Field of the Invention
The invention generally relates to improved medical devices and methods for the reduction of elevated pressure in organs of the human body. More particularly, the invention relates to the treatment of glaucoma by trabecular bypass surgery, which is a means for using an implant or stent, such as a micro stent, shunt or the like, to bypass diseased trabecular meshwork at the level of trabecular meshwork and use/restore existing outflow pathways.
Description of the Related Art
About two percent of people in the United States have glaucoma. Glaucoma is a group of eye diseases that causes pathological changes in the optic disk and corresponding visual field loss resulting in blindness if untreated. Intraocular pressure elevation is the major etiologic factor in all glaucomas.
In glaucomas associated with an elevation in eye pressure the source of resistance to outflow is in the trabecular meshwork. The tissue of the trabecular meshwork allows the “aqueous” to enter Schlemm's canal, which then empties into aqueous collector channels in the posterior wall of Schlemm's canal and then into aqueous veins. The aqueous or aqueous or is a transparent liquid that fills the region between the cornea at the front of the eye and the lens. The aqueous humor is constantly secreted by the ciliary body around the lens, so there is a continuous flow of the aqueous humor from the ciliary body to the eye's front chamber.
The eye's pressure is determined by a balance between the production of aqueous and its exit through the trabecular meshwork (major route) or via uveal sclera outflow (minor route). The trabecular meshwork is located between the outer rim of the iris and the internal periphery of the cornea. The portion of the trabecular meshwork adjacent to Schlemm's canal causes most of the resistance to aqueous outflow (juxtacanilicular meshwork).
Glaucoma is grossly classified into two categories: closed-angle glaucoma and open-angle glaucoma. Closed-angle glaucoma is caused by closure of the anterior angle by contact between the iris and the inner surface of the trabecular meshwork. Closure of this anatomical angle prevents normal drainage of aqueous humor from the anterior chamber of the eye.
Open-angle glaucoma is any glaucoma in which the angle of the anterior chamber remains open, but the exit of aqueous through the trabecular meshwork is diminished. The exact cause for diminished filtration is unknown for most cases of open-angle glaucoma. However, there are secondary open-angle glaucomas that may include edema or swelling of the trabecular spaces (from steroid use), abnormal pigment dispersion, or diseases such as hyperthyroidism that produce vascular congestion.
All current therapies for glaucoma are directed at decreasing intraocular pressure. This is initially by medical therapy with drops or pills that reduce the production of aqueous humor or increase the outflow of aqueous. However, these various drug therapies for glaucoma are sometimes associated with significant side effects, such as headache, blurred vision, allergic reactions, death from cardiopulmonary complications and potential interactions with other drugs. When the drug therapy fails, surgical therapy is used.
Surgical therapy for open-angle glaucoma utilizes laser (trabeculoplasty), trabeculectomy and aqueous shunting implants after failure of trabeculectomy or if trabeculectomy is unlikely to succeed. Trabeculectomy is a major surgery that is most widely used and is augmented with topically applied anticancer drugs such as 5-flurouracil or mitomycin-c to decrease scarring and increase surgical success.
Approximately 100,000 trabeculectomies are performed on Medicare age patients per year in the United States. This number would increase if the morbidity associated with trabeculectomy could be decreased. The current morbidity associated with trabeculectomy includes failure (about 10-15%), infection (a life long risk of about 2-5%), choroidal hemorrhage (about 1%, a severe internal hemorrhage from pressure too low resulting in a visual loss), cataract formation, and hypotony maculopathy (potentially reversible visual loss from pressure too low).
If it were possible to bypass the local resistance to outflow of aqueous at the point of the resistance and use existing outflow mechanisms, surgical morbidity would greatly decreased. The reason for this is that the episcleral aqueous veins have a backpressure that would prevent the eye pressure from going too low. This would substantially eliminate the risk of hypotony maculopathy and choroidal hemorrhage. Furthermore, visual recovery would be very rapid and risk of infection would be very small (a reduction from about 2-5% to about 0.05%). Because of these reasons surgeons have tried for decades to develop a workable surgery for the trabecular meshwork.
The previous techniques, which have been tried, are goniotomy/trabeculotomy, and other mechanical disruption of the trabecular meshwork, such as trabeculopuncture, goniophotoablation, laser trabecular ablation and goniocurretage. These are briefly described below.
Goniotomy/Trabeculotomy:
Goniotomy and trabeculotomy are simple and directed techniques of microsurgical dissection with mechanical disruption of the trabecular meshwork. These initially had early favorable responses in the treatment of open-angle glaucoma. However, long-term review of surgical results showed only limited success in adults. In retrospect, these procedures probably failed secondary to repair mechanisms and a process of “filling in”. The filling in is the result of a healing process which has the detrimental effect of collapsing and closing in of the created opening throughout the trabecular meshwork. Once the created openings close, the pressure builds back up and the surgery fails.
Trabeculopuncture:
Q-switched Neodymiun (Nd):YAG lasers also have been investigated as an optically invasive technique for creating full-thickness holes in trabecular meshwork. However, the relatively small hole created by this trabeculopuncture technique exhibits a filling in effect and fails.
Goniophotoablation/Laser Trabecular Ablation:
Goniophotoablation is disclosed by Berlin in U.S. Pat. No. 4,846,172, and describes the use of an excimer laser to treat glaucoma by ablating the trabecular meshwork. This was not demonstrated by clinical trial to succeed. Hill et al. used an Erbium:YAG laser to create full thickness holes through trabecular meshwork (Hill et al., Lasers in Surgery and Medicine 11:341-346, 1991). This technique was investigated in a primate model and a limited human clinical trial at the University of California, Irvine. Although morbidity was zero in both trials, success rates did not warrant further human trials. Failure again was from filling in of created defects in trabecular meshwork by repair mechanisms. Neither of these is a valid surgical technique for the treatment of glaucoma.
Goniocurretage:
This is an ab-interno (from the inside) mechanical disruptive technique. This uses an instrument similar to a cyclodialysis spatula with a microcurrette at the tip. Initial results are similar to trabeculotomy that fails secondary to repair mechanisms and a process of filling in.
Although trabeculectomy is the most commonly performed filtering surgery, Viscocanulostomy (VC) and non-penetrating trabeculectomy (NPT) are two new variations of filtering surgery. These are ab-externo (from the outside), major ocular procedures in which Schlemm's canal is surgically exposed by making a large and very deep scleral flap. In the VC procedure, Schlemm's canal is cannulated and a viscoelastic drug injected (which dilates Schlemm's canal and the aqueous collector channels). In the NPT procedure, the inner wall of Schlemm's canal is stripped off after surgically exposing the canal.
Trabeculectomy, VC, and NPT are performed under a conjunctival and scleral flap, such that the aqueous humor is drained onto the surface of the eye or into the tissues located within the lateral wall of the eye. Normal physiological outflows are not used. These surgical operations are major procedures with significant ocular morbidity. When Trabeculectomy, VC, and NPT are thought to have a low chance for success, a number of implantable drainage devices have been used to ensure that the desired filtration and outflow of aqueous humor through the surgical opening will continue. The risk of placing a glaucoma drainage implant also includes hemorrhage, infection and postoperative double vision that is a complication unique to drainage implants.
