Implant-cinching devices and systems

Information

  • Patent Grant
  • 11832784
  • Patent Number
    11,832,784
  • Date Filed
    Friday, November 13, 2020
    4 years ago
  • Date Issued
    Tuesday, December 5, 2023
    a year ago
Abstract
An annuloplasty implant comprises an elongate member, a plurality of anchors, and a gripper. The elongate member has a proximal end, and a distal portion that includes a distal end. The plurality of anchors are distributed along the elongate member. The elongate member extends proximally from a proximal-most anchor and through the gripper. The gripper comprises a locking element that, in a locked state, inhibits sliding of the elongate member through the gripper. An unlocker, disposed within the gripper, obstructs the locking element from assuming the locked state, and is pullable proximally out of the gripper. The gripper automatically assumes the locked state upon the unlocker being pulled proximally out of the gripper. A tool tensions the distal portion of the elongate member by pulling the elongate member proximally through the gripper while the unlocker obstructs the locking element from assuming the locked state. Other embodiments are also described.
Description
FIELD OF THE INVENTION

Some applications of the present invention relate in general to adjustment of an implant. For example, some applications of the present invention relate to contraction of a cardiovascular implant.


BACKGROUND

Ischemic heart disease can cause valve regurgitation, such as mitral regurgitation by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle that is present in ischemic heart disease, with the displacement of the papillary muscles and the dilatation of the mitral valve annulus.


Dilation of the annulus of the mitral valve (or another valve) can prevent the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium.


Dilation of other regions of the heart, vascular system, and/or other valve annuluses can also result in similar problems, including regurgitation at other valves.


Annuloplasty, such as by implantation of an annuloplasty ring or other annuloplasty device, can be used to improve leaflet coaptation by adjusting the shape of a native valve annulus, e.g., the mitral annulus, tricuspid annulus, etc.


SUMMARY OF THE INVENTION

This summary is meant to provide some examples and is not intended to be limiting of the scope of the invention in any way. For example, any feature included in an example of this summary is not required by the claims, unless the claims explicitly recite the features. Also, the features described can be combined in a variety of ways. The description herein relates to systems, assemblies, methods, devices, apparatuses, combinations, etc. that may be utilized for cinching, tightening, tensioning a medical implant. Various features and steps as described elsewhere in this disclosure may be included in the examples summarized here.


As one example, an adjustment system can include an elongate member. The elongate member can enter into a pouch (e.g., an elastic pouch) at a first part of the pouch, extend through the pouch, and can be connected to a second part of the pouch. The system and its components can be configured such that stretching of the pouch (e.g., elastically stretching the pouch) causes a distance between the first and second parts of the pouch to increase, thereby drawing more of the elongate member into the pouch. The system can include a gripper. The gripper can be disposed at the first part of the pouch, and can be configured such that it can inhibit the elongate member from re-exiting the pouch when the pouch is allowed to re-contract. Therefore, the net result of stretching and releasing the pouch can be reduction of a length of the elongate member that is disposed outside of the pouch.


The elongate member can be attached to or be part of an implant or implant body in a manner that changes a dimension of the implant or implant body when the length of the elongate member that is disposed outside of the pouch is reduced. For some applications, the implant or implant body includes a sleeve that is longitudinally contracted when the length of the elongate member that is disposed outside of the pouch is reduced. For some such applications, the implant or implant body can be an annuloplasty ring structure, other annuloplasty device structure, or other cinchable/tensionable structure, anchored to the native valve annulus (e.g., mitral valve annulus, tricuspid valve annulus, etc.), and longitudinal contraction of the sleeve contracts the native valve annulus. The implant or implant body can have an open or closed (e.g., a closed ring) configuration and can be configured for transvascular or transcatheter implantation and/or surgical implantation.


A system or apparatus for tightening, cinching, or tensioning can include one or more of a gripper, an elastic pouch, and an elongate member. The elastic pouch can have a first part and a second part. The first part can be coupled to the gripper. The elastic pouch can be stretchable into a stretched state in which the pouch defines a stretched distance between the first part and the second part. The elastic pouch can also have a contracted state toward which the pouch is elastically biased, and in which the pouch defines a contracted distance between the first part and the second part, the contracted distance being smaller than the stretched distance. In at least one state of the gripper, the elongate member can be slidable through the gripper and into the pouch.


The system or apparatus above and/or another similar system or apparatus can include one or more of an implant having an implant body, a gripper, coupled to the implant body, an elastic pouch, and an elongate member. The elastic pouch can be coupled to the gripper, have a first part and a second part, be reversibly stretchable into a stretched state in which the pouch defines a stretched distance between the first part and the second part, and/or have a contracted state toward which the pouch is elastically biased, and in which the pouch defines a contracted distance between the first part and the second part, the contracted distance being smaller than the stretched distance.


The elongate member can have a first end portion coupled to the implant body, a second end portion fastened to the second part of the pouch, and a third portion or a mid-portion extending (i) from the second end portion, through the pouch to the first part of the pouch, and (ii) out of the pouch to the first end portion. In at least one state of the gripper, the third portion or mid-portion can be slidable through the gripper and into the pouch.


In an application, the implant or implant body can include an annuloplasty ring structure, other annuloplasty device structure, or other cinchable/tensionable structure.


In an application, the gripper includes a plurality of teeth that provide a gripping surface configured to grip the elongate member.


In an application, the pouch is coupled to the gripper by the first part of the pouch being coupled to the gripper.


In an application, the first part of the pouch defines an opening into the pouch, and in the at least one state of the gripper, the third portion or mid-portion in slidable through the gripper and into the pouch via the opening.


In an application, in at least one state of the gripper, the gripper inhibits sliding of the third portion or mid-portion through the gripper and out of the pouch.


In an application, the at least one state of the gripper includes a unidirectional state in which the gripper facilitates sliding of the third portion or mid-portion through the gripper in a first direction that is into the pouch, and inhibits sliding of the third portion or mid-portion through the gripper in a second, opposite direction that is out of the pouch.


In an application, the gripper has an unlocked state in which the gripper facilitates sliding of the third portion or mid-portion through the gripper in the first direction and in the second direction.


In an application, the gripper includes one or more wheels that, in the unidirectional state, grip the third portion or mid-portion, each of the one or more wheels configured to rotate in only one rotational direction.


In an application, the at least one state of the gripper includes:


an unlocked state in which the gripper facilitates sliding of the third portion or mid-portion through the gripper in a first direction that is into the pouch, and in a second, opposite direction that is out of the pouch, and


a locked state in which the gripper inhibits sliding of the third portion or mid-portion through the gripper in the first direction and in the second direction.


In an application, the apparatus further includes an unlocker, configured to actuate the gripper to transition between the unlocked state and the locked state.


In an application, the unlocker is configured to maintain the gripper in the unlocked state, the gripper being configured to automatically transition into the locked state upon removal of the unlocker from the gripper.


In an application, the unlocker includes a filament, reversibly coupled to the unlocker, and wherein tensioning of the filament transitions the gripper to the unlocked state.


In an application, the unlocker is configured to reversibly actuate the gripper to transition repeatedly between the unlocked state and the locked state.


In an application, the gripper includes a jaw that, in the locked state, clamps onto the third portion or mid-portion, and the unlocker maintains the gripper in the unlocked state by inhibiting the jaw from clamping onto the third portion or mid-portion.


In an application:


the gripper includes a jaw that, in the locked state, clamps onto the third portion or mid-portion, and


the unlocker includes a filament (e.g., a suture or wire), reversibly coupled to the jaw such that tensioning of the filament transitions the gripper into the unlocked state by pulling the jaw away from the third portion or mid-portion.


