A conventional method for correcting the refractive error in a cornea is keratophakia, i.e., implantation of a lens inside the cornea. Keratophakia uses an implant which is placed into the cornea approximately equidistant from the exterior surface of the cornea and the interior surface. The procedure is usually done by first preparing a lens from corneal donor tissue or synthetic material using a cryo-lathe. The lens is implanted by removing a portion of the cornea with a device called a microkeratome, and the tissue is sutured back into place over the lens. However, there can be problems when microkeratomies are used for cutting the cornea. First, irregular keratectomies or perforations of the eye can result. Second, the recovery of vision can be rather prolonged.
Additional surgical techniques exist that use ultraviolet light and short wavelength lasers to modify the shape of the cornea. For example, excimer lasers, such as those described in U.S. Pat. No. 4,840,175 to Peyman, which emit pulsed ultraviolet radiation, can be used to decompose or photoablate tissue in the live cornea so as to reshape the cornea.
Specifically, the Peyman patent discloses the laser surgical technique known as laser in situ keratomycosis (LASIK). In this technique, a portion of the front of the live cornea can be cut away in the form of a flap having a thickness of about 160 microns. This cut portion is removed from the live cornea to expose an inner surface of the cornea. A laser beam is then directed onto the exposed inner surface to ablate a desired amount of the inner surface up to 150-180 microns deep. The cut portion is reattached over the ablated portion of the cornea and assumes a shape conforming to that of the ablated portion
However, because only certain amount of cornea can be ablated without the remaining cornea becoming unstable or experiencing outbulging (ectasia), this technique is not especially effective in correcting very high myopia. That is, a typical cornea is on average about 500 microns thick. The laser ablation technique requires that at least about 250 microns of the corneal stroma remain after the ablation is completed so that instability and outbulging do not occur. Also, these conventional implants, while correcting a refractive error of the patient, also distort the normal vision of the patient.
Additional methods for correcting the refractive error in the eye include inserting an implant in-between layers of the cornea. Generally, this is achieved using several different methods. The first method involves inserting a ring between layers of the cornea, as described in U.S. Pat. No. 5,405,384 to Silvestrini. Typically, a dissector is inserted in the cornea and forms a channel therein. Once it is removed, a ring is then inserted into the channel to alter the curvature of the cornea. In the second method, a flap can be created similarly to the LASIK procedure and a lens can be inserted under the flap, as described in U.S. Pat. No. 6,102,946 to Nigam. The third method involves forming a pocket using an instrument, and inserting an implant into the pocket, as described in U.S. Pat. No. 4,655,774 to Choyce.
However, with the above described techniques, a knife or other mechanical instrument is generally used to form the channel, flap or pocket. Use of these instruments may result in damage or imprecision in the cut or formation of the desired area in which the implant is placed. Additionally, these conventional techniques do not include determination and testing of an appropriate implant for correcting a refractive error of a particular patient.
Therefore, there exists a need for an inlay and improved method of correcting refractive error in the cornea of an eye.
In one embodiment, a method of changing the refractive properties of an eye is provided. The method includes the step of separating the cornea to form a first layer and a second layer, the first layer facing in a posterior direction of the eye and the second layer facing in an anterior direction of the eye. The first and second layers preferably remain attached at an area at the main optical axis. An implant is then inserted between the first and second layers. The implant includes a first portion having a first index of refraction and adapted to change the refractive properties of a first portion of the eye, a second portion having a second index of refraction and adapted to change the refractive properties of a second portion of the eye, and a third portion having a substantially arcuate edge adapted to be positioned adjacent the area attached at the main optical axis.
In another embodiment, an implant for changing the refractive properties of an eye is provided. The implant includes a body adapted to be implanted between layers of the cornea offset from the main optical axis, thereby changing the refractive properties of the eye. The body has a first portion with a first refractive power and configured to change the refractive properties of a first area of the cornea by changing the corneal curvature thereof and a second portion with a second refractive power. The second refractive power is configured to change the refractive properties of a second area of the cornea and compensate for error at the second area caused by the first portion.