Examples of implantable shunts or devices for maintaining an opening for the release of aqueous humor from the anterior chamber of the eye to the sclera or space underneath conjunctiva have been disclosed in U.S. Pat. No. 6,007,511 (Prywes), U.S. Pat. No. 6,007,510 (Nigam), U.S. Pat. No. 5,893,837 (Eagles et al.), U.S. Pat. No. 5,882,327 (Jacob), U.S. Pat. No. 5,879,319 (Pynson et al.), U.S. Pat. No. 5,807,302 (Wandel), U.S. Pat. No. 5,752,928 (de Roulhac et al.), U.S. Pat. No. 5,743,868 (Brown et al.), U.S. Pat. No. 5,704,907 (Nordquist et al.), U.S. Pat. No. 5,626,559 (Solomon), U.S. Pat. No. 5,626,558 (Suson), U.S. Pat. No. 5,601,094 (Reiss), RE. 35,390 (Smith), U.S. Pat. No. 5,558,630 (Fisher), U.S. Pat. No. 5,558,629 (Baerveldt et al.), U.S. Pat. No. 5,520,631 (Nordquist et al.), U.S. Pat. No. 5,476,445 (Baerveldt et al.), U.S. Pat. No. 5,454,796 (Krupin), U.S. Pat. No. 5,433,701 (Rubinstein), U.S. Pat. No. 5,397,300 (Baerveldt et al.), U.S. Pat. No. 5,372,577 (Ungerleider), U.S. Pat. No. 5,370,607 (Memmen), U.S. Pat. No. 5,338,291 (Speckman et al.), U.S. Pat. No. 5,300,020 (L'Esperance, Jr.), U.S. Pat. No. 5,178,604 (Baerveldt et al.), U.S. Pat. No. 5,171,213 (Price, Jr.), U.S. Pat. No. 5,041,081 (Odrich), U.S. Pat. No. 4,968,296 (Ritch et al.), U.S. Pat. No. 4,936,825 (Ungerleider), U.S. Pat. No. 4,886,488 (White), U.S. Pat. No. 4,750,901 (Molteno), U.S. Pat. No. 4,634,418 (Binder), U.S. Pat. No. 4,604,087 (Joseph), U.S. Pat. No. 4,554,918 (White), U.S. Pat. No. 4,521,210 (Wong), U.S. Pat. No. 4,428,746 (Mendez), U.S. Pat. No. 4,402,681 (Haas et al.), U.S. Pat. No. 4,175,563 (Arenberg et al.) and U.S. Pat. No. 4,037,604 (Newkirk).
All of the above techniques and variations thereof have numerous disadvantages and moderate success rates. They involve substantial trauma to the eye and require great surgical skill by creating a hole over the full thickness of the sclera/cornea into the subconjunctival space. Furthermore, normal physiological outflow pathways are not used. The procedures are mostly performed in an operating room generating a facility fee, anesthesiologist's professional fee and have a prolonged recovery time for vision. The complications of filtration surgery have inspired ophthalmic surgeons to look at other approaches to lowering intraocular pressure.
The trabecular meshwork and juxtacanilicular tissue together provide the majority of resistance to the outflow of aqueous and, as such, are logical targets for surgical removal in the treatment of open-angle glaucoma. In addition, minimal amounts of tissue are altered and existing physiologic outflow pathways are utilized. Trabecular bypass surgery has the potential for much lower risks of choroidal hemorrhage, infection and uses existing physiologic outflow mechanisms. This surgery could be performed under topical anesthesia in a physician's office with rapid visual recovery.
International PCT Publication No. WO 01/78631, published Oct. 25, 2001 (Appl. No. PCT/US01/07398, filed Mar. 8, 2001), by some co-inventor(s) of this patent application, entitled “APPARATUS AND METHOD FOR TREATING GLAUCOMA”, the entire contents of which are hereby incorporated by reference herein, discloses a seton implant positioned through the trabecular meshwork so that an inlet end of the seton implant is exposed to the anterior chamber of the eye and an outlet end is positioned into Schlemm's canal at about an exterior surface of the trabecular meshwork for permitting aqueous humor to flow out of the anterior chamber. An ab interno microsurgery for creating an opening in the trabecular meshwork.
International PCT Publication No. 01/97727, published Dec. 27, 2001 (Appl. No. PCT/US01/18541, filed Jun. 6, 2001), by some co-inventor(s) of this patent application, entitled “STENTED TRABECULAR SHUNT AND METHODS THEREOF”, the entire contents of which are hereby incorporated by reference herein, discloses a stented trabecular shunt comprising an outlet section that is expandable and adapted for stabilizing within Schlemm's canal with an ab interno microsurgery for creating an opening in the trabecular meshwork.
International PCT Publication No. 02/36052, published May 10, 2002 (Appl. No. PCT/US01/14783, filed May 8, 2001), by some co-inventor(s) of this patent application, entitled “GLAUCOMA TREATMENT DEVICE”, the entire contents of which are hereby incorporated by reference herein, discloses a device for directing the flow of aqueous humor through the lumen to Schlemm's canal with an ab interno microsurgery for creating an opening in the trabecular meshwork.
The ab interno microsurgery disclosed in the above WIPO PCT publications/applications has a common disadvantage of first using a piercing instrument for creating an opening in the trabecular meshwork. The piercing instrument goes into the anterior chamber, creates an opening in the trabecular meshwork and is then withdraw from the anterior chamber before a trabecular stent is implanted in a separate insertion. Therefore, there is a great clinical need for the treatment of glaucoma by a trabecular bypass surgery using a micro stent to bypass deficient trabecular meshwork in a one-step simple procedure. One object of the invention is to provide a trabecular stent and methods for treating elevated intraocular pressure with an ab interno microsurgery for creating an opening in the trabecular meshwork by a piercing member of the applicator slidably through the lumen of the stent in a combined piercing and stent implanting one-step inserting procedure.
In some preferred embodiments, the stent has an inlet portion configured to extend through a portion of the trabecular meshwork of an eye, and an outlet portion configured to extend into Schlemm's canal of the eye, wherein the outlet portion may have a lumen with an oval cross-section having a long axis.
The outlet portion in certain embodiments has a longitudinal axis, such that the long axis of the oval cross-section and the longitudinal axis of the outlet portion define a plane, the inlet portion having a longitudinal axis which lies outside the plane at an angle thereto.
In some preferred arrangements, the stent comprises an inlet portion configured to extend through a portion of the trabecular meshwork, an outlet portion configured to extend into Schlemm's canal, and at least one protrusion on the outlet portion configured to exert traction against an inner surface of Schlemm's canal. This protrusion can comprise at least one barb or ridge.
Some preferred embodiments comprise an inlet portion configured to extend through a portion of the trabecular meshwork, an outlet portion configured to extend into Schlemm's canal, and a one-way leaflet type valve within the inlet and/or outlet portions.
Some aspects relate to a method for delivering a stent within an eye. The method generally comprising providing an elongate applicator having a piercing member intended to pass through the lumen of the stent, advancing a distal end of the applicator with the piercing member through at least a portion of the trabecular meshwork of the eye, retrieving the piercing member, advancing the stent along the applicator toward the distal end, and the positioning the stent to conduct aqueous humor between the anterior chamber of the eye and Schlemm's canal.
In certain embodiments, the advancing of the applicator comprises advancing it from the anterior chamber into the trabecular meshwork. In further embodiments, the positioning comprises positioning an end of the stent within Schlemm's canal adjacent to an aqueous collection channel.