In an application:


the apparatus further includes a guide member that defines the unlocker at a distal end of the guide member,


the apparatus further includes an adjustment-facilitating tool that includes a tensioning element that is reversibly couplable to the pouch, such that while coupled to the pouch, application of a proximally-directed force to the tensioning element stretches the pouch into its stretched state, and


the adjustment-facilitating tool is advanceable along the guide member to the implant subsequent to implantation of the implant.


In an application, the apparatus further includes an adjustment-facilitating tool that includes a tensioning element that is reversibly couplable to the pouch, such that while coupled to the pouch, application of a proximally-directed force to the tensioning element stretches the pouch into its stretched state.


In an application, the apparatus further includes a guide member, reversibly coupled to the implant, and the adjustment-facilitating tool is advanceable along the guide member to the implant subsequent to implantation of the implant.


In an application, the adjustment-facilitating tool further includes a pressing element, slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of a distally-directed force to the pressing element presses the pressing element against the implant.


In an application, the pressing element maintains coupling between the tensioning element and the pouch, and withdrawal of the pressing element decouples the tensioning element from the pouch.


In an application, the pressing element is disposed coaxially around the tensioning element.


In an application, the tensioning element is disposed coaxially around the pressing element.


In an application, the pressing element is slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of the distally-directed force to the pressing element presses the pressing element against the implant body.


In an application, the pressing element is slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of the distally-directed force to the pressing element presses the pressing element against the gripper.


In an application, the pressing element is slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of the distally-directed force to the pressing element presses the pressing element against an inner surface of the pouch.


In an application, the implant further includes a coupling that is attached to the pouch, and to which the adjustment-facilitating tool is reversibly couplable.


In an application, stretching of the pouch into the stretched state contracts the implant body.


In an application, the implant body includes a fabric sleeve that defines a circumferential wall that defines a lumen, the elongate member extends along the sleeve to where the first end portion of the elongate member is coupled to the sleeve, and stretching of the pouch into the stretched state longitudinally contracts the sleeve.


In an application, the apparatus further includes a plurality of anchors, and each anchor of the plurality of anchors:


includes a tissue-coupling element and a tool-engaging head fastened to one end of the tissue-coupling element, and


is configured to be intracorporeally delivered into the lumen of the sleeve, and to anchor the sleeve to the tissue of the subject by the tissue-coupling element being driven through the circumferential wall and into the tissue.


In one embodiment, a system or apparatus can include one or more of an implant, a gripper, an elastic pouch, and an elongate member. The elastic pouch can have a first part and a second part, the first part being coupled to the gripper. The elastic pouch can be reversibly stretchable into a stretched state in which the pouch defines a stretched distance between the first part and the second part. The elastic pouch can have a contracted state toward which the pouch is elastically biased, and in which the pouch defines a contracted distance between the first part and the second part, the contracted distance being smaller than the stretched distance. In at least one state of the gripper, the elongate member is slidable through the gripper and into the pouch. The elongate member can have an end portion that is fastened to the second part of the pouch, such that, in at least the one state of the gripper, stretching of the pouch into the stretched state pulls the elongate member through the gripper and into the pouch.


In an application, the gripper includes a plurality of teeth that provide a gripping surface configured to grip the elongate member.


In an application, the first part of the pouch defines an opening into the pouch, and in the at least one state of the gripper, the elongate member in slidable through the gripper and into the pouch via the opening.


In an application, in at least one state of the gripper, the gripper inhibits sliding of the elongate member through the gripper and out of the pouch.


In an application, the at least one state of the gripper includes a unidirectional state in which the gripper facilitates sliding of the elongate member through the gripper in a first direction that is into the pouch, and inhibits sliding of the elongate member through the gripper in a second, opposite direction that is out of the pouch.


In an application, the gripper has an unlocked state in which the gripper facilitates sliding of the elongate member through the gripper in the first direction and in the second direction.


In an application, the gripper includes one or more wheels that, in the unidirectional state, grip the elongate member, each of the one or more wheels configured to rotate in only one rotational direction.


In an application, the at least one state of the gripper includes:


an unlocked state in which the gripper facilitates sliding of the elongate member through the gripper in a first direction that is into the pouch, and in a second, opposite direction that is out of the pouch, and


a locked state in which the gripper inhibits sliding of the elongate member through the gripper in the first direction and in the second direction.


In an application, the apparatus further includes an unlocker, configured to maintain the gripper in the unlocked state, the gripper configured to automatically transition into the locked state upon removal of the unlocker from the gripper.


In an application, the gripper includes a jaw that, in the locked state, clamps onto the elongate member, and the unlocker maintains the gripper in the unlocked state by inhibiting the jaw from clamping onto the elongate member.


In an application:


the apparatus further includes a guide member that defines the unlocker at a distal end of the guide member,


the apparatus further includes an adjustment-facilitating tool that includes a tensioning element that is reversibly couplable to the pouch, such that while coupled to the pouch, application of a proximally-directed force to the tensioning element stretches the pouch into its stretched state, and


the adjustment-facilitating tool is advanceable along the guide member to the implant subsequent to implantation of the implant.


In an application, the apparatus further includes an adjustment-facilitating tool that includes a tensioning element that is reversibly couplable to the pouch, such that while coupled to the pouch, application of a proximally-directed force to the tensioning element stretches the pouch into its stretched state.


In an application, the apparatus further includes a guide member, reversibly coupled to the implant, and the adjustment-facilitating tool is advanceable along the guide member to the implant subsequent to implantation of the implant.


In an application, the adjustment-facilitating tool further includes a pressing element, slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of a distally-directed force to the pressing element presses the pressing element against the implant.


In an application, the pressing element maintains coupling between the tensioning element and the pouch, and withdrawal of the pressing element decouples the tensioning element from the pouch.


In an application, the pressing element is disposed coaxially around the tensioning element.


In an application, the tensioning element is disposed coaxially around the pressing element.


In an application, the pressing element is slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of the distally-directed force to the pressing element presses the pressing element against the implant body.


In an application, the pressing element is slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of the distally-directed force to the pressing element presses the pressing element against the gripper.


In an application, the pressing element is slidably coupled to the tensioning element such that, while the tensioning element is coupled to the pouch, application of the distally-directed force to the pressing element presses the pressing element against an inner surface of the pouch.


In an application, the implant further includes a coupling that is attached to the pouch, and to which the adjustment-facilitating tool is reversibly couplable.


Various methods of using the systems and apparatuses described herein are possible. For example, a method for use with an implant having an implant body and a pouch, can include one or more of the following steps:


implanting the implant in a heart of a subject; and


contracting the implant body by stretching the pouch into a stretched state by pulling on part of the pouch using a tensioning element.


In an application, implanting the implant includes transluminally delivering the implant and anchoring the implant to a valve annulus of the heart, and contracting the implant body includes transluminally contracting the implant.


In an application, implanting the implant includes transluminally delivering a plurality of anchors to the implant, and sequentially driving the anchors through the implant body and into tissue of the heart.


In an application, the implant body can include an annuloplasty ring structure, other annuloplasty device structure, or other cinchable/tensionable structure, and implanting the implant can include anchoring the implant body (e.g., the annuloplasty ring structure, or other structure) to an annulus.


In an application, contracting the implant body includes stretching the pouch into the stretched state by pulling on the part of the pouch using the tensioning element, while simultaneously providing an opposing force via a pressing element that abuts the implant.


In an application, the method further includes advancing the tensioning element to the implant subsequently to implanting the implant, and prior to contracting the implant.


In an application, advancing the tensioning element to the implant includes advancing the tensioning element over a guide member that is reversibly coupled to the implant.