In another embodiment, an implant for changing the refractive properties of an eye is provided. The implant includes a first semi circular body portion adapted to be implanted between layers of the cornea offset from the main optical axis, thereby changing the refractive properties of the eye. The first semi circular body portion includes a first portion having a first refractive power and configured to change the refractive properties of a first area of the cornea by changing the corneal curvature thereof and a second portion having a second refractive power, said second refractive power configured to change the refractive properties of a second area of the cornea and compensate for error at the second area caused by the first portion. The implant further includes a second semi circular body portion adapted to be implanted between layers of the cornea offset from the main optical axis, thereby changing the refractive properties of the eye. The second semi circular body portion includes a third portion having a third refractive power configured to change the refractive properties of a third area of the cornea by changing the corneal curvature thereof and a fourth portion having a fourth refractive power, the fourth refractive power configured to change the refractive properties of a fourth area of the cornea and compensate for error at the second area caused by the third portion.
In another embodiment, a method of changing the refractive properties of the an eye is provided. The method includes the step of separating the cornea to form a first layer and a second layer, the first layer facing in a posterior direction of the eye and the second layer facing in an anterior direction of the eye, the first and second layers remaining attached at an area at the main optical axis. A first semi-circular implant is inserted between the first and second layers, the first implant including a first portion having a first index of refraction and adapted to change the refractive properties of a first portion of the eye, and a second portion having a second index of refraction and adapted to change the refractive properties of a second portion of the eye. A second semi-circular implant is inserted between said first and second layers, the second implant including a third portion having a third index of refraction and adapted to change the refractive properties of a third portion of the eye, a fourth portion having a fourth index of refraction and adapted to change the refractive properties of a fourth portion of the eye.
Other objects, advantages, and novel salient features of the present invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses preferred embodiments of the invention.
Referring to the drawings which form a part of this disclosure:
a is a top view of an implant according to an embodiment of the present invention;
b is a top view of an implant according to another embodiment of the present invention;
As seen in
To begin, the refractive error in the eye is measured using wavefront technology, as is known to one of ordinary skill in the art. The refractive error measurements are used to determine the appropriate lens or implant 23 to best correct the error in the patient's cornea. Preferably, the lens 22 is manufactured or shaped prior to the use of the wavefront technology and is stored in a sterilized manner until that specific lens shape or size is needed. However, the information received during the measurements from the wavefront technology can be used to form the lens using a cryo-lathe, laser, or any other desired system, machine or device, or the lens can be shaped and stored in any suitable manner.
A flap or portion 20 can be formed in the surface 24 of the cornea 12, as seen in
Intracorneal inlay, implant or lens 22 is preferably any polymer having about 50% water content; however, the water content can be any percentage desired. The lens may be formed from synthetic or organic material or a combination thereof. For example, the lens can be collagen combined with or without cells; a mixture of synthetic material and corneal stromal cells; silicone or silicone mixed with collagen; methylmetacrylate; any transparent material, such as polyprolidine, polyvinylpylidine, polyethylenoxyde, etc.; or any deformable polymer, which can change its shape with ablation after implantation, such as methacrylate and acrylic acid gel.
As shown in
Preferably, implant 22 is formed from an ablatable polymer and has at least one and more preferably several hundred physical openings or microperforations formed as passageways from the first surface of the inlay through the inlay to the second surface of the inlay. Each microperforation is about 0.1 microns to about 500 micros in diameter and extends from the first surface 26 to the second surface 28. These perforations form a net in the inlay, and permit molecules of oxygen, water, solute and protein to permeate through the inlay with substantially no or no inhibition. Any or all of the microperforations or openings in the any of the inlays described herein can have a glare-free material disposed thereon, if desired. For a further discussion of glare-free material, refer to U.S. Pat. Nos. 6,280,471 and 6,277,146 both to Peyman et al., the entire contents of both of which are incorporated herein by reference. It is noted that is not necessary to have either the perforations or the glare-free material describe herein.