Certain preferred embodiments include an apparatus for delivering a stent to the anterior chamber of an eye comprising an elongate applicator having a lumen, an outer surface, and a distal end; a removable, elongate piercing member within the lumen of the applicator; a slidable stent delivery mechanism configured to permit the stent to be advanced and to be positioned in about the trabecular meshwork of the eye. The piercing member is positioned at the distal end of the applicator, wherein the piercing member is slidably advanceable through the lumen of the stent. The piercing member can be selected from the group consisting of a knife, a laser probe, a pointed guide member, and an energy source, such as radiofrequency (RF), ultrasonic energy, fiber optic laser, microwave, focused ultrasound and the like. The apparatus can also further comprise an opening in the outer surface of the applicator configured to allow fluid infusion into the eye.
In further preferred embodiments, an apparatus for delivering a stent in an eye comprises an elongate applicator member adapted for insertion into an anterior chamber of the eye, the elongate member having a distal end portion configured to retain the stent therein, the distal end portion comprising a piercing member configured to form an opening in the trabecular meshwork of the eye for receipt of the stent, such that one end of the stent is in Schlemm's canal. The elongate applicator member can further comprise a lumen which conducts fluid toward the distal end portion.
Some preferred embodiments provide further surgical treatment of glaucoma (trabecular bypass surgery) at the level of trabecular meshwork and restore existing physiological outflow pathways. An implant bypasses diseased trabecular meshwork at the level of trabecular meshwork and which restores existing physiological outflow pathways. The implant has an inlet end, an outlet end and a lumen therebetween. The inlet end is positioned in the anterior chamber at the level of the internal trabecular meshwork and the outlet end is positioned at about the exterior surface of the diseased trabecular meshwork and/or into fluid collection channels of the existing outflow pathways.
In accordance with some preferred methods, trabecular bypass surgery creates an opening or a hole through the diseased trabecular meshwork through minor microsurgery. To prevent “filling in” of the hole, a biocompatible elongated implant is placed within the hole as a stent, which may include, for example, a hollow tube. In one exemplary embodiment, the stent implant may be positioned across the diseased trabecular meshwork alone and it does not extend into the eye wall or sclera. In another embodiment, the inlet end of the implant is exposed to the anterior chamber of the eye while the outlet end is positioned at the exterior surface of the trabecular meshwork. In another exemplary embodiment, the outlet end is positioned at and over the exterior surface of the trabecular meshwork and into the fluid collection channels of the existing outflow pathways. In still another embodiment, the outlet end is positioned in the Schlemm's canal. In a modified embodiment, the outlet end enters into fluid collection channels up to the level of the aqueous veins or episcleral aqueous veins.
According to some preferred embodiments, the stent implant is made of biocompatible material, which is either hollow or porous to allow the flow of aqueous humor or solid biocompatible material that imbibes aqueous. The material for the stent may be selected from the group consisting of porous material, semi-rigid material, soft material, hydrophilic material, hydrophobic material, hydrogel, elastic material, and the like.
The trabecular stent, particularly the porous stent, may have high water affinity that hydrophilic and tissue compatible. One or more drugs may be loaded onto the trabecular stent and slowly released to the surrounding tissue effective to treat glaucoma and/or other opthalmology abnormalities.
In accordance with further preferred embodiments, the stent implant may be rigid or it may be made of relatively soft material and is somewhat curved at its distal section to fit into the existing physiological outflow pathways, such as Schlemm's canal. The distal section inside the outflow pathways may have an oval shape to stabilize the stent in place without undue suturing. Stabilization or retention of the stent may be further strengthened by a tapered end and/or by at least one ridge or rib on the exterior surface of the distal section of the stent, or other surface alterations designed to retain the stent.
In some embodiments, the stent may include a micropump, one-way valve, or semi-permeable membrane if reflux of red blood cells or serum protein becomes a clinical problem. It may also be useful to use a biocompatible material that hydrates and expands after implantation so that the stent is locked into position around the trabecular meshwork opening or around the distal section of the stent.
One of the advantages of trabecular bypass surgery, as disclosed herein, and the use of a stent implant to bypass diseased trabecular meshwork at the level of trabecular meshwork and thereby use existing outflow pathways is that the treatment of glaucoma is substantially simpler than in existing therapies. A further advantage of some preferred embodiments is the utilization of simple microsurgery that may be performed on an outpatient basis with rapid visual recovery and greatly decreased morbidity. Finally, a distinctly different approach is used than is found in existing implants. Physiological outflow mechanisms are used or re-established by the implant of some preferred embodiments, in contra-distinction with previously disclosed methodologies.
Some aspects of the invention provide a trabecular stent to be inserted through an opening of the deficient trabecular meshwork, wherein the opening is created by using a cutting instrument slid inside a lumen of the trabecular stent in a combined one-step cutting and implanting inserting operation.
Some other aspects of the invention provide a method for cleaning the obstructed lumen of a trabecular stent by an applicator that has a piercing member that is slidably advanceable approaching or through the obstructed lumen of the stent.
For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein above. Of course, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
Having thus summarized the general nature of the invention and some of its features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:
The drawings generally illustrate a method for the treatment of glaucoma by trabecular bypass surgery. In particular, a stent implant is used to bypass diseased or deficient trabecular meshwork at the level of trabecular meshwork to use or restore existing outflow pathways and methods thereof are disclosed.
While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompass by the general concepts described herein and below.
For background illustration purposes,
The anterior chamber 20 of the eye 10 (
Referring in particular to
As shown in
Surgical methods and related medical devices for treating glaucoma are disclosed. The method comprises trabecular bypass surgery, which involves bypassing diseased trabecular meshwork with the use of a stent implant. The stent implant is inserted into an opening created in the trabecular meshwork by a piercing member that is slidably advanceable through the lumen of the stent implant for supporting the implant insertion. The stent implant is positioned through the trabecular meshwork so that an inlet end of the stent implant is exposed to the anterior chamber of the eye and an outlet end is positioned into fluid collection channels at about an exterior surface of the trabecular meshwork or up to the level of aqueous veins.
Some embodiments relate to a method of increasing aqueous humor outflow in an eye of a patient to reduce the intraocular pressure (IOP) therein. In one embodiment, the method comprises bypassing diseased or deficient trabecular meshwork at the level of the trabecular meshwork and thereby restoring existing outflow pathways. In another embodiment, the method comprises bypassing diseased trabecular meshwork at a level of the trabecular meshwork with a stent implant and using existing outflow pathways.
Stent Implant
Referring in particular to
In some embodiments, the outlet section 33 may be positioned into fluid collection channels of the existing outflow pathways. In some embodiments, the existing outflow pathways comprise Schlemm's canal 22. The outlet section 33 may be further positioned into fluid collection channels up to the level of the aqueous veins 23 (see
In the illustrated embodiment of
In the illustrated embodiment of
In the illustrated embodiment of
As best seen in
For stabilization purposes, the outer surface of the distal section 33 may comprise a stubbed surface, a ribbed surface, a surface with pillars, a textured surface, and the like, or a combination thereof. In some embodiments, the distal section 33 may be curved or bent at an angle with reference to the proximal section 30 and/or the medial section 32. For example, the stent implant my be substantially L-shaped or T-shaped with the proximal and/or medial sections comprising a snorkel portion extending through the trabecular meshwork 21 and the distal section extending within Schlemm's canal 22 and/or other aqueous outflow pathways. The angulations(s) may be substantially perpendicular, acute angled or obtuse angled, as needed or desired.