In an application, the method further includes decoupling the guide member from the implant subsequently to advancing the tensioning element to the implant.


In an application, the method further includes, subsequently to stretching the pouch into the stretched state, allowing the pouch to elastically contract toward a contracted state without reversing the contraction of the implant body.


In an application, the implant includes an elongate member and a gripper, the elongate member extending from the part of the pouch, though the gripper, and into the implant body, and contracting the implant body includes drawing the elongate member through the gripper and into the pouch by stretching the pouch into the stretched state.


In an application, the method further includes, subsequently to stretching the pouch into the stretched state, allowing the pouch to elastically contract toward a contracted state without allowing the elongate member to move back out of the pouch and through the gripper.


In an application, drawing the elongate member through the gripper and into the pouch includes drawing the elongate member through the gripper and into the pouch while maintaining the gripper in an unlocked state.


In an application, the method further includes, subsequently to drawing the elongate member through the gripper and into the pouch, transitioning the gripper into a locked state.


In an application, transitioning the gripper into the locked state includes removing an unlocker from the gripper such that the gripper automatically transitions into the locked state.


Additional components/features and additional steps described elsewhere herein can also be used in the examples above.


The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-C are schematic illustrations of an adjustment system, in accordance with some applications of the invention;



FIGS. 2A-D and 3A-D are schematic illustrations of respective embodiments of an adjustment-facilitating tool being used with the adjustment system to adjust an implant, in accordance with some applications of the invention;



FIGS. 4A-D are schematic illustrations of the use of a guide member to advance the adjustment-facilitating tool to the implant, in accordance with some applications of the invention; and



FIGS. 5, 6A-B, and 7A-B are schematic illustrations of respective embodiments of a gripper, in accordance with some applications of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

Reference is made to FIGS. 1A-C, which are schematic illustrations of an adjustment system 20, in accordance with some applications of the invention.


System 20 can comprise an implant 22 that comprises an implant body 24, and the system is for adjustment of the implant body. The implant 22 and/or implant body 24 shown can take a variety of forms and those depicted in the various figures herein are merely exemplary. For some applications, and as generally described herein, implant body 24 can be an annuloplasty ring structure, annuloplasty/annulus adjustment structure, other annuloplasty device structure, or other cinchable/tensionable structure. Implant body 24 can comprise a flexible sleeve 25 that has a wall or circumferential wall (e.g., which can be made of a fabric, such as a polyethylene terephthalate fabric, e.g., Dacron™) that circumscribes a longitudinal axis of the sleeve, thereby defining a longitudinal lumen. System 20 (e.g., implant 22 thereof) can further comprise an elongate member 26. Elongate member 26 can comprise one or more strands of metal or polymer, optionally coated with a low-friction coating, such as polytetrafluoroethylene (PTFE). Implant body 24 can be configured to be placed partially or completely around a cardiac valve annulus 10 (e.g., a mitral valve annulus, tricuspid valve annulus, etc.). Implant body 24 can be secured or anchored in place at the valve annulus in a variety of ways, including by suturing the implant body 24 to the valve annulus, e.g., by parachuting similar to a surgical annuloplasty ring or otherwise. Implant body 24 can be configured to be anchored in place using a plurality of (e.g., 5-20) tissue anchors 32. The tissue anchors 32 can have a variety of features, for example, each tissue anchor 32 can comprise a tissue-coupling element 34, and a tool-engaging head 36 fastened to one end of the tissue-coupling element. Following introduction of implant body 24 into the subject, each anchor 32 can be sequentially intracorporeally delivered into the lumen of the sleeve, and its tissue-coupling element 34 can be driven from the interior lumen or from one side through the circumferential wall and into tissue of the valve annulus, thereby anchoring the implant body 24 or sleeve to the valve annulus. After the implant 22 and/or implant body 24 are secured or anchored to the valve annulus, longitudinal contraction of implant body 24, facilitated by system 20, can be used to circumferentially tighten the valve annulus, thereby improving coaptation of the valve leaflets, and reducing regurgitation.


For some applications, the implant structure of implant body 24 can be, or share features with, mutatis mutandis, any of the implant structures described in one or more of the following publications, which are incorporated herein by reference. The relevant features of the system herein may be substituted for adjustment features in these references. For some applications, implant 22 is implanted as described in one or more of these publications, mutatis mutandis:

  • PCT application publication WO 2010/128503 to Zipory et al.
  • PCT application publication WO 2012/176195 to Gross et al.
  • PCT application publication WO 2013/069019 to Sheps et al.
  • PCT application publication WO 2014/064694 to Sheps et al.
  • U.S. Pat. No. 8,926,696 to Miller et al.
  • U.S. Pat. No. 8,353,956 to Miller et al.



FIGS. 1A-C illustrate a generalization of system 20. More specific embodiments are described with reference to later figures.


Implantable apparatus or system 20 can comprise a gripper 40 and a pouch 50 (e.g., an elastic pouch) or other container. Pouch 50 can have a first part 54 and a second part 56, and has a contracted state (see FIGS. 1A and 1C) toward which the pouch is biased (e.g., elastically biased, shape-memory biased, etc.). The pouch 50 can have one or multiple contracted states. In the contracted state, the pouch can be configured to define a contracted distance d1 between the first part and the second part. Pouch 50 can be reversibly stretchable into a stretched state (FIG. 1B) in which the pouch defines a stretched distance d2 between first part 54 and second part 56. Distance d1 is smaller than distance d2. For example, distance d1 may be 1-12 mm (e.g., 1-7 mm, such as 2-6 mm), whereas distance d2 may be 20-100 mm (e.g., 30-80 mm, such as 40-70 mm).


Implantable apparatus or system 20 can also include an elongate member 26 that can extend into the pouch 50. Elongate member can be arranged such that it extends through a gripper 40, and then into pouch 50 via an opening 52. Opening 52 can be defined by second part 56 of the pouch. A first end portion 27 of elongate member 26 can be coupled to implant body 24. A second end portion 29 of elongate member 26 can be fastened to first part 54 of the pouch. Second part 56 can be defined by the location of opening 52, and first part 54 can be defined by the location of the fastening of elongate member 26 to pouch 50.


A third portion or mid-portion 28 of elongate member 26 can be between end portions 27 and 29. Mid-portion or third portion 28 can extend through gripper 40. Gripper 40 is configured (i) to facilitate tensioning of the elongate member, and (ii) to subsequently maintain the tension on the elongate member. As described in more detail hereinbelow, gripper 40 can have at least one state in which third portion or mid-portion 28 is slidable through the gripper and into pouch 50 via opening 52. For example, gripper 40 may facilitate one-way sliding of portion 28 therethrough. Alternatively or additionally, gripper 40 can have (i) an unlocked state in which it facilitates sliding of portion 28 therethrough, and (ii) a locked state in which it inhibits the sliding of the third portion or mid-portion.


Implantable apparatus or system 20 can also comprise an implant 22. FIG. 1A shows implant 22 subsequent to its implantation, and before its adjustment (i.e., contraction). Pouch 50 is shown in a contracted state (e.g., relaxed state). FIG. 1B shows pouch 50 having been reversibly stretched into a stretched state. Because second end portion 29 is fastened to first part 54, this stretching pulls on elongate member 26, drawing it (e.g., third portion or mid-portion 28 thereof) through gripper 40 and opening 52, into pouch 50, thereby longitudinally contracting implant body 24, e.g., by reducing the length of the elongate member disposed within the implant body. For applications in which implant body 24 is an annuloplasty ring structure or other annuloplasty device structure implanted around the valve annulus (e.g., all or a portion thereof), this longitudinal contraction circumferentially tightens the valve annulus, thereby improving coaptation of the valve leaflets, and reducing or eliminating regurgitation. It is to be understood that, during this step, gripper 40 can be in at least one state in which portion 28 is slidable through the gripper and into pouch 50 via opening 52. Optionally, pouch 50 and gripper 40 can be integral with or separate from implant 22. The implants or implant bodies described herein can have an open or closed (e.g., a closed ring) configuration and can be configured for transvascular or transcatheter implantation and/or surgical implantation.



