The invention relates to a system and a technique for delivering and installing an implant in living bone. Specifically, the system includes an implant and a carrier attached thereto that are packaged together and delivered to the installation site within the living bone. The system also includes a variety of tools that provide flexibility in the installation process and additional components that permit the taking of impressions during first stage surgery.
It is known to enclose sterilized dental implants in packages that will preserve sterility until opened. The packages are delivered to the clinician, who elects when and where to open the package. It is also known to include in such packages carrier devices attached to the implants which enable the implant to be manipulated without directly touching it.
Placing a dental implant in the jawbone of a patient is typically the beginning of several procedures which have been developed for providing implant-supported dentition. All procedures use components, frequently referred to as an “impression coping,” for transferring to the dental laboratory information about the patient's mouth in the area of the implant on which the dentition is to be supported. Until fairly recently, it has been the usual practice to delay this information transfer step several months after installing the implant to allow the implant to “osseointegrate” with the host bone. The result is a two stage surgical procedure, the first stage includes the installation of the implant; the second stage involves another surgery in which the gum tissue is reopened and an impression coping is fitted to the implant to gather the needed information. Since laboratory procedures cannot begin without this information, the development of a patient's dental prosthesis was generally delayed about three to six months while the osseointegration process occurred.
Generally, the carrier has a non-rotational engagement surface (i.e., non-circular) that a dental tool engages. When the implant has external threads, the dental tool is rotated such that the rotation imparted on the combination of the carrier and the implant screws the implant into the jawbone. In some situations, however, it is necessary to have a longer carrier because the gingiva above the jawbone is thick, such that only a smaller portion of the carrier is exposed through the gingiva. In that situation, clinicians often remove the standard carrier from the implant and install onto the implant a longer carrier to accommodate the thicker gingiva. Any time the clinician touches the implant, however, there is a risk that the sterile surfaces on the implant may become contaminated.
Recently, a protocol was developed which includes taking an impression of the patient's mouth during first stage surgery. Immediately after the implant has been installed into its final position at the site of the jawbone, the clinician removes the carrier from the implant and installs onto the implant an impression coping. Once the impression coping is installed on the implant, the clinician then applies impression material to the region to take the impression of the site in the patient's mouth. The impression would then allow for the development of a temporary, or possibly, a permanent dentition that would be attached to the implant after osseointegration. One of the problems associated with this new protocol is the potential for movement of the implant, which has been accurately placed into the patient's jawbone, caused by the attachment of the impression coping.
The present invention provides for an implant delivery system that includes an implant, a carrier, and an implant screw attaching the implant to the carrier. The implant can be of a variety of types and typically includes an internally threaded bore extending along its central axis. The carrier has a through bore extending entirely therethrough in which the implant screw resides. The implant screw connects the implant to the carrier such that the lower surface of the carrier abuts the upper surface of the implant. A pair of non-circular fittings on the implant and carrier lock these two components against rotation relative to one another.
The through bore of the carrier includes a non-circular socket that is to be engaged by a correspondingly-shaped section of a coupling tool. The coupling tool is engaged by a device which imparts movement on the combination of the implant and the carrier that is necessary to install the implant into its final position within the jawbone. When the implant includes an externally threaded body, the device may be a dental handpiece that imparts rotational movement on the implant to screw it into the bone. The coupling tool can be made in a variety of lengths such that the clinician selects the appropriate length for the prevailing conditions in the patient's mouth.
After the implant is installed in its final position, the carrier is removed through the use of a driver. The driver includes a surface which the clinician grasps, a shank extending from the grasping surface, and a guide that is connected to the shank. The guide is free to move rotationally around the shank, but is limited in its axial movement along the shank. The lower end of the shank includes a surface which is non-rotationally coupled to the implant screw. The guide includes at its lower end an engaging portion which is to be non-rotationally engaged within the socket of the carrier. During removal of the implant screw, the engaging portion of the guide is coupled to the internal socket of the carrier and the lower end of the shank is engaged within a driver socket in the implant screw. When the clinician rotates the grasping surface, the carrier is held steady on the implant while the implant screw is rotated, such that it releases the carrier from the implant. Due to the configuration of the driver, the carrier can be removed from the implant without imparting any motion whatsoever on the carrier and, therefore, the implant.