As seen in
Additionally, the implant 22 preferably allows light in the visible spectrum to pass therethrough. The implant 22 can have refractive properties itself, and can have different or similar refractive properties to the refractive properties of the cornea. The inlay can have pigmentation added thereto to change the color of the implant 22 or it can be photochromatic. Furthermore, it is not necessary for the implant 22 to have a hole or aperture therethrough. The intracorneal inlay 22 can have a substantially planer surface or an arcuate surface with no holes or apertures therein. For additional configurations of inlays, see U.S. Pat. Nos. 6,063,073 and 6,217,571 both to Peyman, the entire contents of both of which are herein incorporated by reference.
Implant 22 can have substantially the same refractive index as the cornea or any other suitable index. For example, the implant 22 can have an index of refraction that is substantially higher than that of the cornea (i.e., up to about 1.76). Examples of suitable materials have been developed Nitto Denko Corporation and Brewer Science. Nitto Denko has increased the index of refraction of thermosetting resin by the addition of titania, zirconia and other metal oxide nanoparticles or the additional of titanium dioxide, zirconium dioxide and other metal oxide materials. Brewer Science has also developed a new approach to the preparation of hybrid coating systems where the high index metal oxide component forms spontaneously during the curing process of the coating, leaving the polymer and metal oxide phases at a near molecular-level of interdispersion. The resulting coatings have refractive indices ranging from 1.6 to as high as 1.9 (in the range of 400 to 700 nm) depending on the metal oxide loading. This high refractive index allows the lens to be thinner than a conventional lens, and still alter the refractive characteristics of the cornea. If formed from this material, the lens can have a thickness of between about 0.5 microns and 30 microns. Such a thickness allows the refractive properties of the eye to be altered using the refractive index of the lens and/or changing the curvature of the surface of the cornea.
As seen in
For example, the implant shown in
If an eye is emmetropic and presbyopic an implant having several transition zones can be used, allowing the implant to have multifocal properties. As shown in
The first portion 23 is the optical zone and is steeper and has a higher index of refraction than both the second and third portions. In other words, the first zone is configured to alter the refractive properties of a first overlying area or portion of the cornea. This is preferably done by steepening the cornea to compensate for the refractive error in the eye, such as presbyopia. However, to maintain the emmetropic properties of the central portion of the cornea and thus allow the eye to view close objects, at least one of or both the second and third zones flatten the cornea (i.e., changing the curvature of the cornea) to compensate of the change in curvature by the first portion and/or change the refractive properties by having a different index of refraction. The implant does not necessarily need three zones or portions and can have as many or few as desired, for example, the implant can have one, two, three or more portions. Furthermore, the portions can be in any location desired and do not need to be concentric rings or arcs. It is noted that the above described refractive power changes can be effective on any type of implant and is not limited to implant 22b.
When inserting the implant between the layers, it is beneficial to have the interior radial portion or wall 42 sized and configured such that it can frictionally engage the area 36 attached to the cornea. Such an engagement will facilitate positioning and maintaining the position of the inlay relative to the corneal surface. This is particularly important when correcting astigmatic error.
Additionally, it is noted that an implant as shown in
Furthermore, as shown in
If necessary, or desired, the implant 22 can then be ablated by a laser beam that is activated outside the cornea and fired through the cornea to contact a portion of the inlay, or the flap 20 can be moved to the side and the inlay can be ablated directly. The ablating laser can be an excimer laser, which is generally known in the art for being capable of ablating both corneal tissue and synthetic material. However, since excimer lasers are generally developed for ablation of the cornea, there are expensive to produce, require toxic fluorine gases, and are difficult to maintain. Therefore, it may be preferable to ablate the implant 22 using lasers that are cheaper and easier to maintain. Certain lasers that produce a wavelength of about 355 nm can be cheaper and easier to maintain. However, it is noted that the laser can emit a beam having a wavelength of about 193 nm to about 1300 nm.