FIG. 1B does not show how pouch 50 is stretched. Some examples of techniques for stretching pouch 50 are described in further detail hereinbelow. However, FIG. 1B does show a coupling 58 via which a tool is couplable to pouch 50 for stretching (e.g., pulling on) the pouch. For some applications, and as shown throughout this patent application, second end portion 29 of elongate member 26 can be fastened to first part 54 of pouch 50 by being fastened to coupling 58. The position of coupling 58 may thereby define or be first part 54 of pouch 50.


Subsequently, pouch 50 is allowed to return toward its contracted state (FIG. 1C), but gripper 40 can be designed or configured to inhibit or prevent elongate member 26 from sliding back through gripper 40 and into implant body 24. For example, and as described hereinbelow, gripper 40 may only facilitate one-way movement of member 26 therethrough, or may have been locked subsequently to the stretching of pouch 50. Because elongate member 26 is inhibited or prevented from sliding back through gripper 40, implant body 24 remains in its reduced length, and the valve annulus remains at its repaired size.


For some applications, pouch 50 can be made from or comprise an elastomer. For some applications, pouch 50 can comprise one or more strands of elastic and/or shape memory material such as Nitinol, e.g., optionally, threaded into the pouch so as to provide the pouch with its elastic nature.


Pouch 50 is typically distinct from an inflatable balloon. For some applications, pouch 50 can be partially permeable, allowing blood (or components thereof) to enter the pouch over time, and facilitating clotting and/or tissue growth therein. It is believed that this may facilitate maintenance of the tension applied to elongate member 26, and thereby maintenance of the contraction of implant body 24.


For some applications, pouch 50 can be impermeable to blood and/or components thereof. It is believed that this may facilitate readjustment of implant 22 subsequent to its implantation and initial contraction.


While a pouch might not be used, the pouch is beneficial to contain and restrict movement of any excess portion of the elongate member. For example, in the absence of pouch 50 (e.g., adjustment by pulling directly on end portion 29), the resulting excess 30 of elongate member 26 outside of implant body 24 may disadvantageously move freely within the body (e.g., within left atrium 6), with potentially deleterious effects. The elastic return of pouch 50 to its contracted state can compress excess 30 of elongate member 26, such that it is tidily confined. It is believed that this can advantageously avoid excess 30 being free within the heart, while obviating a potential need to remove (e.g., by cutting) excess 30.


For some applications, pouch 50, gripper 40, and implant body 24 can be coupled together such that, from proximal end portion 29, until at least implant body 24, elongate member 26 is not exposed to the body of the subject. That is, the pouch and gripper isolate the elongate member from the body of the subject. For some applications, more distal portions of elongate member 26 are exposed to the body of the subject, e.g., if elongate member 26 weaves in and out of implant body 24 (e.g., the circumferential wall of sleeve 25).


Although system 20 is generally described herein as including implant 22, it is to be noted that the scope of the invention does not require the system 20 to include the implant or any other component. For example, system 20 may be provided alone or unattached or uncombined with an implant, such that it can be later attached to and/or used with a different implant, e.g., a third-party implant. In one embodiment, system 20 can comprise pouch 50, gripper 40, elongate member 26, and one or more anchors attached to the elongate member, e.g., without a separate implant body.


Reference is made to FIGS. 2A-D and 3A-D, which are schematic illustrations of exemplary embodiments of adjustment-facilitating tool 60 being used with system 20 to adjust (e.g., contract) implant 22, in accordance with some applications of the invention. Various embodiments of tool 60 can comprise a tensioning element 62, and/or can comprise a pressing element 64.


The use of common reference numerals is intended to indicate commonality between elements of different embodiments, e.g., whereby an element of one embodiment serves the same primary function as the corresponding element of another embodiment. Suffixes (e.g., a, b, etc.) are used to uniquely identify the elements of a particular embodiment. For example, the embodiments of FIGS. 2A-D and 3A-D are depicted as each including a tool 60 (tools 60a and 60b, respectively) that comprises a tensioning element 62 (elements 62a and 62b). Despite the described differences between tools 60a and 60b, and between elements 62a and 62b, both tools are used to contract their respective implant 22, and both tensioning elements are coupled to their respective pouch 50, and are used to apply a proximally-directed force to (i.e., to pull on) the pouch to stretch it.



FIGS. 2A-D show an exemplary embodiment in which a tool 60a (an embodiment of tool 60) comprises a tensioning element 62a (an embodiment of tensioning element 62) and a pressing element 64a (an embodiment of pressing element 64), and an implant 22a (which can be the same as or similar to implant 22 or can be any implant that requires cinching or tightening from a remote or removed location) comprises a gripper 40a (an embodiment of gripper 40), an elastic pouch 50a (an embodiment of pouch 50), and a coupling 58a (an embodiment of coupling 58).


For some applications, implant 22 (e.g., implant 22a) can be delivered and implanted while at least part of tool 60 (e.g., tool 60a) is coupled to the implant. For example, implant 22a can be delivered and implanted while (i) tensioning element 62a is coupled to coupling 58a, and (ii) pressing element 64a abuts implant body 24. Alternatively, implant 22a can be delivered and implanted while (i) tensioning element 62a is coupled to coupling 58a, and (ii) pressing element 64a is proximal to the implant (e.g., within a delivery catheter or outside of the subject), and is subsequently advanced over and along the tensioning element to the implant. Optionally, another arrangement could also be used.


For some applications, implant 22 (e.g., implant 22a) is delivered and implanted without tool 60 (e.g., tool 60b) coupled to the implant, and one or more components of the tool are subsequently advanced to the implant (e.g., over and along a dedicated guide wire or guide member) and coupled to the implant, e.g., as described with reference to FIGS. 4A-D, mutatis mutandis.


While tensioning element 62a is coupled to coupling 58a, the tensioning element can be pulled proximally to reversibly stretch pouch 50a. Stretching the pouch can draw elongate member 26 (e.g., portion 28 thereof) through gripper 40a and into the pouch (FIG. 2B). This can be performed while pressing element 64 provides an opposing force against implant 22 (e.g., against implant body 24) in order that the pulling not pull the implant away from the tissue at which it is implanted. Pressing element 64a can be tubular and/or configured in a variety of shapes. Pressing element 64a can be disposed around tensioning element 62a (e.g., coaxially). Pressing element 64a or at least at its distal end can be wider than pouch 50a, such that it can press against the implant without interfering with the stretching of the pouch. Optionally, the pressing element could be configured to pass to one or more sides of the pouch to contact the implant, e.g., without surrounding the pouch.


After the implant and/or implant body 24 has been sufficiently contracted—which can be determined by imaging of the implant (e.g., using fluoroscopy, etc.), the anatomy, and/or blood flow (e.g., using echocardiography, ultrasound, etc.)—pouch 50a can be allowed to return to its contracted state (FIG. 2C). Gripper 40a can be configured to inhibit elongate member 26 from sliding back through the gripper and into implant body 24. For example, the gripper 40a and/or other grippers described herein can have friction resistance, a latch, valve, clamp, etc. that can allow movement of the member in one direction, but not the other direction. Tool 60a can be decoupled from implant 22a (e.g., element 62a can be decoupled from coupling 58a), and withdrawn from the subject (FIG. 2D). For some applications, and as shown, pouch 50a is allowed to return to its contracted state by moving element 62a distally, and/or by releasing tension on element 62a such that the elastically-contracting pouch pulls element 62a distally. For some applications, pouch 50a is allowed to return to its contracted state by decoupling tool 60a, including moving element 62a, from implant 22a, e.g., skipping the step shown in FIG. 2C.