If the clinician so desires, he or she can also utilize the combination of the implant and the carrier to take an impression of the patient's mouth during first stage surgery. An impression coping and its associated bolt can be affixed into the socket of the carrier. The impression coping has at its lower end an expandable non-rotational boss that fits within the carrier's socket. When the bolt is threaded into an internally threaded bore within the impression coping, the boss expands outward such that it becomes press fit into the socket of the carrier. This press fit engagement provides enough retention force so that an impression can be made by the clinician without the risk of the impression coping loosening from the carrier.
The bolt associated with the impression components can include an elongated head so that the bolt and impression component act as a “pick-up”-type impression coping. Alternatively, a short-headed bolt can be used so that the bolt and impression component act as a “transfer”-type impression coping. In either case, after the impression is taken, the carrier is reattached to the impression coping using the bolt. The combination of the carrier and impression coping is then used with the impression material in the dental laboratory to develop a prosthetic tooth for the patient.
Regardless of whether the clinician chooses to take an impression of the region during first stage surgery, he or she must cover the internally threaded bore of the implant after the carrier is removed. Thus, the combination of the implant carrier and implant screw is typically packaged with a healing cap. The healing cap mates with the internally threaded bore of the implant and is placed thereon prior to suturing the gingiva.
In another embodiment, the carrier includes an internal polygonal section that is at least partially defined by a threaded surface. The threaded surface includes one or more threads making a plurality of turns on the internal portion of the carrier. While the polygonal section serves the same purpose as the non-circular socket of the previously described carrier, the threaded surface provides a structure to which various secondary components can be attached. For example, the carrier can be converted into a gingival healing abutment by the addition of a gingival healing component that screws into the threaded surface. Such a gingival component can simply be a screw that has a head that is large enough to seal the opening in the carrier, or can be a sleeve-type component that fits around the outer periphery of the carrier.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.
a illustrates an implant, a carrier, and an implant screw holding the carrier to the implant.
b illustrates the implant, carrier, and implant screw within a package.
a-2c illustrate a series of carriers having various lengths.
a-3b illustrate two types of coupling tools that can impart rotational movement on the combination of the implant and the carrier.
a-5b illustrate a guide that is used in conjunction with the driver in
a-8b illustrate an impression coping that can be attached to the carrier of the present invention.
a-11b illustrate an alternative pick-up impression coping that can be used with the carrier of the present invention.
a-12d illustrate another embodiment of the implant delivery system in which the carrier includes internal threads for receiving secondary components.
a-13b illustrate a tool used with the implant delivery system of
a and 15b illustrate the carrier being used as part of a healing abutment.
a and 16b illustrate the carrier being used as part of an alternative healing abutment having a wider diameter.
a-17d illustrate the carrier of
a-18b illustrate an implant delivery system for use on an implant having neither an internal nor an external polygonal fitting.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referring initially to
The carrier 12 has a through bore 20 extending from its upper end to its lower end. The through bore 20 has various sections. A shoulder 22 is positioned within the through bore 20 near the lower end of the carrier 12. Also located at the lower end of the through bore 20 is an implant socket 24 that is configured to mate with the manipulating fitting 16 of the implant 10. At the upper end of the carrier 12 is another socket 25 which, as described below, engages the guide portion of the driver and also may receive a mounting section of an impression coping. The socket 25 includes a non-circular internal surface (usually hexagonal) for non-rotational engagement with the driver and the coping.
An O-ring 26 is positioned within a groove 27 on the exterior surface of the carrier 12. Typically, the O-ring 26 is a polymer or an elastomer so that it is somewhat resilient. As shown in
Furthermore, the groove 27 does not have an entirely circular cross-section, as can be seen in
The implant screw 14 includes a head 28 that engages the shoulder 22 of the carrier 12. The implant screw 14 also includes a threaded shaft 30 which threadably engages the threaded bore 18 of the implant 10. Thus, after manufacturing the implant 10 and the carrier 12, and prior to packaging these two components, the manufacturer attaches these two components by use of the implant screw 14. In its final position (not shown), the implant screw 14 forces the lower end of the carrier 12 into contact with the upper surface of the implant 10 as the implant socket 24 envelops over the manipulating fitting 16 of the implant 10.