Preferably, when using this type of laser, the implant is ablated, producing holes in the polymer, without producing a coagulative effect on the material. The 355 nm photon has three times the energy of the conventional 1064 nm photon, enabling the 355 photon to break molecular bonds. The 355 nm wavelength can be generated using a diode pumped solid-state (DPSS) Nd-YAG laser, which is double frequencied to 532 nm and mixed with a Nd-YAG at 1064 nm, producing the 355 nm wavelength.
Additionally, the combination of a diffraction-linked beam and a short wavelength laser can enable machining of the implant, since the focal spot size is proportional to the wavelength. For example, the laser can emit a short pulse or ultrashort pulse of a picosecond, a nanosecond, a femtosecond or an attosecond. However, the laser can be any suitable continuous or pulsed laser, or any laser that emits a beam in the infrared or visual spectrum.
Preferably, when utilizing this type of frequency laser, a flying spot laser is used, which can be moved though a software program across the inlay to ablate the desired portion of the implant.
To further correct the refractive error in the cornea, a second flap 50 can be formed from the corneal epithelium on the surface 36 of the cornea 12 and a second inlay 52 can be placed under the second flap, a seen in
When alcohol is used, the alcohol loosens the epithelium from the basement membrane, which allows removal of the epithelial layer. Heating the alcohol solution can also loosen the epithelium and facilitate removal. It is noted that any of the herein described solutions, such as the enzyme solutions can also be heated to facilitate removal of the epithelium. Preferably, the alcohol is heated to between about 40° C. and about 50° C., and more preferably to about 47° C. The flap can also be formed to remain at least partially attached to the cornea, as shown in
The second flap 50 is a relatively small flap that preferably at least partially overlies or is concentric about the visual axis or main optical axis 30 and can be attached to the cornea 12 by portion 38. However, the flap can be formed on any portion of the cornea desired and in any suitable manner, such as with alcohol, a knife, blade or laser, as discussed above. It is noted that the location of the flap does not necessarily need to be concentric about the main optical axis and can be at any location on the surface of the eye and may be any size desired.
The flap is preferably pealed or moved away from the surface of the cornea using a suction device, microfoceps, or using any other device known in the art. For a further discussion of the formation of this type of flap, see U.S. patent application Ser. No. 09/843,141, filed Apr. 27, 2001, the entire contents of which are incorporated herein by reference.
Once the flap is moved to expose surfaces 54 and 56, second intracorneal inlay, implant or lens 52 can be positioned adjacent one of the surfaces. As shown in
Implant 52 preferably is formed or a pliable material that conforms to the surface of the eye, and is ablatable by a laser, as described below; however, implant 52 can be formed from any of the materials described above for implant 22, or any other suitable material. For example, implant 52 can be formed from any ablatable polymer, methacrolate and methocrolate gel, acrylic acid, polyvinylprolidine, silicone or a combination of the these materials or a combination of these materials with an organic material, such as collegen, chondrotine sulfate, glycosamine glycon, integrin, vitronectin, fibronnectine and/or mucopoly saccaride. Each of these materials and/or any combination thereof can also be used for implant 22, described above. It should be noted that implant 52 does not necessarily need to be positioned in the cornea after implant 22 and can be positioned in the cornea prior to implant 22.
Furthermore, implant 52 can be a substantially ring-shaped inlay (for the correction of myopia) and can be formed from any of the materials, have any of the configurations and/or dimensions of implant 22.
Implant 52 can have openings or microperforations therein, which permit molecules of oxygen, water, solute and protein to permeate through the inlay with substantially no or no inhibition. Such microperforations are substantially similar to the microperforations described above and any description thereof is applicable to these microperforations.