FIGS. 3A-D show an embodiment in which a tool 60b (an embodiment of tool 60) comprises a tensioning element 62b (an embodiment of tensioning element 62) and a pressing element 64b (an embodiment of pressing element 64), and an implant 22b (e.g., the same as or similar to implant 22, 22a or any implant that needs to be contracted or tensioned) comprises a gripper 40b (an embodiment of gripper 40), an elastic pouch 50b (an embodiment of pouch 50), and a coupling 58b (an embodiment of coupling 58).


For some applications, implant 22b is delivered and implanted while at least part of tool 60b is coupled to the implant. For example, implant 22b can be delivered and implanted while tensioning element 62b is coupled to coupling 58b. Optionally, implant 22a can be delivered and implanted while (i) pressing element 64b is coupled to the implant (e.g., to gripper 40b thereof), and (ii) tensioning element 62b is proximal to the implant (e.g., within a delivery catheter or outside of the subject), and is subsequently advanced over and along the pressing element to the implant.


For some applications, implant 22b is delivered and implanted without tool 60b coupled to the implant, and one or more components of the tool are subsequently advanced to the implant (e.g., over and along a dedicated guide wire or guide member) and coupled to the implant, e.g., as described with reference to FIGS. 4A-D, mutatis mutandis.


While tensioning element 62b is coupled to coupling 58b, the tensioning element can be pulled proximally to reversibly stretch pouch 50b. Stretching pouch 50b can draw elongate member 26 (e.g., portion 28 thereof) through gripper 40b and into the pouch (FIG. 3B). This can be performed while pressing element 64b provides an opposing force against implant 22b in order that the pulling not pull the implant away from the tissue at which it is implanted. In contrast to the arrangement of elements 62a and 64a as shown in FIGS. 2A-2D, tensioning element 62b is depicted as being tubular and disposed around pressing element 64b (e.g., coaxially). Pressing element 64b can be configured and arranged to extend distally from tensioning element 62b, and through pouch 50b, e.g., such that is abuts and presses against the inner surface of the pouch and/or against gripper 40b, and such that it can provide the opposing force without interfering with the stretching of the pouch. Coupling 58b can be shaped to define an opening through which pressing element 64b extends or can extend into pouch 50b. When pouch 50b is stretched, coupling 58b can slide proximally along pressing element 64b.


After the implant 22 and/or implant body 24 has been sufficiently contracted, pouch 50b is allowed to return to its contracted state (FIG. 3C). Gripper 40b can be the same as or similar to other grippers described herein and can be configured to inhibit elongate member 26 from sliding back through the gripper and into implant body 24. Tool 60b can be decoupled from implant 22b (e.g., element 62b can be decoupled from coupling 58b), and withdrawn from the subject (FIG. 3D). For some applications, and as shown, pouch 50b can be allowed to return to its contracted state by moving element 62b distally, and/or by releasing tension on element 62b such that the elastically-contracting pouch pulls element 62b distally. For some applications, pouch 50b is allowed to return to its contracted state by decoupling tool 60b, including element 62b, from implant 22b, e.g., skipping the step shown in FIG. 3C.


For some applications, pressing element 64 maintains the coupling between tensioning element 62 and coupling 58. For example, with reference to FIGS. 3A-D, the presence of pressing element 64b within coupling 58b may hold a detent 66 defined by tensioning element 62b within a recess 68 defined by coupling 58b (or a detent defined by the coupling within a recess defined by the tensioning element). For example, the pressing element and/or detent can be configured or designed such that, upon removal of the pressing element, the detent automatically retracts from the recess, decoupling the tensioning element from the coupling.


Reference is again made to FIGS. 2A-D and 3A-D. Optionally, tool 60 can comprise an extracorporeal controller (not shown), which can comprise at least one handle, at the proximal end of elements 62 and 64. For some applications, the length of elongate member 26 (e.g., of portion or mid-portion 28) that slides proximally through gripper 40 and into pouch 50 is proportional (e.g., equal) to the amount by which implant body 24 contracts. Therefore, for some applications, the length by which implant body 24 contracts can be proportional (e.g., equal) to the distance moved by tensioning element 62 relative to pressing element 64. For some such applications, the amount of contraction of implant body 24 can be indicated by control members of the extracorporeal controller. For example, actuation of a control member (e.g., turning of one or more knobs) may cause movement between elements 62 and 64, and the amount that the control member has been actuated (e.g., the amount that the one or more knobs have been turned) can be indicated by a dial. For example, thereby indicating the amount of relative movement between elements 62 and 64, and thereby the amount of contraction of implant body 24.


Reference is now made to FIGS. 4A-D, which are schematic illustrations of the use of a guide member 70 (e.g., which can be a guide wire or other guide) to advance adjustment-facilitating tool 60 to implant 22 and/or to pouch 50, in accordance with some applications of the invention. For some applications, the implant can be implanted without an adjustment tool (e.g., tool 60) coupled thereto, and the tool can be subsequently advanced to the implant in order to adjust the implant. For such applications, implant 22 can be implanted with a guide member 70 coupled thereto (FIG. 4A). Subsequent to implantation, tool 60 can be advanced along (optionally over) guide member 70 (FIG. 4B), then tensioning element 62 can be coupled to pouch 50 (e.g., via coupling 58). Tool 60 can then be used to adjust implant 22 (e.g., to longitudinally contract the implant), e.g., by reversibly stretching pouch 50 (FIG. 4C). Pouch 50 can then be allowed to return to its contracted state, and tool 60 can be decoupled from implant 22 (FIG. 4D). As shown, guide member 70 can be decoupled from implant 22 subsequent to adjustment of the implant. This can be achieved by any suitable technique, such as unscrewing, unlocking a lock, etc., and can be performed using tool 60.


For some applications, guide member 70 is coupled to implant 22 at coupling 58. For some applications, guide member 70 is coupled to implant 22 at gripper 40 (e.g., as described with reference to FIGS. 6A-B). For some such applications, guide member 70 extends through pouch 50 to gripper 40. Other coupling options are also possible.


Reference is now made to FIGS. 5, 6A-B, and 7A-B which are schematic illustrations of exemplary embodiments of gripper 40. As described hereinabove, gripper 40 can allow for unidirectional movement/sliding or have at least one state in which third portion or mid-portion 28 of elongate member 26 is slidable through the gripper and into pouch 50 via opening 52. The gripper 40 can be configured such that the portion 28 and/or elongate member 26 is not slidable from the pouch back in to the implant. For example, gripper 40 may facilitate only one-way sliding of portion 28 therethrough. Optionally, it is also possible to configure gripper 40 to allow movement or sliding of the portion 28 and/or elongate member 26 into and out of the gripper 40 in both directions until the gripper is locked, clamped, or otherwise secured to prevent movement or sliding of the portion 28 and/or elongate member 26 therethrough. For example, gripper 40 may have (i) an unlocked state in which it facilitates sliding of portion 28 therethrough, and (ii) a locked state in which it inhibits the sliding of the portion/mid-portion.