In the illustrated embodiment of
As best seen in
As best seen in
As best seen in
Preferably, the entire exposed surface of the stent 31 (
As the skilled artisan will readily appreciate, the stent implant 31 of the illustrated embodiment may be dimensioned in a wide variety of manners. In an exemplary embodiment, the stent implant 31 has a length between about 0.3 millimeters (mm) to about over 1 centimeter (cm), depending on the body cavity where the stent implant is to be implanted. The outside or outer diameter of the stent implant 31 may range from about 30 micrometers or microns (μm) to about 500 μm or more. The lumen diameter is preferably in the range between about 10 μm to about 150 μm or larger. In other embodiments, the stent implant 31 may be dimensioned in modified manners with efficacy, as required or desired, giving due consideration to the goals of achieving one or more of the benefits and advantages as taught or suggested herein.
In some embodiments, and as discussed further herein, a method is disclosed for increasing aqueous humor outflow in an eye of a patient to reduce an intraocular pressure therein. The method comprises (a) creating an opening in trabecular meshwork by a piercing member of an applicator, wherein the trabecular meshwork comprises an interior side and exterior side, the piercing member is slidably moveable through the lumen of the stent; (b) inserting a stent implant into the opening in the trabecular meshwork; and (c) transporting the aqueous humor by the stent implant to bypass the trabecular meshwork at the level of the trabecular meshwork from the interior side facing the anterior chamber to the exterior side facing Schlemm's canal of the trabecular meshwork.
In one embodiment, the stent implant 31 (
In one embodiment, the material for the stent 31 (
In one embodiment, the stent device 31 (
In some embodiments, the implant device 31 (
U.S. Pat. No. 6,403,590, issued Jun. 11, 2002, the entire contents of which are hereby incorporated by reference herein, discloses isoquinolinesulfonyl compounds used in ophthalmic compositions to treat glaucoma or other ischemic-borne ocular disorders such as retinopathies or optic neuropathies. These compounds vasodilate ocular blood vessels, lower IOP and prevent or reduce the progression of visual field loss;
U.S. Pat. No. 6,274,138, issued Aug. 14, 2001 and U.S. Pat. No. 6,231,853, issued May 15, 2001, the entire contents of each one of which are hereby incorporated by reference herein, disclose the function of mitochondria and toxic drugs synthesized as a metabolic byproduct within mitochondria of cells. Perry and associates (Perry H D et al. “Topical cyclosporin A in the management of postkeratoplasty glaucoma” Cornea 16:284-288, 1997) report that topical cyclosporin-A has been shown to reduce post-surgical increase in intraocular pressure. It is proposed that such compounds with known effects on mitochondrial stability might be effective in treating trabecular meshwork. An antagonistic drug to neutralize the toxic byproduct or a stabilizing drug to effect mitochondrial stability is believed able to restore the mitochondria function and subsequently mitigate the dysfunction of the trabecular meshwork;
U.S. Pat. No. 6,201,001, issued Mar. 13, 2001, the entire contents of which are hereby incorporated by reference herein, discloses Imidazole antiproliferative agents useful for neovascular glaucoma;
U.S. Pat. No. 6,228,873, issued May 8, 2001, the entire contents of which are hereby incorporated by reference herein, discloses a new class of compounds that inhibit function of sodium chloride transport in the thick ascending limb of the loop of Henle, wherein the preferred compounds useful are furosemide, piretanide, benzmetanide, bumetanide, torasemide and derivatives thereof;
U.S. Pat. No. 6,194,415, issued Feb. 27, 2001, the entire contents of which are hereby incorporated by reference herein, discloses a method of using quinoxoalines (2-imidazolin-2-ylamino) in treating neural injuries (e.g. glaucomatous nerve damage);
U.S. Pat. No. 6,060,463, issued May 9, 2000 and U.S. Pat. No. 5,869,468, issued Feb. 9, 1999, the entire contents of each one of which are hereby incorporated by reference herein, disclose treatment of conditions of abnormally increased intraocular pressure by administration of phosphonylmethoxyalkyl nucleotide analogs and related nucleotide analogs;
U.S. Pat. No. 5,925,342, issued Jul. 20, 1999, the entire contents of which are hereby incorporated by reference herein, discloses a method for reducing intraocular pressure by administration of potassium channel blockers;
U.S. Pat. No. 5,814,620, issued Sep. 29, 1998, the entire contents which are hereby incorporated by reference herein, discloses a method of reducing neovascularization and of treating various disorders associated with neovascularization. These methods include administering to a tissue or subject a synthetic oligonucleotide;
U.S. Pat. No. 5,767,079, issued Jun. 16, 1998, the entire contents of which are hereby incorporated by reference herein, discloses a method for treatment of ophthalmic disorders by applying an effective amount of Transforming Growth Factor-Beta (TGF-beta) to the affected region;
U.S. Pat. No. 5,663,205, issued Sep. 2, 1997, the entire contents which are hereby incorporated by reference herein, discloses a pharmaceutical composition for use in glaucoma treatment which contains an active ingredient 5-[1-hydroxy-2-[2-(2-methoxyphenoxyl)ethylamino]ethyl]-2-methylbenzenesulfonamide. This agent is free from side effects, and stable and has an excellent intraocular pressure reducing activity at its low concentrations, thus being useful as a pharmaceutical composition for use in glaucoma treatment;
U.S. Pat. No. 5,652,236, issued Jul. 29, 1997, the entire contents of which are hereby incorporated by reference herein, discloses pharmaceutical compositions and a method for treating glaucoma and/or ocular hypertension in the mammalian eye by administering thereto a pharmaceutical composition which contains as the active ingredient one or more compounds having guanylate cyclase inhibition activity. Examples of guanylate cyclase inhibitors utilized in the pharmaceutical composition and method of treatment are methylene blue, butylated hydroxyanisole and N-methylhydroxylamine;
U.S. Pat. No. 5,547,993, issued Aug. 20, 1996, the entire contents of which are hereby incorporated by reference herein, discloses that 2-(4-methylaminobutoxy) diphenylmethane or a hydrate or pharmaceutically acceptable salt thereof have been found useful for treating glaucoma;
U.S. Pat. No. 5,502,052, issued Mar. 26, 1996, the entire contents of which are hereby incorporated by reference herein, discloses use of a combination of apraclonidine and timolol to control intraocular pressure. The compositions contain a combination of an alpha-2 agonist (e.g., para-amino clonidine) and a beta blocker (e.g., betaxolo);
U.S. Pat. No. 6,184,250, issued Feb. 6, 2001, the entire contents of which are hereby incorporated by reference herein, discloses use of cloprostenol and fluprostenol analogues to treat glaucoma and ocular hypertension. The method comprises topically administering to an affected eye a composition comprising a therapeutically effective amount of a combination of a first compound selected from the group consisting of beta-blockers, carbonic anhydrase inhibitors, adrenergic agonists, and cholinergic agonists; together with a second compound;
U.S. Pat. No. 6,159,458, issued Dec. 12, 2000, the entire contents of which are hereby incorporated by reference herein, discloses an ophthalmic composition that provides sustained release of a water soluble medicament formed by comprising a crosslinked carboxy-containing polymer, a medicament, a sugar and water;
U.S. Pat. No. 6,110,912, issued Aug. 29, 2000, the entire contents of which are hereby incorporated by reference herein, discloses methods for the treatment of glaucoma by administering an ophthalmic preparation comprising an effective amount of a non-corneotoxic serine-threonine kinase inhibitor, thereby enhancing aqueous outflow in the eye and treatment of the glaucoma. In some embodiments, the method of administration is topical, whereas it is intracameral in other embodiments. In still further embodiments, the method of administration is intracanalicular;
U.S. Pat. No. 6,177,427, issued Jan. 23, 2001, the entire contents of which are hereby incorporated by reference herein, discloses compositions of non-steroidal glucocorticoid antagonists for treating glaucoma or ocular hypertension; and
U.S. Pat. No. 5,952,378, issued Sep. 14, 1999, the entire contents of which are hereby incorporated by reference herein, discloses the use of prostaglandins for enhancing the delivery of drugs through the uveoscleral route to the optic nerve head for treatment of glaucoma or other diseases of the optic nerve as well as surrounding tissue. The method for enhancing the delivery to the optic nerve head comprises contacting a therapeutically effective amount of a composition containing one or more prostaglandins and one or more drug drugs with the eye at certain intervals.
