | A |
4736747 | Drake | Apr 1988 | A |
4818559 | Hama et al. | Apr 1989 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
4868530 | Ahs | Sep 1989 | A |
4915628 | Linkow et al. | Apr 1990 | A |
4917504 | Scott et al. | Apr 1990 | A |
4918745 | Hutchison | Apr 1990 | A |
4920679 | Sarles et al. | May 1990 | A |
5014592 | Zweig et al. | May 1991 | A |
5015224 | Maniglia | May 1991 | A |
5026397 | Aoki et al. | Jun 1991 | A |
5049074 | Otani et al. | Sep 1991 | A |
5096763 | Ogata et al. | Mar 1992 | A |
5105811 | Kuzma | Apr 1992 | A |
5183056 | Dalen et al. | Feb 1993 | A |
5196710 | Kalfaian | Mar 1993 | A |
5314453 | Jeutter | May 1994 | A |
D348067 | Lucey et al. | Jun 1994 | S |
5456654 | Ball | Oct 1995 | A |
5456717 | Zweymuller et al. | Oct 1995 | A |
5549658 | Shannon et al. | Aug 1996 | A |
5554096 | Ball | Sep 1996 | A |
5603726 | Schulman et al. | Feb 1997 | A |
5624376 | Ball et al. | Apr 1997 | A |
5630835 | Brownlee | May 1997 | A |
5645580 | Moaddeb et al. | Jul 1997 | A |
5716407 | Knapp et al. | Feb 1998 | A |
5735790 | Håkansson et al. | Apr 1998 | A |
5749912 | Zhang et al. | May 1998 | A |
5775652 | Crawshaw et al. | Jul 1998 | A |
5785477 | McGuffey et al. | Jul 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5857958 | Ball et al. | Jan 1999 | A |
5877664 | Jackson, Jr. | Mar 1999 | A |
5897486 | Ball et al. | Apr 1999 | A |
5906635 | Maniglia | May 1999 | A |
5913815 | Ball et al. | Jun 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5971334 | Crawshaw et al. | Oct 1999 | A |
6011993 | Tziviskos et al. | Jan 2000 | A |
6040762 | Tompkins | Mar 2000 | A |
6073973 | Boscaljon et al. | Jun 2000 | A |
6138681 | Chen et al. | Oct 2000 | A |
6157278 | Katznelson et al. | Dec 2000 | A |
6157281 | Katznelson et al. | Dec 2000 | A |
6171229 | Kroll et al. | Jan 2001 | B1 |
6175767 | Doyle, Sr. | Jan 2001 | B1 |
6178079 | Renger | Jan 2001 | B1 |
6178353 | Griffith et al. | Jan 2001 | B1 |
6190305 | Ball et al. | Feb 2001 | B1 |
6208235 | Trontelj | Mar 2001 | B1 |
6208882 | Lenarz et al. | Mar 2001 | B1 |
6217508 | Ball et al. | Apr 2001 | B1 |
6219580 | Faltys et al. | Apr 2001 | B1 |
6244142 | Swanson | Jun 2001 | B1 |
6259951 | Kuzma et al. | Jul 2001 | B1 |
6263230 | Haynor et al. | Jul 2001 | B1 |
6272382 | Faltys et al. | Aug 2001 | B1 |
6275736 | Kuzma et al. | Aug 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6295472 | Rubinstein et al. | Sep 2001 | B1 |
6295473 | Rosar | Sep 2001 | B1 |
6308101 | Faltys et al. | Oct 2001 | B1 |
6313551 | Hazelton | Nov 2001 | B1 |
6348070 | Teissl et al. | Feb 2002 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6401723 | Garibaldi et al. | Jun 2002 | B1 |
6475134 | Ball et al. | Nov 2002 | B1 |
6505062 | Ritter et al. | Jan 2003 | B1 |
6506987 | Woods | Jan 2003 | B1 |
6522909 | Garibaldi et al. | Feb 2003 | B1 |
6542777 | Griffith et al. | Apr 2003 | B1 |
6571676 | Folsom et al. | Jun 2003 | B1 |
6589216 | Abbott et al. | Jul 2003 | B1 |
6668065 | Lee et al. | Dec 2003 | B2 |