FIG. 5 shows an exemplary embodiment 80 of gripper 40, which has a unidirectional state in which the gripper facilitates one-way sliding of portion 28 therethrough. Gripper 80 can comprise one or more wheels 82, each wheel comprising a gripping surface 84 (e.g., comprising a plurality of teeth or comprising other frictional element(s)) that can grip portion 28. Wheels 82 can be configured to rotate in only one rotational direction, and thereby facilitate movement of portion 28 in a first direction through the gripper into pouch 50, but not in a second direction through the gripper out of the pouch. For example, gripper 80 may comprise a pawl 86 that allows rotation of wheel 82 in only one rotational direction. Optionally, the one or more wheels could be configured to allow rotation in both directions until locked or secured to prevent further movement.



FIGS. 6A and 6B show an exemplary embodiment 100 of gripper 40 in which the gripper has (i) an unlocked state in which it facilitates sliding of portion 28 in either direction therethrough, and (ii) a locked state in which it inhibits the sliding of the portion in either direction. Optionally, the gripper can be biased to assume the locked state.


For some applications, gripper 100 can comprise at least one locking element 102 (e.g., a jaw, latch, contact edge, etc.) that, in the locked state, clamps onto portion 28 or elongate member 26. The jaw 102 (or other locking element) can have a gripping surface 104, such as one or more teeth or other frictional feature(s), that frictionally engages or grips portion 28 when the locking element or jaw contacts or clamps onto the portion of elongate member 26.


The system can also comprise an unlocker 110, which can be configured to maintain the gripper in an unlocked state. Optionally, gripper 100 can be configured to automatically transition into a locked state upon removal of unlocker 110 from the gripper. As shown, for example, in FIGS. 6A and 6B, unlocker 110 can be shaped to define a partial tube that inhibits (e.g., obstructs) jaw 102 (or other locking element) from clamping on to portion 28 and allows the portion to slide through the cavity defined by the partial tube. Because the unlocker defines only a partial tube, it is not threaded onto elongate member 26, and can therefore be removed from the implant after the gripper is locked. Unlocker 110 thereby serves as an actuator of gripper 100 (e.g., of jaw 102 thereof), via which the gripper is transitionable between its unlocked and locked states.


For some applications, and as shown, unlocker 110 can be defined by, or can be coupled to, the distal end of guide member 70. For such applications, guide member 70 can continue distally past coupling 58 and into pouch 50. Optionally, unlocker 110 can be distinct from guide member 70, and/or can be used in systems that do not include guide member 70.



FIGS. 7A and 7B show another exemplary embodiment 120 of gripper 40 in which the gripper has (i) an unlocked state in which it facilitates sliding of portion 28 in either direction therethrough, and (ii) a locked state in which it inhibits the sliding of the portion in either direction. Gripper 120 is typically identical to gripper 100 except where noted.


Gripper 120 is configured to be transitioned between its locked and unlocked states via an unlocker 130, which thereby serves as an actuator of gripper 120 (e.g., of jaw 102 thereof). In contrast to unlocker 110, unlocker 130 actuates gripper 120 by pulling on jaw 102, thereby pulling the jaw away from mid-portion 28 of elongate member 26. Unlocker 130 is reversibly coupled to jaw 102, such that when the unlocker is pulled proximally (e.g., tensioned), the jaw is opened, thereby transitioning the gripper into its unlocked state. The gripper can be biased to assume the locked state (e.g., in the absence of pulling by unlocker 130).


For some applications, and as shown, unlocker 130 comprises a filament (e.g., a wire or suture), and is reversibly coupled to jaw 102 by being looped around part of the jaw. For example, and as shown, the filament may be coupled to the jaw by being looped through an eyelet 122 that is coupled to or defined by the jaw. For some such applications, both ends of the filament are disposed outside of the heart (e.g., outside of the subject), and the unlocker is tensioned by pulling on both ends. For some such applications, decoupling of the unlocker from the gripper is achieved by releasing one end of the filament and pulling on the other end of the filament, causing the released end to travel toward the jaw and through the eyelet, thereby unthreading the filament from the eyelet.


For some applications, and as shown, unlocker 130 (e.g., proximal portions thereof) also serve as guide member 70, e.g., as described hereinabove, mutatis mutandis. This may alternatively be viewed as the unlocker being defined at a distal end of the guide member.


The use of unlocker 130 allows gripper 120 to be reversibly locked (e.g., locked, unlocked, and relocked), thereby further facilitating controlled contraction of the implant.


Other grippers described or shown herein can also include an unlocker, for example, gripper 80 can also have an unlocked state, and can be provided with an unlocker that inhibits wheels 82 from engaging portion 28 in one position and can be moved to another position to allow wheels 82 to engage portion 28.


The gripper 40 is not limited to what has been particularly shown and described hereinabove. For example, although gripping surfaces 84 and 104 are both shown as comprising teeth, other gripping surfaces (e.g., high friction surfaces) may be used. For some applications, the gripper can comprise a radially-contracting element (e.g., a helical spring) that is configured to grip the elongate member by being biased to radially contract, e.g., upon removal of an unlocker.


Grippers 40, 80, 100, and 120 etc. can be used in combination with any of the implants described herein, mutatis mutandis. For example, gripper 40a of implant 22a, or gripper 40b of implant 22b, can comprise gripper 80, 100, 120, or another gripper, mutatis mutandis. The grippers may alternatively or additionally be used to facilitate tensioning of, and/or maintenance of tension on, elongate members of other implants, including implants that do not comprise pouch 50. Such implants include adjustable annuloplasty bands, adjustable annuloplasty rings, and adjustable prosthetic chordae tendineae.


The present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description. Methods can include steps described above in various orders and combinations. Features and characteristics of one embodiment can be combined or incorporated into other embodiments.