Surgical Methods and Apparatus
Referring to the illustrated embodiment of
In the illustrated embodiment of
The piercing member distal end 61 (
As best seen in
In the illustrated embodiment of
In the illustrated embodiment of
In some embodiments, the step of retracting the piercing member 62 (and piercing member distal section 82) as shown in
Some aspects of the invention provide an applicator for placing a trabecular stent into trabecular meshwork. The applicator generally comprises a sheath for holding the trabecular stent within a lumen of the sheath. The trabecular stent generally comprises an inlet section, an outlet section and a lumen extending from the inlet section to the outlet section. The applicator includes a piercing member located within the sheath, wherein the piercing member is slidably moveable through the lumen of the trabecular stent for creating an opening at about the trabecular meshwork. The applicator further includes a stent delivery mechanism for delivering the stent through the opening. The stent may further comprise a middle section between the inlet section and the outlet section, wherein the circumference of the middle section is smaller than the circumference of the inlet section.
In an exemplary embodiment of the trabecular meshwork surgery, the patient is placed in the supine position, prepped, draped and administered anesthesia. In one embodiment, a small (less than 1 mm in a “Sub one” surgery) self-sealing incision 52 (
Some aspects provide a method for inserting a trabecular stent through trabecular meshwork comprising: holding the trabecular stent within a lumen of an applicator, wherein the applicator comprises a slidably moveable piercing member located within the lumen of the applicator; delivering the applicator to about a surface of the trabecular meshwork; advancing the piercing member through a lumen of the trabecular stent for creating an opening at the trabecular meshwork; and inserting the trabecular stent into the opening. In one embodiment, the step of delivering the applicator is carried out by passing through a small incision at a cornea of an eye, wherein the small incision could be less than one millimeter in size.
Some aspects provide a device and a method for clearing the obstructed lumen of a trabecular stent in an ab interno procedure. After a stent has been implanted at about the trabecular meshwork with one opening of the device exposed to the anterior chamber and the other opening of the device exposed to Schlemm's canal, the lumen of the trabecular stent may be obstructed, plugged or partially blocked with diminished aqueous transportation ability.
A repairing applicator 96 as shown in
In the illustrated embodiment of
The piercing member distal end 91 (
In accordance with one aspect, the means or device for clearing the obstruction inside the opening or lumen of an implanted stent may comprise a microknife, a pointed guidewire, a sharpened trephine, a screw shaped trephine, an irrigating tubing, a retinal pick, a microcurrette, or the like. In accordance with another aspect, the obstruction may be cleared with an energy-assisted device, such as a laser optic fiber, a radiofrequency (RF) electrode, an ultrasonic transducer, a microwave antenna, a heated or cooled instrument or the like. Fiberoptic lasers that are suitable for such use include, for example, Q-switched Neodymiun (Nd):YAG lasers, Erbium:YAG lasers, cold CO2 lasers and the like.
In the illustrated embodiment of
Some aspects provide a repairing applicator for clearing an obstructed lumen of an implanted trabecular stent. The repairing applicator generally comprises a sheath and a piercing member located within the sheath, wherein the piercing member is slidably moveable approaching the obstructed lumen of the implanted trabecular stent configured for clearing the lumen.
From the foregoing description, it will be appreciated that a novel approach for the surgical treatment of glaucoma has been disclosed for releasing excessive intraocular pressure. While the components, techniques and aspects of the invention have been described with a certain degree of particularity, it is manifest that many changes may be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.
Various modifications and applications of the invention may occur to those who are skilled in the art, without departing from the true spirit or scope of the invention. It should be understood that the invention is not limited to the embodiments set forth herein for purposes of exemplification, but is to be defined only by a fair reading of the appended claims, including the full range of equivalency to which each element thereof is entitled.
This application is a continuation of U.S. application Ser. No. 10/231,342, filed Aug. 28, 2002, now U.S. Pat. No. 7,331,984 B2, issued Feb. 19, 2008, which claims the benefit of U.S. Provisional Application No. 60/315,463, filed Aug. 28, 2001, entitled “GLAUCOMA SHUNT FOR AB INTERNO USE” and U.S. Provisional Application No. 60/363,980, filed Mar. 14, 2002, entitled “MEANS AND PROCEDURES FOR IMPLANTING A GLAUCOMA SHUNT AB INTERNO”, the entirety of each one of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2269963 | Frederick | Jan 1942 | A |
3439675 | Cohen | Apr 1969 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3948271 | Akiyama | Apr 1976 | A |
3948871 | Butterfield et al. | Apr 1976 | A |
3976077 | Kerfoot, Jr. | Aug 1976 | A |
4037604 | Newkirk | Jul 1977 | A |
4113088 | Binkhorst | Sep 1978 | A |
4168697 | Cantekin | Sep 1979 | A |
4175563 | Arenberg et al. | Nov 1979 | A |
4299227 | Lincoff | Nov 1981 | A |
4366582 | Faulkner | Jan 1983 | A |
4402681 | Haas et al. | Sep 1983 | A |
4428746 | Mendez | Jan 1984 | A |
4449529 | Burns et al. | May 1984 | A |
4501274 | Skjaerpe | Feb 1985 | A |
4521210 | Wong | Jun 1985 | A |
4554918 | White | Nov 1985 | A |
4560383 | Leiske | Dec 1985 | A |
4578058 | Grandon | Mar 1986 | A |
4583224 | Ishii et al. | Apr 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4632842 | Karwoski et al. | Dec 1986 | A |
4634418 | Binder | Jan 1987 | A |
4642090 | Ultrata | Feb 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722724 | Schocket | Feb 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4787885 | Binder | Nov 1988 | A |
4800870 | Reid, Jr. | Jan 1989 | A |
4800890 | Cramer | Jan 1989 | A |
4804382 | Turina et al. | Feb 1989 | A |