The implant screw 14 also includes within its head 28 a driver socket 32. The driver socket 32 is engaged by the driver tool which attaches the implant screw 14 to or removes the implant screw 14 from the assembly. When the implant screw 14 is removed, the carrier 12 can be released from the implant 10.
Because of the size of the implant screw 14, it is difficult to handle, especially when doing so in a patient's mouth. Consequently, after the implant screw 14 is placed within the through bore 20 to attach the implant 10 to the carrier 12, the O-ring 26 is inserted within the groove 27 such that a portion of the O-ring 26 enters the through bore 20 in the area of the socket 25. The O-ring 26 protrudes inward towards the central axis of the carrier 12 far enough to reduce the effective diameter of the through bore 20 to a dimension that is less than the dimension of the head of the implant screw 14. Thus, the implant screw 14 is held captive in the carrier 12 between the O-ring 26 and the shoulder 22. Alternatively, the through bore 20 of the carrier 12 can be manufactured in a manner which causes an irregularity on its surface after the implant screw 14 is placed therein to effectuate the captivity of the implant screw 14.
Depending on the conditions in the patient's mouth, the implant size is selected by the clinician that best suits the patient's condition. To assist the clinician with installing the implant properly, the carrier 12 is manufactured in various lengths, as shown in
In
a and 3b illustrate tools that engage the combination of the implant 10 and the carrier 12 to install the implant 10 within the jawbone. In
In
In operation, the clinician selects the tool 40 or 50 that is best suited for the conditions in the patient's mouth. For example, if the clinician knows that the implant 10 will be installed through dense bone, then additional torque is needed. Thus, the clinician will likely choose the tool 40 which can be engaged by a power driver. Alternatively, if the clinician understands the bone tissue in which the implant 10 will be installed in cancellous bone, the clinician may instead choose the tool 50 and not utilize a power driver.
In any event, after choosing the tool 40 or 50 that is best suited for the patient's conditions, the clinician grasps the upper end of the tool 40 or 50 and inserts the ball hex fitting 44 or 54 into the socket 25 of the carrier 12. Consequently, the tools 40 and 50 are devices that can be used by the clinician to transport the combination of the implant 10 and the carrier 12 from its package to the site in the patient's mouth. The portion of the O-ring 26 which extends into the socket 25 assists in retaining the ball hex fitting 44 or 54 within the socket 25. Preferably, the O-ring 26 reduces the effective diameter of the socket 25 to a dimension which is less than the maximum dimension of the ball hex fitting 44 or 54. Once the ball hex fitting 44 is inserted into the socket 25 and past the flexible O-ring 26, the combination of the carrier 12 and the implant 10 can be transported by the tool 40 or 50.
Alternatively, the clinician may feel more comfortable using the wider tool 50 having the knurled surface 59, and choose to use the tool 50 to transport the combination of the implant 10 and the carrier 12 from its package to the installation site. Then, the clinician may replace the tool 50 with the tool 40 and utilize the power driver which rotates the tool 40. In this alternative methodology, utilization of the tool 50 may allow the clinician the ability to start the implant 10 into the jawbone by rotating the tool 50 with his or her fingers.
The tools 40 and 50 can be made in various lengths. Therefore, the clinician no longer needs to substitute the packaged carrier for a longer or shorter carrier to suit the conditions in the patient's mouth, as has been the case in many prior art systems. Instead, the clinician simply chooses the length of the tool 40 or 50 that will best assist him or her in the installation process.
Referring now to
a and 5b are partially broken away side and bottom views, respectively, of a guide 90 that is used in conjunction with the driver 70 of
Extending through the main body 92 and the engaging portion 94 of the guide 90 is a hole 100. The hole 100 includes a threaded region 102 which matches the thread type of threaded portion 78 on driver 70. As is shown in
The clinician then pushes the head 72 of the driver 70 downward such that the fitting 76 on the lower portion of the shank 74 is forced into non-rotational engagement with the driver socket 32 of the implant screw 14. Because of its unique tapered shape, the fitting 76 fits within the driver socket 32 without the need for an excessive amount of force or rotation. With the clinician grasping the head 72 and the flats 98 (
As the implant screw 14 rotates, it is threaded out of the implant 10 such that there is no component holding the carrier 12 onto the implant 10. Additionally, because there is no rotation imparted on the implant 10, its final installation position within the bone 110 remains constant. When the implant screw 14 is fully unthreaded from the implant 10, the driver 70 and the guide 90 are removed from the patient's mouth. Because the carrier 12 is now free of the implant 10, the axial movement of the driver 70 and the guide 90 also removes the carrier 12 because of the tight fit of the engaging portion 94 in the socket 25 due to contact with the O-ring 26. If the O-ring 26 is not designed to provide tight engagement with the engaging portion 94, then the clinician simply releases the carrier 12 from the implant 10 and removes it from the mouth once the implant screw 14 has been threadably removed from the implant 10.