Claims
  • 1. Apparatus for use at a valve of a heart of a subject, the apparatus comprising: an annuloplasty implant, configured for transluminal delivery to the valve, and comprising: an elongate member having a proximal end, and a distal portion that includes a distal end of the elongate member;a plurality of anchors, distributed along the elongate member, the plurality of anchors including a distal-most anchor and a proximal-most anchor; anda gripper, the elongate member extending proximally from the proximal-most anchor and through the gripper, the gripper comprising a locking element that, in a locked state thereof, inhibits sliding of the elongate member through the gripper by clamping the elongate member;an unlocker disposed within the gripper such that the unlocker obstructs the locking element from assuming the locked state, andwherein the unlocker is removable from the gripper by proximal pulling of the unlocker out of the gripper, the gripper being configured to automatically assume the locked state upon removal of the unlocker from the gripper; anda tool, transluminally advanceable toward the gripper, and configured to tension at least the distal portion of the elongate member by pulling the elongate member proximally through the gripper while the unlocker obstructs the locking element from assuming the locked state.
  • 2. The apparatus according to claim 1, wherein the unlocker is shaped to define a partial tube.
  • 3. The apparatus according to claim 1, wherein: the implant further comprises a container, coupled to the gripper, andthe tool is configured to, after tensioning the elongate member, release the elongate member such that a proximal portion of the elongate member, disposed proximally from the gripper, is confined by the container.
  • 4. The apparatus according to claim 3, wherein the container is configured to allow blood to enter the container, and to reach the proximal portion of the elongate member disposed therein.
  • 5. The apparatus according to claim 3, wherein the container is a pouch.
  • 6. The apparatus according to claim 3, wherein: the container has a first state and a second state, andthe tool is configured to: maintain the container in the first state, andafter releasing the elongate member, trigger the container to transition into the second state, the proximal portion of the elongate member confined by the container in the second state.
  • 7. The apparatus according to claim 6, wherein the tool is configured to reversibly engage the container.
  • 8. The apparatus according to claim 6, wherein the container is elastic, the first state is a stretched state, and the second state is a contracted state.
  • 9. The apparatus according to claim 6, wherein the container is elastically biased to assume the second state.
  • 10. The apparatus according to claim 6, wherein the container comprises a shape memory material that configures the container to assume the second state.
  • 11. A method for use at a valve disposed between an atrium and a ventricle of a heart of a subject, the method comprising: transluminally advancing an implant to the atrium;securing an elongate member of the implant along an annulus of the valve by anchoring anchors to the annulus such that: the anchors are distributed along the elongate member, the elongate member having a proximal end, and a distal portion that includes a distal end of the elongate member, and the anchors including a distal-most anchor and a proximal-most anchor, andthe elongate member extends proximally from the proximal-most anchor and through a gripper of the implant, the gripper being disposed in the atrium and including a locking element that, in a locked state thereof, inhibits sliding of the elongate member through the gripper by clamping the elongate member;subsequently to securing the elongate member, tensioning at least the distal portion of the elongate member by using a tool to pull the elongate member proximally through the gripper while an unlocker is disposed within the gripper and obstructs the locking element from assuming the locked state; andsubsequently, triggering the gripper to assume the locked state by pulling the unlocker proximally out of the gripper.
  • 12. The method according to claim 11, wherein the unlocker is shaped to define a partial tube, and wherein tensioning at least the distal portion of the elongate member comprises tensioning at least the distal portion of the elongate member by using the tool to pull the elongate member proximally through the gripper while the partial tube is disposed within the gripper and obstructs the locking element from assuming the locked state.
  • 13. The method according to claim 11, wherein the implant further includes a container, coupled to the gripper, and further including, subsequent to tensioning at least the distal portion of the elongate member, releasing the elongate member such that a proximal portion of the elongate member, disposed proximally from the gripper, is confined by the container.
  • 14. The method according to claim 13, wherein releasing the elongate member such that the proximal portion of the elongate member is confined by the container, comprises releasing the elongate member such that the proximal portion of the elongate member is confined by the container in a manner that allows blood to enter the container and reach the proximal portion of the elongate member disposed therein.
  • 15. The method according to claim 13, wherein the container is a pouch, and wherein releasing the elongate member such that the proximal portion of the elongate member is confined by the container, comprises releasing the elongate member such that the proximal portion of the elongate member is confined by the pouch.
  • 16. The method according to claim 13, wherein: the container has a first state and a second state,tensioning at least the distal portion of the elongate member comprises tensioning at least the distal portion of the elongate member while the tool maintains the container in the first state, andreleasing the elongate member comprises releasing the elongate member such that the container transitions into the second state, the proximal portion of the elongate member being confined by the container in the second state.
  • 17. The method according to claim 16, wherein: the container is elastic;the first state is a stretched state, and tensioning at least the distal portion of the elongate member while the tool maintains the container in the first state comprises tensioning at least the distal portion of the elongate member while the tool maintains the container in the stretched state; andthe second state is a contracted state, and releasing the elongate member such that the container transitions into the second state comprises releasing the elongate member such that the container transitions into the contracted state.
  • 18. The method according to claim 16, wherein: the container is elastically biased to assume the second state, andreleasing the elongate member comprises releasing the elongate member such that the elastic bias of the container transitions the container into the second state.
  • 19. The method according to claim 16, wherein: the container comprises a shape memory material that configures the container to assume the second state, andreleasing the elongate member comprises releasing the elongate member such that the shape memory material transitions the container into the second state.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a Continuation of U.S. Ser. No. 16/154,233 to Sheps et al., filed Oct. 8, 2018, and entitled “Implant-cinching devices and systems;” which claims priority from U.S. Provisional application 62/580,646 to Sheps et al., filed Nov. 2, 2017, and entitled “Implant-cinching devices and systems.” Each of the above applications is incorporated herein by reference.