4820626 | Williams et al. | Apr 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4846793 | Leonard et al. | Jul 1989 | A |
4853224 | Wong | Aug 1989 | A |
4863457 | Lee | Sep 1989 | A |
4867173 | Leoni | Sep 1989 | A |
4870953 | DonMichael et al. | Oct 1989 | A |
4883864 | Scholz | Nov 1989 | A |
4886488 | White | Dec 1989 | A |
4900300 | Lee | Feb 1990 | A |
4905667 | Foerster et al. | Mar 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4991602 | Amplatz et al. | Feb 1991 | A |
4997652 | Wong | Mar 1991 | A |
5005577 | Frenekl | Apr 1991 | A |
5041081 | Odrich | Aug 1991 | A |
5053040 | Goldsmith, III | Oct 1991 | A |
5053044 | Mueller et al. | Oct 1991 | A |
5073163 | Lippman | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5095887 | Leon et al. | Mar 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5129895 | Vassiliadis et al. | Jul 1992 | A |
5164188 | Wong | Nov 1992 | A |
5169386 | Becker et al. | Dec 1992 | A |
5171213 | Price, Jr. | Dec 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5207685 | Cinberg et al. | May 1993 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5246451 | Trescony et al. | Sep 1993 | A |
5284476 | Koch | Feb 1994 | A |
5290295 | Querals et al. | Mar 1994 | A |
5300020 | L'Esperance, Jr. | Apr 1994 | A |
5318513 | Leib et al. | Jun 1994 | A |
5324306 | Makower et al. | Jun 1994 | A |
5334137 | Freeman | Aug 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5342370 | Simon et al. | Aug 1994 | A |
5346464 | Camras | Sep 1994 | A |
5360399 | Stegmann | Nov 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5370641 | O'Donnell, Jr. | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5397300 | Baerveldt et al. | Mar 1995 | A |
5415666 | Gourlay et al. | May 1995 | A |
5433701 | Rubinstein | Jul 1995 | A |
5443505 | Wong et al. | Aug 1995 | A |
5445637 | Bretton | Aug 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5462558 | Kolesa et al. | Oct 1995 | A |
5472440 | Beckman | Dec 1995 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5486165 | Stegmann | Jan 1996 | A |
5502052 | DeSantis | Mar 1996 | A |
5516522 | Peyman et al. | May 1996 | A |
5520631 | Nordquist et al. | May 1996 | A |
5547993 | Miki | Aug 1996 | A |
5556400 | Tunis | Sep 1996 | A |
5557453 | Schalz et al. | Sep 1996 | A |
5558629 | Baerveldt et al. | Sep 1996 | A |
5558630 | Fisher | Sep 1996 | A |
5558637 | Allonen et al. | Sep 1996 | A |
5562641 | Flomenblit et al. | Oct 1996 | A |
RE35390 | Smith | Dec 1996 | E |
5601094 | Reiss | Feb 1997 | A |
5601549 | Miyagi | Feb 1997 | A |
5626558 | Suson | May 1997 | A |
5626559 | Solomon | May 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5643321 | McDevitt | Jul 1997 | A |
5651782 | Simon et al. | Jul 1997 | A |
5651783 | Reynard | Jul 1997 | A |
5652236 | Krauss | Jul 1997 | A |
5653724 | Imonti | Aug 1997 | A |
5663205 | Ogawa et al. | Sep 1997 | A |
5665114 | Weadock et al. | Sep 1997 | A |
5669501 | Hissong et al. | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5676679 | Simon et al. | Oct 1997 | A |
5681275 | Ahmed | Oct 1997 | A |
5681323 | Arick | Oct 1997 | A |
5695479 | Jagpal | Dec 1997 | A |
5702414 | Richter et al. | Dec 1997 | A |
5702419 | Berry et al. | Dec 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5723005 | Herrick | Mar 1998 | A |
5725493 | Avery et al. | Mar 1998 | A |
5725546 | Samson | Mar 1998 | A |
5733256 | Costin | Mar 1998 | A |
5741292 | Mendius | Apr 1998 | A |
5741333 | Frid | Apr 1998 | A |
5743868 | Brown et al. | Apr 1998 | A |
5752928 | de Roulhac et al. | May 1998 | A |
5762625 | Igaki | Jun 1998 | A |
5766242 | Wong et al. | Jun 1998 | A |
5766243 | Christensen et al. | Jun 1998 | A |
5767079 | Glaser et al. | Jun 1998 | A |
5785674 | Mateen | Jul 1998 | A |
5792099 | DeCamp et al. | Aug 1998 | A |
5807244 | Barot | Sep 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5810870 | Myers et al. | Sep 1998 | A |
5814620 | Robinson et al. | Sep 1998 | A |
5817100 | Igaki | Oct 1998 | A |
5824072 | Wong | Oct 1998 | A |
5830139 | Abreu | Nov 1998 | A |
5830171 | Wallace | Nov 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5836939 | Negus et al. | Nov 1998 | A |
5840041 | Petter et al. | Nov 1998 | A |
5865831 | Cozean et al. | Feb 1999 | A |
5868697 | Ritcher et al. | Feb 1999 | A |
5869468 | Freeman | Feb 1999 | A |
5879319 | Pynson et al. | Mar 1999 | A |
5882327 | Jacob | Mar 1999 | A |
5886822 | Spitzer | Mar 1999 | A |
5891084 | Lee | Apr 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5908449 | Bruchman et al. | Jun 1999 | A |
5925342 | Adorante et al. | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5941250 | Aramant et al. | Aug 1999 | A |
5952378 | Stjernschantz et al. | Sep 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
5980928 | Terry | Nov 1999 | A |
5981598 | Tatton | Nov 1999 | A |
5984913 | Kritzinger et al. | Nov 1999 | A |
6004302 | Brierley | Dec 1999 | A |
6007510 | Nigam | Dec 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6030416 | Huo et al. | Feb 2000 | A |
6033434 | Borghi | Mar 2000 | A |
6036678 | Giungo | Mar 2000 | A |
6036682 | Lange et al. | Mar 2000 | A |
6045557 | White et al. | Apr 2000 | A |
6050970 | Baerveldt | Apr 2000 | A |
6050999 | Paraschac et al. | Apr 2000 | A |
6059772 | Hsia et al. | May 2000 | A |
6059812 | Clerc et al. | May 2000 | A |
6060463 | Freeman | May 2000 | A |
6063116 | Kelleher | May 2000 | A |
6063396 | Kelleher | May 2000 | A |
6071286 | Mawad | Jun 2000 | A |
6077299 | Adelberg et al. | Jun 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6110912 | Kaufman et al. | Aug 2000 | A |
6123668 | Abreu | Sep 2000 | A |
6135977 | Drasler et al. | Oct 2000 | A |
6142990 | Burk | Nov 2000 | A |
6146387 | Trott et al. | Nov 2000 | A |
6159458 | Bowman et al. | Dec 2000 | A |
6165210 | Lau et al. | Dec 2000 | A |
6168575 | Soltanpour | Jan 2001 | B1 |
6174305 | Mikus et al. | Jan 2001 | B1 |
6177427 | Clark et al. | Jan 2001 | B1 |
6184250 | Klimko et al. | Feb 2001 | B1 |
6187016 | Hedges et al. | Feb 2001 | B1 |
6193656 | Jeffries et al. | Feb 2001 | B1 |
6194415 | Wheeler et al. | Feb 2001 | B1 |
6197056 | Schachar | Mar 2001 | B1 |
6201001 | Wang et al. | Mar 2001 | B1 |
6203513 | Yaron et al. | Mar 2001 | B1 |
6217895 | Guo et al. | Apr 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6224570 | Le et al. | May 2001 | B1 |
6228873 | Brandt et al. | May 2001 | B1 |
6231597 | Deem et al. | May 2001 | B1 |
6231853 | Hillman et al. | May 2001 | B1 |