In the event that the clinician finds it difficult to grasp the guide 90 and restrain it from rotational movement, the clinician can utilize another tool, such as a wrench, to grasp the two flats 98 (
The relationship of the threaded region 102 of the guide 90 and the threaded portion 78 of the driver 70 is shown in
Until now, the discussion has focused on the installation of the implant 10 and removal of the carrier 12 therefrom after installation. The combination of the implant 10 and the carrier 12 can, however, also be used with additional components to take an impression of the patient's mouth during first stage surgery after the implant 10 has been installed into its final position within the jawbone. The components used to perform this function are described with reference to
In
The plurality of faces 128 give the boss 126 a non-round cross-sectional shape. Because the boss 126 is to be inserted into the socket 25 (
A bore 132 extends through the body 122, the indexing region 124, and the boss 126. The bore 132 includes a threaded portion 134 for threadably engaging a corresponding threaded region of the bolt which mates with the impression coping 120. Within the indexing region 124 is an annular ledge 136 for engaging the head of the bolt. The annular ledge 136 is best seen in
In
When the pick-up bolt 140 is used with the impression coping 120, the boss 126 of the impression coping 120 is first inserted into the upper end of the carrier 12 at its socket 25. The pick-up bolt 140 is then inserted through the bore 132 of the impression coping 120. The threaded region 145 of the pick-up bolt 140 threadably engages the threaded portion 134 of the bore 132. As the pick-up bolt 140 is threaded into the impression coping 120, the threaded region 145 eventually reaches the threaded portion 134 located within the boss 126. As this occurs, the boss 126 is expanded radially outward such that it is forced into a press-fit, frictional engagement with the socket 25 of the carrier 12. Thus, the impression coping 120 is fixedly mounted on the carrier 12 by the use of this pick-up bolt 140. This allows the clinician to use an open tray method of making an impression whereby, after the impression is taken, the pick-up bolt 140 is removed while the impression material remains at the site. The impression coping 120 is then “picked up” as the impression material is removed.
The carrier 12 is removed from the implant 10 and then reunited with the impression coping 120 within the impression material such that both the impression coping 120 and the carrier 12 are used to create the model used to develop the prosthetic tooth. The carrier 12 is attached to the implant analog that is used to produce the stone model replicating the patient's mouth.
In
When the transfer bolt 150 is used, the combination of the transfer bolt 150 and the impression coping 120 forms a “transfer-type” impression coping. After the threaded region 155 of the transfer bolt 150 is threadably engaged with the threaded portion 134 of the internal bore 132 of the impression coping 120, an impression is taken using a closed tray method. When the impression material is removed from the patient's mouth, the impression coping 120 and the transfer bolt 150 both remain on the carrier 12. The clinician then removes the transfer bolt 150 by rotating the head 152 such that the threaded region 155 is threadably released from the threaded portion 134 of the impression coping 120. Once the transfer bolt 150 is removed from the patient's mouth, the impression coping 120 can be removed. The clinician then releases the carrier 12 from the implant 10, as described previously, and reunites the impression coping 120 on the carrier 12 by the use of the transfer bolt 150. The combination of the transfer bolt 150, the impression coping 120, and the carrier 12 is then attached to an implant analog in the laboratory. The impression material is then reinserted over the transfer bolt 150, the impression coping 120, and the carrier 12 such that a stone model can be built which replicates the prevailing conditions in the patient's mouth.
It should be noted that the transfer bolt 150 can be screwed onto and removed from the impression coping by use of a tool which has a tapering socket that replicates the tapering of the short head 152. Such a tool may also include a retention O-ring which engages the groove 156, thereby locking the tool onto the transfer bolt 150.