6705985 | Easter et al. | Mar 2004 | B2 |
6838963 | Zimmerling et al. | Jan 2005 | B2 |
6857612 | Goodbred | Feb 2005 | B2 |
D512416 | Malaver | Dec 2005 | S |
6991594 | Holcomb | Jan 2006 | B2 |
7091806 | Zimmerling et al. | Aug 2006 | B2 |
7190247 | Zimmerling | Mar 2007 | B2 |
7200504 | Fister | Apr 2007 | B1 |
7225028 | Della Santina et al. | May 2007 | B2 |
7231252 | Duncan et al. | Jun 2007 | B2 |
7338028 | Zimmerling et al. | Mar 2008 | B2 |
7566296 | Zimmerling et al. | Jul 2009 | B2 |
7610096 | McDonald, III | Oct 2009 | B2 |
7642887 | Zimmerling | Jan 2010 | B2 |
7647120 | Della Santina et al. | Jan 2010 | B2 |
7695427 | Kugler et al. | Apr 2010 | B2 |
7806693 | Hurson | Oct 2010 | B2 |
7856986 | Darley | Dec 2010 | B2 |
7976453 | Zimmerling et al. | Jul 2011 | B2 |
7991477 | McDonald, III | Aug 2011 | B2 |
8013699 | Zimmerling | Sep 2011 | B2 |
8118725 | Zimmerling et al. | Feb 2012 | B2 |
8211174 | Park et al. | Jul 2012 | B2 |
8255058 | Gibson et al. | Aug 2012 | B2 |
8260435 | Johnson et al. | Sep 2012 | B2 |
8270647 | Crawford et al. | Sep 2012 | B2 |
8340774 | Hochmair et al. | Dec 2012 | B2 |
8469908 | Asfora | Jun 2013 | B2 |
8515112 | Crawford et al. | Aug 2013 | B2 |
8515544 | Daly et al. | Aug 2013 | B2 |
8532783 | Zimmerling et al. | Sep 2013 | B2 |
8634909 | Zimmerling et al. | Jan 2014 | B2 |
8734475 | Ekvall et al. | May 2014 | B2 |
8744106 | Ball | Jun 2014 | B2 |
8758394 | Zimmerling et al. | Jun 2014 | B2 |
8768480 | Charvin | Jul 2014 | B2 |
8897475 | Ball et al. | Nov 2014 | B2 |
8983102 | Crawford et al. | Mar 2015 | B2 |
9005202 | Andersson | Apr 2015 | B2 |
9022917 | Kasic et al. | May 2015 | B2 |
RE45701 | Zimmerling et al. | Sep 2015 | E |
9144676 | Gibson et al. | Sep 2015 | B2 |
9888329 | Andersson | Feb 2018 | B2 |
20010021805 | Blume et al. | Sep 2001 | A1 |
20010047175 | Doubler et al. | Nov 2001 | A1 |
20020076071 | Single | Jun 2002 | A1 |
20020099421 | Goldsmith et al. | Jul 2002 | A1 |
20030120202 | Gordon | Jun 2003 | A1 |
20030139782 | Duncan | Jul 2003 | A1 |
20030171787 | Money et al. | Sep 2003 | A1 |
20030176866 | Westerkull | Sep 2003 | A1 |
20030181956 | Duncan et al. | Sep 2003 | A1 |
20040012470 | Zimmerling et al. | Jan 2004 | A1 |
20040059423 | Barnes et al. | Mar 2004 | A1 |
20040132143 | DeAngelis et al. | Jul 2004 | A1 |
20040167450 | Buckman et al. | Aug 2004 | A1 |
20040204686 | Porter et al. | Oct 2004 | A1 |
20040215164 | Abbott et al. | Oct 2004 | A1 |
20040260361 | Gibson | Dec 2004 | A1 |
20050001703 | Zimmerling | Jan 2005 | A1 |
20050004629 | Gibson et al. | Jan 2005 | A1 |
20050026113 | Chen et al. | Feb 2005 | A1 |
20050062567 | Zimmerling et al. | Mar 2005 | A1 |
20050106534 | Gahlert | May 2005 | A1 |
20050113834 | Breitenstien et al. | May 2005 | A1 |
20050142163 | Hunter et al. | Jun 2005 | A1 |
20050159791 | Daly et al. | Jul 2005 | A1 |
20050171579 | Tasche et al. | Aug 2005 | A1 |
20060030905 | Malaver | Feb 2006 | A1 |
20060050913 | Westerkull | Mar 2006 | A1 |