6241721 | Cozean et al. | Jun 2001 | B1 |
6251090 | Avery et al. | Jun 2001 | B1 |
6254612 | Hieshima | Jul 2001 | B1 |
6261256 | Ahmed | Jul 2001 | B1 |
6264668 | Prywes | Jul 2001 | B1 |
6266182 | Morita | Jul 2001 | B1 |
6268398 | Ghosh et al. | Jul 2001 | B1 |
6274138 | Bandman et al. | Aug 2001 | B1 |
6287256 | Park et al. | Sep 2001 | B1 |
6287313 | Sasso | Sep 2001 | B1 |
6299603 | Hecker et al. | Oct 2001 | B1 |
6299895 | Hammang et al. | Oct 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6342058 | Portney | Jan 2002 | B1 |
6348042 | Warren, Jr. | Feb 2002 | B1 |
6355033 | Moorman et al. | Mar 2002 | B1 |
6361519 | Knudson et al. | Mar 2002 | B1 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6402734 | Weiss | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6413540 | Yaacobi | Jul 2002 | B1 |
6416777 | Yaacobi | Jul 2002 | B1 |
6428501 | Reynard | Aug 2002 | B1 |
6428566 | Holt | Aug 2002 | B1 |
6436427 | Hammang et al. | Aug 2002 | B1 |
6450937 | Mercereau et al. | Sep 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6454787 | Maddalo et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6530896 | Elliott | Mar 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544249 | Yu et al. | Apr 2003 | B1 |
6548078 | Guo et al. | Apr 2003 | B2 |
6558342 | Yaron et al. | May 2003 | B1 |
6561974 | Grieshaber et al. | May 2003 | B1 |
6579235 | Abita et al. | Jun 2003 | B1 |
6582426 | Moorman et al. | Jun 2003 | B2 |
6585680 | Bugge | Jul 2003 | B2 |
6589203 | Mitrev | Jul 2003 | B1 |
6595945 | Brown | Jul 2003 | B2 |
6607542 | Wild | Aug 2003 | B1 |
6613343 | Dillingham et al. | Sep 2003 | B2 |
6620154 | Amirkhanian et al. | Sep 2003 | B1 |
6622473 | Lynch et al. | Sep 2003 | B2 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6629981 | Bui et al. | Oct 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6676607 | De Juan, Jr. et al. | Jan 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6699272 | Slepian et al. | Mar 2004 | B2 |
6726676 | Stegmann et al. | Apr 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6763833 | Khera et al. | Jul 2004 | B1 |
6764439 | Schaaf et al. | Jul 2004 | B2 |
6767346 | Damasco et al. | Jul 2004 | B2 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6780165 | Kadziauskas et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6827738 | Willis et al. | Dec 2004 | B2 |
6902577 | Lipshitz et al. | Jun 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6981958 | Gharib et al. | Jan 2006 | B1 |
7033603 | Nelson et al. | Apr 2006 | B2 |
7077821 | Durgin | Jul 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7135016 | Asia et al. | Nov 2006 | B1 |
7217263 | Humayun et al. | May 2007 | B2 |
7758624 | Dorn et al. | Jul 2010 | B2 |
8267882 | Euteneuer et al. | Sep 2012 | B2 |
8540659 | Berlin | Sep 2013 | B2 |
8679089 | Berlin | Mar 2014 | B2 |
8852266 | Brooks et al. | Oct 2014 | B2 |
9173775 | Haffner et al. | Nov 2015 | B2 |
20010000527 | Yaron et al. | Apr 2001 | A1 |
20010025150 | de Juan et al. | Sep 2001 | A1 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020026200 | Savage | Feb 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020099434 | Buscemi et al. | Jul 2002 | A1 |
20020111608 | Baerveldt et al. | Aug 2002 | A1 |
20020120284 | Schachar et al. | Aug 2002 | A1 |
20020120285 | Schachar et al. | Aug 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020165522 | Holmen | Nov 2002 | A1 |
20020177856 | Richter et al. | Nov 2002 | A1 |
20020188308 | Tu et al. | Dec 2002 | A1 |
20030014021 | Holmen | Jan 2003 | A1 |
20030014092 | Neuhann | Jan 2003 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030069637 | Lynch et al. | Apr 2003 | A1 |
20030079329 | Yaron et al. | May 2003 | A1 |
20030088260 | Smedley et al. | May 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030097117 | Buono | May 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030105456 | Lin | Jun 2003 | A1 |
20030109907 | Shadduck | Jun 2003 | A1 |
20030135149 | Cullen et al. | Jul 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030187385 | Bergheim et al. | Oct 2003 | A1 |
20030195438 | Petillo | Oct 2003 | A1 |
20030208217 | Dan | Nov 2003 | A1 |
20030212383 | Cote et al. | Nov 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040050392 | Tu et al. | Mar 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040127843 | Tu et al. | Jul 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040249404 | Haefliger | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20050038334 | Lynch et al. | Feb 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050075704 | Tu et al. | Apr 2005 | A1 |
20050096639 | Slatkine et al. | May 2005 | A1 |
20050119636 | Haffner et al. | Jun 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050171562 | Criscuolo et al. | Aug 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060106370 | Baerveldt et al. | May 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20070078471 | Schachar et al. | Apr 2007 | A1 |
20070123919 | Schachar et al. | May 2007 | A1 |
20080082078 | Berlin | Apr 2008 | A1 |
20080125691 | Yaron et al. | May 2008 | A1 |
20080140059 | Schachar et al. | Jun 2008 | A1 |
20080221501 | Cote et al. | Sep 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20090112245 | Haefliger | Apr 2009 | A1 |
20100087774 | Haffner et al. | Apr 2010 | A1 |
20100185138 | Yaron et al. | Jul 2010 | A1 |
20100185205 | Novakovic et al. | Jul 2010 | A1 |
20110077626 | Baerveldt et al. | Mar 2011 | A1 |
20110092965 | Slatkine et al. | Apr 2011 | A1 |
20120203262 | Connors et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
200072059 | Jul 2001 | AU |
2244646 | Feb 1999 | CA |
2643357 | Nov 1999 | CA |
198 40 047 | Mar 2000 | DE |
0436232 | Jul 1991 | EP |
0550791 | Jul 1993 | EP |
0 858 788 | Aug 1998 | EP |
0 898 947 | Mar 1999 | EP |
1 114 627 | Jul 2001 | EP |
2 710 269 | Mar 1995 | FR |
2 721 499 | Dec 1995 | FR |
2 296 663 | Jul 1996 | GB |
11-123205 | May 1999 | JP |
2143250 | Dec 1999 | RU |
WO 8900869 | Feb 1989 | WO |
WO 9108784 | Jun 1991 | WO |
WO 9118568 | Dec 1991 | WO |
WO 9208406 | May 1992 | WO |
WO 9219294 | Nov 1992 | WO |
WO 9413234 | Jun 1994 | WO |
WO 9421205 | Sep 1994 | WO |
WO 9508310 | Mar 1995 | WO |
WO 9823237 | Jun 1998 | WO |
WO 9830181 | Jul 1998 | WO |
WO 9835639 | Aug 1998 | WO |
WO 9837831 | Sep 1998 | WO |
WO 9926567 | Jun 1999 | WO |
WO 9930641 | Jun 1999 | WO |
WO 9938470 | Aug 1999 | WO |
WO 9938470 | Aug 1999 | WO |