Thus, the clinician can easily attach and remove the transfer bolt 150 from the impression coping 120. A corresponding taper could be used on the pick-up bolt 140 at its upper end so that the same tool could be used with both the pick-up bolt 140 and the transfer bolt 150.
As can be seen, the impression coping 120 is a very versatile component in that it can be used as both a transfer-type coping and a pick-up-type impression coping, depending on the bolt used. Additionally, because the recesses 127 of impression coping 120 are aligned with faces 128, the recesses 127 are also aligned with the manipulating fitting 16 of the implant 10 (
In
As has been previously stated, once the implant 10 has been installed into its final position within the living jawbone, there are two methods which can be employed by the clinician utilizing the components described in
Regardless of the method chosen by the clinician, the result is an implant 10 fully inserted into the jawbone with the overlying gingiva having therethrough an aperture that exposes the manipulating fitting 16 of the implant 10. To complete the first stage surgery, the clinician installs onto the implant 10 a commonly known healing cap which covers the threaded bore 18 (
During typical stage two surgery, the gingiva overlying the implant 10 is reopened so as to expose the healing cap positioned on the implant 10. The healing cap is then removed and a gingival healing abutment is attached to the implant 10. This allows for the healing of the gingiva tissue around the healing abutment directly above the implant 10 to a shape that is preferably similar to the profile from which the natural tooth emerged from the gingiva.
If an impression was taken during first stage surgery, the clinician will have had time to develop a prosthetic tooth. Instead of utilizing a healing abutment, the clinician can install the prosthetic tooth directly on the implant. Usually, this prosthetic tooth is a temporary one and another impression may be taken to develop an accurate final dentition.
But, in some situations where the final position of the overlying gingiva can be predicted, the artificial tooth that is replicated from the model produced in first stage surgery can be so accurate that a permanent dentition can be developed and installed onto the implant 10 at second stage surgery. In this situation, the patient enters the clinician's office only twice; the first time for installing the implant, the second time for installing the permanent dentition.
a-12d illustrate an alternative embodiment of an implant delivery system 180. The implant delivery system 180 includes a dental implant 182, a carrier 184, and a screw 186. As in previous embodiments, the implant 182 includes an external hexagonal fitting 188 at its upper end.
The carrier 184 includes a through bore 190 that has a polygonal socket 192 at its upper end. The polygonal socket 192 has an interrupted surface due to an internal thread 194 that also resides at the upper end of the through bore 190. Because the through bore 190 has the polygonal socket 192 in the location of the internal thread 194, the internal thread 194 has a depth that varies depending on whether it is measured on a flat of the polygonal socket 192 or in a corner of the polygonal socket 192. As shown in
The carrier 184 has an external surface that includes an upper circumferential groove 200 and a lower circumferential groove 202. The upper circumferential groove 200 is located at 3 mm from the lowermost end of the carrier 184 and serves as a visualization marker for the clinician so that the clinician knows the depth of insertion of the implant 182. The lower circumferential groove 202 is also a visualization marker for the clinician in that it allows the clinician to know the location of the implant cover screw relative to the implant since the distance between the lower circumferential groove 202 and the lower surface of the carrier 184 is chosen to be the same as the height of the implant cover screw (for example, 1 mm). Additionally, the external surface includes a plurality of radial grooves 206 that are aligned with the internal flats of the polygonal socket 192. Because each of the flats of the polygonal socket 192 are aligned with a flat of the hexagonal socket (
Referring specifically to
a-13b illustrate a tool 220 having a driver attachment end 222, a shank 224, and a carrier attachment end 226. The driver attachment end 222 can be one of many types of structures that is useful for engaging dental drivers, and is shown as a standard ISO-latch system commonly used in dentistry. The carrier attachment end 226 includes an external polygonal fitting that is divided into a tapering section 228 and a non-tapering flat section 230. The tapering section 228 is wider at the end adjacent to the shank 224 and allows the tool to tightly engage the top edge of the polygonal socket 192 of the carrier 184, as will be discussed in more detail in
Once the clinician delivers the implant 182 to the appropriate site within the patient's mouth, the tool 220 is used to provide torque to the implant 182 via the carrier 184 to install the implant 182 into the bone of the patient. As the clinician is installing the implant 182, he or she observes the locations of the upper circumferential groove 200 and the lower circumferential groove 202 on the carrier 184 to ensure that the implant 182 is being installed to the proper depth. Once the implant 182 has been installed to the proper depth, the tool 220 is removed from the carrier 184. Due to tight engagement between the implant 182 and the bone, the force required to remove the tool 220 from the carrier 184 does not disturb the position of the implant 182 within the bone. At this point, the carrier 184 is extending through the gingival tissue above the bone.