20060093175 | Westerkull | May 2006 | A1 |
20060184212 | Faltys et al. | Aug 2006 | A1 |
20060241592 | Myerson et al. | Oct 2006 | A1 |
20060244560 | Zimmerling et al. | Nov 2006 | A1 |
20070009853 | Pitulia | Jan 2007 | A1 |
20070126540 | Zimmerling | Jun 2007 | A1 |
20070208403 | Della Santina et al. | Sep 2007 | A1 |
20070270631 | Nelson et al. | Nov 2007 | A1 |
20080221641 | Hochmair | Sep 2008 | A1 |
20090069869 | Stouffer et al. | Mar 2009 | A1 |
20090082817 | Jinton et al. | Mar 2009 | A1 |
20090287278 | Charvin | Nov 2009 | A1 |
20100249784 | Andersson | Sep 2010 | A1 |
20110004278 | Aghassian | Jan 2011 | A1 |
20110022120 | Ball et al. | Jan 2011 | A1 |
20110264172 | Zimmerling et al. | Oct 2011 | A1 |
20110295053 | Ball | Dec 2011 | A1 |
20120022616 | Garnham et al. | Jan 2012 | A1 |
20120022647 | Leigh et al. | Jan 2012 | A1 |
20120029267 | Ball | Feb 2012 | A1 |
20120172659 | Ball et al. | Jul 2012 | A1 |
20120238799 | Ball et al. | Sep 2012 | A1 |
20120296155 | Ball | Nov 2012 | A1 |
20120323066 | Cho et al. | Dec 2012 | A1 |
20120330378 | Crawford et al. | Dec 2012 | A1 |
20130046131 | Ball et al. | Feb 2013 | A1 |
20130046360 | Gibson et al. | Feb 2013 | A1 |
20130053874 | Ekvall et al. | Feb 2013 | A1 |
20130110198 | Stoffaneller | May 2013 | A1 |
20140012070 | Nagl et al. | Jan 2014 | A1 |
20140012071 | Nagl et al. | Jan 2014 | A1 |
20140012349 | Zimmerling | Jan 2014 | A1 |
20140121447 | Kasic et al. | May 2014 | A1 |
20140213139 | Ferguson | Jul 2014 | A1 |
20140275736 | Ruppersberg et al. | Sep 2014 | A1 |
20140302741 | Whittaker | Oct 2014 | A1 |
20140343626 | Thenuwara et al. | Nov 2014 | A1 |
20150087892 | Tourrel et al. | Mar 2015 | A1 |
20150157778 | Ishiyama et al. | Jun 2015 | A1 |
20160008596 | Gibson et al. | Jan 2016 | A1 |
20160144170 | Gibson et al. | May 2016 | A1 |
20160361537 | Leigh et al. | Dec 2016 | A1 |
20170312503 | Leigh et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1068052 | Dec 1979 | CA |
2485716 | Apr 2005 | CA |
0367354 | May 1990 | EP |
414579 | Aug 1934 | GB |
2266045 | Oct 1993 | GB |
H06192852 | Jul 1994 | JP |
9855049 | Dec 1998 | WO |
0197718 | Dec 2001 | WO |
0209622 | Feb 2002 | WO |
02056637 | Jul 2002 | WO |
2004091432 | Oct 2004 | WO |
2005037153 | Apr 2005 | WO |
Entry |
---|
Daniel Rutter, “Comparison: Lightwave 2000, 3000, 4000, Illuminator and Pocket-Bright, and Petzl Tikka” pp. 1-30, Feb. 14, 2002. http://www.dansdata.com/ledlights7.htm. |
Med-El, “Magnetic Resonance Imaging (MRI),” believed to be available in Jan. 2016. |
D. Cuda et al., “Focused tight dressing does not prevent cochlear implant magnet migration under 1.5 Tesla MRI,” believed to be available in Jan. 2016. |
International Search Report for PCT/SE2008/000337 dated Jul. 16, 2008. |
Number | Date | Country | |
---|---|---|---|
20180234780 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14685048 | Apr 2015 | US |
Child | 15888628 | US | |
Parent | 12601801 | US | |
Child | 14685048 | US |