WO 0013627 | Mar 2000 | WO |
WO 0064369 | Nov 2000 | WO |
WO 0064390 | Nov 2000 | WO |
WO 0064391 | Nov 2000 | WO |
WO 0064393 | Nov 2000 | WO |
WO 0072788 | Dec 2000 | WO |
WO 0150943 | Jul 2001 | WO |
WO 0178631 | Oct 2001 | WO |
WO 0178656 | Oct 2001 | WO |
WO 0185065 | Nov 2001 | WO |
WO 02074052 | Sep 2002 | WO |
WO 03015659 | Feb 2003 | WO |
WO 03041622 | May 2003 | WO |
WO 03045290 | Jun 2003 | WO |
WO 03073968 | Sep 2003 | WO |
Entry |
---|
Phillip C. Jacobi, MD, Thomas S. Dietleln, MD and Gunter K. Krieglstein, Goniocurettage for Removing Trabecular Meshwork: Clinical Resuls of a new Surgical Technique in Advanced Cronic Open-Angle Glaucoma, American Journal of Ophthalmology, May 1999, pp. 506-610. |
Phillip C. Jacobi, MD, Thomas S. Dletleln, MD and Gunter K. Krieglstein, MD, Bimanual Trabecular Aspiration in Pseudoexfoliation Glaucoma, Ophthalmology, 1998, vol. 105, No. 5, May 1998, pp. 886-894. |
Phillip C. Jacobi, MD, Thomas S. Dietleln, MD and Gunter K. Krieglstein, MD, Microendoscopic Trabecular Surgery in Glaucoma Management, Ophthalmology, 1999 vol. 106, No. 3, pp. 538-544. |
Arthur L. Schwartz, MD, & Douglas R. Anderson, MD, Trabecular Surgery, Arch Ophthalmol. vol. 92, Aug. 1974, pp. 134-138. |
R.A. Hill, Q. Ren, D.C. Nguyen, L.H. Liaw, & M.W. Berns, Free-Electron Laser (FEL) Ablation of Ocular Tissues, Laser Med Sci 1998, vol. 13, pp. 219-226. |
Maurice H. Luntz, MD & D.G. Livingston, B.SC., Trabeculotomy AB Externo & Trabeculectomy in Congenital and Adult-Onset Glaucoma, American Journal of Ophthalmology, Feb. 1977. vol. 83, No. 2, pp. 174-179. |
W.M. Grant, MD, Further Studies on Facllity of Flow Through the Trabecular Meshwork, AMA Archives of Ophthalmology, Oct. 1958, vol. 60, pp. 523-533. |
Richard A. Hill, MD, George Baerveldt, MD, Serdar A. Ozler, MD, Michael Pickford, BA, Glen A. Profeta, BS, & Michael W. Berns, PhD, Laser Trabecular Ablation (LTA), Laser in Surgery and Medicine, 1991, vol. 11, pp. 341-346. |
Detliev Spiegal, MD, Karin Kobuch, MD, Richard A. Hill, MD, Ronald L. Gross, MD, Schlemm's Canal Implant: A New Method to Lower Intraocular Pressure in Patients With POAG, Opthalmic Surgery and Lasers, Jun. 1999, vol. 39, No. 6, pp. 492-494. |
L. Jay Katz, MD,, A Call for Innovative Operations for Glaucoma, Arch Ophthalmology, Mar. 2000, vol. 118, pp. 412-413. |
Anselm Kampik & Franz Grehn, Nutzen und Risiken Augenärzticher Therapie, Hauptreferate der XXXIII, Essener Fortbildung für Augenärzte, Dec. 1998. (English translated version provided “Benefits and Risks of Ophthalmological Therapy”). |
Detlev Spiegel, 7 Chirurglsche Glaukomtherapie, pp. 79-88 (English translation provided). |
Rosenberg, et al., “Implants in Glaucoma Surgery”, The Glaucomas, 1996, Chapter 88, pp. 1783-1807 (27 pages). |
Hans Hoerauf, Christopher Wirbelauer, Christian Scholz, Ralf Engelhardt, Peter Koch, Horst Laqua, and Reginald Birngruber, Slit-lamp-adapted optical coherence tomography of the anterior segment, Graefe's Arch Clin Exp Ophthalmol, 2000, vol. 238, pp. 8-18. |
Sumita Radhakrishnan, Andrew M. Rollins, Jonathan E. Roth, S. Yazddanfar, Volker Westphal, David Bardenstein, and Joseph Izatt, Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm, Arch Ophthalmology, Aug. 2001, vol. 119, pp. 1179-1185. |
I. Grierson, R.C. Howes, and Q. Wang, Age-related Changes in the Canal of Schlemm, Exp. Eye Res., 1984, vol. 39, pp. 505-512. |
Luanna K. Putney, Cecile Rose T. Vibat, and Martha E. O'Donnell, Intracellular C1 Regulates Na-K-C1 Cotransport Activity in Human Trabecular Meshwork Cells, 1999 American Physiological Society, Sep. 1999, pp. C373 through C383. |
Edited by Kevin Strange, Cellular and Molecular Physiology of Cell Volume Regulation, Library of Congress Cataloging in-Publication Data, CRC Press, Inc., pp. 312-321. |
William Tatton, Ruth M.E. Chalmers-Redman, Ajay Sud, Steven M. Podos, and Thomas Mittag, Maintaining Mitochondrial Membrane Impermeability: An Opportunity for New Therapy in Glaucoma, Survey of Ophthalmology, vol. 45, Supplement 3, May 2001, pp. S277 through S283. |
Robert W. Nickells, Apoptosis of Retinal Ganglion Cells in Glaucoma: An Update of the Molecular Pathways Involved in Cell Death, Survey of Ophthalmology, vol. 43, Supplement 1, Jun. 1999, pp. S-151 through S-161. |
Grune & Stratton, Harcourt Brace Jovanovich Publishers, edited by J.E. Cairns, Glaucoma, vol. 1, Chapter 14, Anatomy of the Aqueous Outflow Channels, by Johannes W. Rohen, pp. 277-296. |
Yasuhiro Matsumoto and Douglas H. Johnson, Trabecular Meshwork Phagocytosis in Graucomatous Eyes, Ophthalmologica 1977, vol. 211, pp. 147-152. |
M. Bruce Shields, MD, A Study Guide for Glaucoma: Aqueous Humor Dynamics, Copyright 1982, pp. 6-43. |
M.A. Johnstone, R. Stegmann, and B.A. Smit, American Glaucoma Society, 12th Annual Meeting, Cylindrical Tubular Structures Spanning from Trabecular Meshwork Across SC, Laboratory Studies with SEM TEM and Tracers Correlated with Clinical Findings, p. 39. |
W.G. Tatton, Apoptotic Mechanisms in Neurodegeneration: Possible Relevance to Glaucoma, European Journal of Ophthalmology, Jan.-Mar. 1999, vol. 9, Supplement 1, pp. S22 through S29. |
Cindy K. Bahler, BS, Gregrory T. Smedley, PhD, Jianbo Zhou, PhD, Douglas H. Johnson, MD., Trabecular Bypass Stents Decrease Intraocular Pressure in Cultured Human Anterior Segments, American Journal of Ophthalmology, Dec. 2004, vol. 138, pp. 988-994. |
Jianbo Zhou, PhD, Gregory T. Smedley, PhD., A Trabecular Bypass Flow Hypothesis, Feb. 2005, vol. 14 No. 1, pp. 74-83. |
U.S. Appl. No. 09/452,963, filed Dec. 2, 1999. Title: Expandable/ Retractable Stent for Venous and Valvular Annulus Use. |
Vincente, L. Jocson, M.D.; Air Trabeculotomy; American Journal of Ophthalmolgy: vol. 79, No. 1, Jan.-Jun. 1975; pp. 107-111. |
Daniel A. Fletcher, Ph.D., Daniel V. Palanker, Ph.D., Philip Hule, M.D., Jason Miller, MS, Michael F. Marmor, M.D. And Mark S. Blumenkranz, M.D.; Intravascular Drug Delivery With a Pulsed Liquid Microjet; (Reprinted) Arch Ophthalmology; vol. 120, Sep. 2002, pp. 1206-1208. |
Troncoso, Manuel U., Tantalum implants for inducing hypotony, American Journal of Ophthalmology, vol. 32, No. 4, Apr. 1949, pp. 499-508 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20060241749 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60315463 | Aug 2001 | US | |
60363980 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10231342 | Aug 2002 | US |
Child | 11455598 | US |