When the tool 220 is used to install the implant 182 into bone, the torque must be applied across a reasonable amount of area. Accordingly, it is preferred that as much area of the polygonal fitting 192 as possible receives torque when installing the implant into bone. The implant delivery system 180 accomplishes this by providing a tapered region to the head of the screw 186. Because the opening 234 in the carrier-engaging section 226 fits over the tapered head of the screw 186, the tool 220 can be inserted further into the carrier 184 to maximize the amount of contact area on the polygonal fitting 192 that is to receive the torque. Hence, the carrier 184 can be made much shorter than prior art carriers so that it serves the purpose of a healing abutment as is described below. For example, the carrier 184 can have a height that is 4 mm or less.
Because the carrier 184 has the general shape of a typical healing abutment, the carrier 184 is also used with a healing plug 240 of
a-16b illustrate an alternative embodiment where the carrier 184 is used as part of the gingival healing abutment. Here, a body 260 slides over the carrier 184 and includes a first protrusion 264 and a second protrusion 266 that mate with the lower circumferential groove 202 and the upper circumferential groove 200, respectively. An elongated healing plug 268 fits through the opening 270 of the body 260 and includes the threads 272 at its lower end that mate with the internal threads 194 of the carrier 184. Thus, if the clinician encounters a situation where a larger aperture is needed through the gingiva, the body 260 is placed over the carrier 184 and the plug 268 is inserted for the opening 270 in any body 260. The body 260 is preferably made of a resilient polymeric material.
a-17d illustrate the carrier 184 being used as part of an impression coping system. The system shown in
The clinician may elect to take an impression immediately after installing the implant 182 into the bone. In this situation, the clinician employs the impression component 290 and impression screw 292 after the tool 220 has been removed from the carrier 184. After the impression is made and the impression component 290 and the impression screw 292 are removed, the clinician may attach a supplemental carrier to the impression component 290 and the impression screw 292 that will be used by the laboratory with the impression to make the prosthesis. The clinician can then attach the healing plug 240 of
The clinician may also follow a more typical impression procedure and take the impression after the gingiva has healed. In this situation, the carrier 184 first serves as part of the healing abutment (i.e., as shown in
While the internal threads 194 of the exterior 184 have been described as being useful with healing components (
The implant delivery system 180 has been described thus far in situations where the implant 182 has an external hexagonal boss 188 and the carrier 184 has a corresponding hexagonal socket. The implant delivery system 180 can, however, be modified so that it can be used on implants having an internal hexagonal socket, not the external hexagonal boss 188. To do so, the carrier 184 includes an elongated hexagonal boss that fits into the internal socket of the implant. Once this modification has been made, the modified carrier can be used as part of a gingival healing component or an impression component.
a-18b illustrate an alternative implant delivery system 320 having an implant 322 that lacks an external hexagonal boss. The implant delivery system 320 includes the implant 322, a carrier 324, and a screw 326. The implant 322 is described in more detail in commonly owned U.S. patent application Ser. No. 09/164,934, which has been allowed and is incorporated herein by reference in its entirety.
The implant 322 includes an internal bore having three distinct internal sections. A tapered entry section 328 is followed by a generally cylindrical section 330 having internal threads 331 which, in turn, is followed by a lower threaded section 332. The carrier 324 includes a lower region 340 having a plurality of resilient fingers that have external threads 342 present thereon. The external threads 342 mate with the internal threads 331 in the generally cylindrical section 330 of the bore of the implant 322.
The end of the screw 326 has a tapered region 346 that engages a complementary shoulder 348 on the lower region 340 of the carrier 324. As the threads 352 of the screw 326 engage an internal threaded surface 354 on the carrier 324, the tapered region 346 of the screw 326 forces the plurality of fingers at the lower region 340 of the carrier 324 to expand outward into tight engagement with the generally cylindrical section 330 of the bore of the implant 322.