As seen in
Since each implant has micro perforations, an excimer laser can be readily used to ablate the implants, and will not cause irregularities in the surface. Each implant can be filled with water or glycosamine glycon from the cornea, which will leave similar ablation characteristics as the cornea. In addition, the spot size used for ablation will generally be larger than the diameter of each perforation, and therefore at least a portion of the implant will be ablated. Furthermore, since the corneal epithelium cells are generally larger than the microperforations, the cornea epithelium will straddle the microperforation.
After the procedure, a short-term bandage contact lens may also be used to protect the cornea, and keep the second implant stable. Preferably, the contact covers the implant inlay; however, the contact may be large enough to cover the area defined by each implant and/or either or both flaps.
Additionally, if desired, second implant 52 can be ablated with an excimer laser or any other laser described above for the ablation of the first implant 22. The flap is then positioned over the implant (either ablated or unablated) without tension as described for flap 20, as seen in
By performing the above described procedure using two separate components or inlays, the size or thickness of each inlay can be reduced, which reduces the inhibition of the flow of nutrients through the system in general.
Additionally, the refractive properties of the system can be adjusted after the procedure has been completed. For example, either or both of the inlays can be ablated using a laser after implantation. If desired, the flaps can be reopened and moved to expose the desired inlay, so that the inlay can be ablated directly, or the laser can ablate the inlay through the cornea epithelium. Furthermore, the refractive properties can be altered by replacement of one or both of the inlays. Since the adhesion between the inlays and cornea are not strong in the present procedures, one or both of the inlays can be readily replaced at anytime without the risk of a potential scar on the cornea.
In a further embodiment, second flap 50 can be formed from the corneal epithelium on the surface 24 of the cornea 20 (or in any other suitable portion or layer of the cornea), a seen in
The flap is preferably pealed or moved away from the surface of the cornea using a suction device (not shown), but may be removed using any other device known in the art.
Once the flap is moved to expose surfaces 54 and 56, an excimer laser 62, as seen in
When performing the excimer laser procedures described above, it is possible to simultaneously use wavefront technology or Adaptec optic technology to create a near perfect correction in the eye and to remove all corneal irregularities. By using this technique to correct vision, it is possible to achieve 20/10
vision in the patient's eye or better.
The patient can undergo the second laser ablation, as seen in
Furthermore, at the end of the procedure or before the ablation of the surface of the cornea, topical agents, such as an anti-inflammatory, antibiotics and/or an antiprolifrative agent, such as mitomycin or thiotepa, at very low concentrations can be used over the ablated area to prevent subsequent haze formation. The mitomycin concentration is preferably about 0.005-0.05% and more preferably about 0.02%. A short-term bandage contact lens may also be used to protect the cornea. The short term contact lens specifically protects the portion of the cornea that has flap 50 formed thereon, but also can protect the cornea after any of the above steps in this procedure.
While preferred embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/784,169, filed Feb. 24, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 10/406,558, filed Apr. 4, 2003, which claims the benefit of U.S. Provisional Application Ser. No. 60/449,617, filed Feb. 26, 2003 and is a continuation-in-part of U.S. Application Ser. No. 10/356,730, filed Feb. 3, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 09/843,141, filed Apr. 27, 2001, now U.S. Pat. No. 6,551,307. The entire contents of each of which are herein incorporated by reference. This application is related to U.S. application Ser. No. ______, entitled BIFOCAL IMPLANT AND METHOD FOR ALTERING THE REFRACTIVE PROPERTIES OF THE EYE, filed Apr. 15, 2005, the entire contents of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60449617 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10784169 | Feb 2004 | US |
Child | 11108048 | Apr 2005 | US |
Parent | 10406558 | Apr 2003 | US |
Child | 10784169 | Feb 2004 | US |
Parent | 10356730 | Feb 2003 | US |
Child | 10784169 | Feb 2004 | US |
Parent | 09843141 | Apr 2001 | US |
Child | 10356730 | Feb 2003 | US |