US Referenced Citations (887)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3881366 Bradley et al. May 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4261342 Aranguren Duo Apr 1981 A
4290151 Massana Sep 1981 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4917698 Carpentier et al. Apr 1990 A
4935027 Yoon Jun 1990 A
4961738 Mackin Oct 1990 A
5042707 Taheri Aug 1991 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201880 Wright et al. Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke et al. Apr 1994 A
5325845 Adair Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5383852 Stevens-Wright Jan 1995 A
5449368 Kuzmak Sep 1995 A
5450860 O'Connor Sep 1995 A
5464404 Abela et al. Nov 1995 A
5474518 Farrer Velazquez Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5626609 Zvenyatsky et al. May 1997 A
5643317 Pavcnik et al. Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5676653 Taylor et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716397 Myers Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5749371 Zadini et al. May 1998 A
5752963 Allard et al. May 1998 A
5782844 Yoon et al. Jul 1998 A
5810882 Bolduc et al. Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5993459 Larsen et al. Nov 1999 A
6042554 Rosenman et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6074341 Anderson et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6086582 Altman et al. Jul 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6132390 Cookston et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6174332 Loch et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6210347 Forsell Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6228032 Eaton et al. May 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319281 Patel Nov 2001 B1
6328746 Gambale Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6451054 Stevens Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6461336 Larre Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6503274 Howanec, Jr. et al. Jan 2003 B1
6524338 Gundry Feb 2003 B1
6527780 Wallace et al. Mar 2003 B1
6530952 Vesely Mar 2003 B2
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6547801 Dargent et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6719786 Ryan et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730121 Ortiz et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764810 Ma et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6893459 Macoviak May 2005 B1
6908478 Alferness et al. Jun 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6964686 Gordon Nov 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007798 Happonen et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077850 Kortenbach Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7361190 Shaoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7377941 Rhee et al. May 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452376 Lim et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7485142 Milo Feb 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7618449 Tremulis et al. Nov 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin et al. Mar 2010 B2
7682369 Seguin Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7780726 Seguin Aug 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883475 Dupont et al. Feb 2011 B2
7883538 To et al. Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947056 Griego et al. May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7981152 Webler et al. Jul 2011 B1
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8034103 Burriesci et al. Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8075616 Solem et al. Dec 2011 B2
8100964 Spence Jan 2012 B2
8123801 Milo Feb 2012 B2
8142493 Spence et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216302 Wilson et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8262725 Subramanian Sep 2012 B2
8265758 Policker et al. Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292884 Levine et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8419825 Burgler et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8449573 Chu May 2013 B2
8449599 Chau et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460370 Zakay Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8475491 Milo Jul 2013 B2
8475525 Maisano et al. Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523940 Richardson et al. Sep 2013 B2
8551161 Dolan Oct 2013 B2
8585755 Chau et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734699 Heideman et al. May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8778021 Cartledge Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8889861 Skead et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961602 Kovach et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9072603 Tuval et al. Jul 2015 B2
9084677 Cartledge Jul 2015 B2
9107749 Bobo et al. Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9138316 Bielefeld Sep 2015 B2
9173646 Fabro Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9198756 Aklog et al. Dec 2015 B2
9226825 Starksen et al. Jan 2016 B2
9265608 Miller et al. Feb 2016 B2
9326857 Cartledge et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9561104 Miller et al. Feb 2017 B2
9579090 Simms et al. Feb 2017 B1
9693865 Gilmore et al. Jul 2017 B2
9724084 Groothuis et al. Aug 2017 B2
9730793 Reich et al. Aug 2017 B2
9788941 Hacohen Oct 2017 B2
9801720 Gilmore et al. Oct 2017 B2
9907547 Gilmore et al. Mar 2018 B2
10368852 Gerhardt et al. Aug 2019 B2
10835221 Sheps Nov 2020 B2
20010021874 Carpentier et al. Sep 2001 A1
20020022862 Grafton et al. Feb 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020120292 Morgan Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20020188350 Arru et al. Dec 2002 A1
20020198586 Inoue Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030083538 Adams et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030144657 Bowe et al. Jul 2003 A1
20030171760 Gambale Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204193 Gabriel et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20040002735 Lizardi et al. Jan 2004 A1
20040010287 Bonutti Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040059413 Argento Mar 2004 A1
20040068273 Fariss et al. Apr 2004 A1
20040111095 Gordon et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040176788 Opolski Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260344 Lyons et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050090834 Chiang et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050187568 Klenk et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050234481 Waller Oct 2005 A1
20050240199 Martinek et al. Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122633 To et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060142694 Bednarek et al. Jun 2006 A1
20060149280 Harvie et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206203 Yang et al. Sep 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070010800 Weitzner et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070032823 Tegg Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070038296 Navia et al. Feb 2007 A1
20070039425 Wang Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070083235 Jervis et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173931 Tremulis et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070239208 Crawford Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Macoviak et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080091169 Heideman et al. Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080103572 Gerber May 2008 A1
20080140116 Bonutti Jun 2008 A1
20080167713 Bolling Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080177380 Starksen et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080228030 Godin Sep 2008 A1
20080228223 Alkhatib Sep 2008 A1
20080234729 Page et al. Sep 2008 A1
20080262480 Stahler et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281353 Aranyi et al. Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080287862 Weitzner et al. Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080294251 Annest et al. Nov 2008 A1
20080300537 Bowman Dec 2008 A1
20080300629 Surti Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20090024110 Heideman et al. Jan 2009 A1
20090028670 Garcia et al. Jan 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054723 Khairkhahan et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090082797 Fung et al. Mar 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090125102 Cartledge et al. May 2009 A1
20090166913 Guo et al. Jul 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177274 Scorsin et al. Jul 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deutsch Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090287231 Brooks et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100049213 Serina et al. Feb 2010 A1
20100063542 van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100106141 Osypka et al. Apr 2010 A1
20100114180 Rock et al. May 2010 A1
20100121349 Meier et al. May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100130989 Bourque et al. May 2010 A1
20100130992 Machold et al. May 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100211166 Miller Aug 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100286628 Gross Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100324598 Anderson Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110009956 Cartledge et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110026208 Utsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110118832 Punjabi May 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144576 Rothe et al. Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bolduc et al. Sep 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110276062 Bolduc Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20120053628 Sojka et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078355 Zipory et al. Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120089022 House et al. Apr 2012 A1
20120089125 Scheibe et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120136436 Cabiri May 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120158023 Mitelberg et al. Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120226349 Tuval et al. Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130053884 Roorda Feb 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130103055 Schaller et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190863 Call et al. Jul 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231701 Voss et al. Sep 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130331930 Rowe et al. Dec 2013 A1
20140067054 Chau et al. Mar 2014 A1
20140081394 Keranen et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140088646 Wales et al. Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140114390 Tobis et al. Apr 2014 A1
20140135799 Henderson May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140251042 Asselin et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140350660 Cocks et al. Nov 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150018940 Quill et al. Jan 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081006 Chuter Mar 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150094800 Chawla Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150133997 Deitch et al. May 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150230919 Chau et al. Aug 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150351910 Gilmore et al. Dec 2015 A1
20160008130 Hasin Jan 2016 A1
20160008132 Cabiri et al. Jan 2016 A1
20160029920 Kronstrom et al. Feb 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160120642 Shaolian et al. May 2016 A1
20160120645 Alon May 2016 A1
20160135953 Alon et al. May 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160242762 Gilmore et al. Aug 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160302917 Schewel Oct 2016 A1
20160317302 Madjarov et al. Nov 2016 A1
20160361058 Bolduc et al. Dec 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
20170042670 Shaolian et al. Feb 2017 A1
20170100119 Baird et al. Apr 2017 A1
20170209137 Gilmore Jul 2017 A1
20170216066 Bar Aug 2017 A1
20170224489 Starksen et al. Aug 2017 A1
20170245993 Gross et al. Aug 2017 A1
20180008409 Kutzik et al. Jan 2018 A1
20180049875 Iflah et al. Feb 2018 A1
20180140420 Hayoz et al. May 2018 A1
20180168803 Pesce et al. Jun 2018 A1
20180228608 Sheps et al. Aug 2018 A1
20180256334 Sheps et al. Sep 2018 A1
20180289480 D'ambra et al. Oct 2018 A1
20180318080 Quill et al. Nov 2018 A1
20180318083 Bolling et al. Nov 2018 A1
20190029498 Mankowski et al. Jan 2019 A1
20190038411 Alon Feb 2019 A1
20190111239 Bolduc et al. Apr 2019 A1
20190117400 Medema et al. Apr 2019 A1
20190125325 Sheps et al. May 2019 A1
20190151093 Keidar et al. May 2019 A1
20190159898 Kutzik et al. May 2019 A1
20190175344 Khairkhahan Jun 2019 A1
20190175345 Schaffner et al. Jun 2019 A1
20190175346 Schaffner et al. Jun 2019 A1
20190183648 Trapp et al. Jun 2019 A1
20190240023 Spence et al. Aug 2019 A1
20190290260 Caffes et al. Sep 2019 A1
20190290431 Genovese et al. Sep 2019 A1
20190321049 Herman et al. Oct 2019 A1
20190343633 Garvin et al. Nov 2019 A1
20200015971 Brauon et al. Jan 2020 A1
20200289267 Peleg et al. Sep 2020 A1
20200337840 Reich Oct 2020 A1
20210015475 Lau Jan 2021 A1
20210059820 Clark et al. Mar 2021 A1
20210085461 Neumark et al. Mar 2021 A1
20210093453 Peleg et al. Apr 2021 A1
20210145584 Kasher et al. May 2021 A1
20220000464 Schaller et al. Jan 2022 A1
20220071620 Brauon et al. Mar 2022 A1
20220096232 Skaro et al. Mar 2022 A1
20220142779 Sharon May 2022 A1
20220176076 Keidar Jun 2022 A1
20220233316 Sheps et al. Jul 2022 A1
20220273436 Aviv et al. Sep 2022 A1
20220313438 Chappel-Ram Oct 2022 A1
20220323221 Sharon et al. Oct 2022 A1
20230016867 Tennenbaum Jan 2023 A1
Foreign Referenced Citations (30)
Number Date Country
113331995 Sep 2021 CN
1034753 Sep 2000 EP
3531975 Sep 2019 EP
9205093 Apr 1992 WO
9846149 Oct 1998 WO
02085250 Feb 2003 WO
03047467 Jun 2003 WO
2007098512 Sep 2007 WO
2010000454 Jan 2010 WO
2012176195 Mar 2013 WO
2014064964 May 2014 WO
2019145941 Aug 2019 WO
2019145947 Aug 2019 WO
2019182645 Sep 2019 WO
2019224814 Nov 2019 WO
2020240282 Dec 2020 WO
2021014440 Jan 2021 WO
2021038559 Mar 2021 WO
2021038560 Mar 2021 WO
2022064401 Mar 2022 WO
2022090907 May 2022 WO
2022101817 May 2022 WO
2022153131 Jul 2022 WO
2022157592 Jul 2022 WO
2022172108 Aug 2022 WO
2022172149 Aug 2022 WO
2022200972 Sep 2022 WO
2022224071 Oct 2022 WO
2022229815 Nov 2022 WO
2022250983 Dec 2022 WO
Non-Patent Literature Citations (29)
Entry
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Ahmadi, A., G. Spiliner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522.
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
Amplatzer® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
Amplatzer® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the Amplatzer Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014).
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success—midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Dictionary.com definition of “lock”, Jul. 29, 2013.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
Odell JA et al., “Early Results of a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484.
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3.
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545.
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Related Publications (1)
Number Date Country
20210059653 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
62580646 Nov 2017 US
Continuations (1)
Number Date Country
Parent 16154233 Oct 2018 US
Child 17097649 US