The top of the carrier 324 includes a through bore 360 into which the screw 326 is inserted. The through bore 360 includes a polygonal fitting 362 having threads 364 therein, as shown in the previous embodiments of
As in the previously discussed, the polygonal fitting 362 receives a tool that exerts torque that is used to install the implant 322 into bone. After the clinician has installed the implant 322 to its appropriate location within the bone, the clinician can simply screw a healing plug into the threads 364 of the through bore 360 so that the carrier 324 serves as a gingival healing component. It should be noted, however, that the implant 322 shown in
While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.
This application is a divisional of application Ser. No. 09/812,161, filed Mar. 19, 2001, now U.S. Pat. No. 6,619,958 now allowed, entitled “Implant Delivery System”; which is a continuation-in-part of application Ser. No. 09/416,221, filed Oct. 12, 1999, and issued as U.S. Pat. No. 6,203,323 on Mar. 20, 2001, entitled “Implant Delivery System”; which is a continuation of application Ser. No. 09/057,087, filed Apr. 8, 1998, and issued as U.S. Pat. No. 5,964,591 on Oct. 12, 1999, entitled “Implant Delivery System”; which claimed the benefit of priority of Application No. 60/043,131, filed Apr. 9, 1997, entitled “Implant Delivery System.”
Number | Name | Date | Kind |
---|---|---|---|
3760502 | Hirsch | Sep 1973 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4158256 | Wiland et al. | Jun 1979 | A |
4324549 | Madray | Apr 1982 | A |
4380436 | Kipp | Apr 1983 | A |
4416629 | Mozsary et al. | Nov 1983 | A |
4444310 | Odell | Apr 1984 | A |
4490116 | Deutsch et al. | Dec 1984 | A |
4540367 | Sulc | Sep 1985 | A |
4571185 | Rota | Feb 1986 | A |
4671410 | Hansson et al. | Jun 1987 | A |
4681542 | Baum | Jul 1987 | A |
4712681 | Branemark et al. | Dec 1987 | A |
4715817 | Zuest et al. | Dec 1987 | A |
4722688 | Lonca | Feb 1988 | A |
4722733 | Howson | Feb 1988 | A |
4744754 | Ross | May 1988 | A |
4758161 | Niznick | Jul 1988 | A |
4763788 | Jorneus et al. | Aug 1988 | A |
4824372 | Jorneus et al. | Apr 1989 | A |
4850870 | Lazzara et al. | Jul 1989 | A |
4850873 | Lazzara et al. | Jul 1989 | A |
4854872 | Detsch | Aug 1989 | A |
4856648 | Krueger | Aug 1989 | A |
4856994 | Lazzara et al. | Aug 1989 | A |
4906191 | Söderberg | Mar 1990 | A |
4955811 | Lazzara et al. | Sep 1990 | A |
4978007 | Jacobs et al. | Dec 1990 | A |
4988298 | Lazzara et al. | Jan 1991 | A |
5006069 | Lazzara et al. | Apr 1991 | A |
5015186 | Detsch | May 1991 | A |
5026285 | Durr et al. | Jun 1991 | A |
5030094 | Nardi et al. | Jul 1991 | A |
5030096 | Hurson et al. | Jul 1991 | A |
5035619 | Daftary | Jul 1991 | A |
5040983 | Binon | Aug 1991 | A |
5049072 | Lueschen | Sep 1991 | A |
5049073 | Lauks | Sep 1991 | A |
5062800 | Niznick | Nov 1991 | A |
5064375 | Jörnéus | Nov 1991 | A |
5069622 | Rangert et al. | Dec 1991 | A |
5071351 | Green, Jr. et al. | Dec 1991 | A |
5073111 | Daftary | Dec 1991 | A |
5100323 | Friedman et al. | Mar 1992 | A |
5105690 | Lazzara et al. | Apr 1992 | A |
5106300 | Voitik | Apr 1992 | A |
5125840 | Durr et al. | Jun 1992 | A |
5125841 | Carlsson et al. | Jun 1992 | A |
5135395 | Marlin | Aug 1992 | A |
5140877 | Sloan | Aug 1992 | A |
5145371 | Jorneus | Sep 1992 | A |
5145372 | Daftary et al. | Sep 1992 | A |
5154612 | Carlsson et al. | Oct 1992 | A |
5158458 | Perry | Oct 1992 | A |
5180303 | Hornburg et al. | Jan 1993 | A |
5188800 | Green, Jr. et al. | Feb 1993 | A |
5209659 | Friedman et al. | May 1993 | A |
5209666 | Balfour et al. | May 1993 | A |
5211561 | Graub | May 1993 | A |
5213502 | Daftary | May 1993 | A |
5238405 | Marlin | Aug 1993 | A |
5246368 | Sillard | Sep 1993 | A |
5246370 | Coatoam | Sep 1993 | A |
5281140 | Niznick | Jan 1994 | A |
5292252 | Nickerson et al. | Mar 1994 | A |
5297963 | Dafatry | Mar 1994 | A |
5302125 | Kownacki et al. | Apr 1994 | A |
5312254 | Rosenlicht | May 1994 | A |
5316476 | Krauser | May 1994 | A |
5322443 | Beaty | Jun 1994 | A |
5334024 | Niznick | Aug 1994 | A |
5336090 | Wilson, Jr. et al. | Aug 1994 | A |
5338196 | Beaty et al. | Aug 1994 | A |
5344457 | Pilliar et al. | Sep 1994 | A |
5368160 | Leuschen et al. | Nov 1994 | A |
5368483 | Sutter et al. | Nov 1994 | A |
5417570 | Zuest et al. | May 1995 | A |
5419702 | Beaty et al. | May 1995 | A |
5431567 | Daftary | Jul 1995 | A |
5437550 | Beaty et al. | Aug 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5462436 | Beaty | Oct 1995 | A |
5476383 | Beaty et al. | Dec 1995 | A |
5489210 | Hanosh | Feb 1996 | A |
5492471 | Singer | Feb 1996 | A |
5527182 | Willoughby | Jun 1996 | A |
5538426 | Harding et al. | Jul 1996 | A |
5538428 | Staubli | Jul 1996 | A |
5556280 | Pelak | Sep 1996 | A |
5564921 | Marlin | Oct 1996 | A |
5564924 | Kwan | Oct 1996 | A |
5582299 | Lazzara et al. | Dec 1996 | A |
5591029 | Zuest | Jan 1997 | A |
5626227 | Wagner et al. | May 1997 | A |
5630717 | Zuest et al. | May 1997 | A |
5651675 | Singer | Jul 1997 | A |
5658147 | Phimmasone | Aug 1997 | A |
5662476 | Ingber et al. | Sep 1997 | A |
5674069 | Osorio | Oct 1997 | A |
5674071 | Beaty et al. | Oct 1997 | A |
5674073 | Ingber et al. | Oct 1997 | A |
5681167 | Lazarof | Oct 1997 | A |
5685715 | Beaty et al. | Nov 1997 | A |
5688123 | Meiers et al. | Nov 1997 | A |
5692904 | Beaty et al. | Dec 1997 | A |
5704788 | Milne | Jan 1998 | A |
5733123 | Blacklock et al. | Mar 1998 | A |
5755574 | D'Alise | May 1998 | A |
5759036 | Hinds | Jun 1998 | A |
5762500 | Lazarof | Jun 1998 | A |
5782918 | Klardie et al. | Jul 1998 | A |
5829981 | Ziegler | Nov 1998 | A |
5871358 | Ingber et al. | Feb 1999 | A |
5888218 | Folsom | Mar 1999 | A |
5897320 | Gittleman | Apr 1999 | A |
5904483 | Wade | May 1999 | A |
5938443 | Lazzara et al. | Aug 1999 | A |
5947736 | Behrend | Sep 1999 | A |
5964591 | Beaty et al. | Oct 1999 | A |
6012923 | Bassett et al. | Jan 2000 | A |
6030219 | Zuest et al. | Feb 2000 | A |
6068478 | Grande et al. | May 2000 | A |
6099311 | Wagner et al. | Aug 2000 | A |
6159008 | Kumar | Dec 2000 | A |
6203323 | Beaty et al. | Mar 2001 | B1 |
6290499 | Lazzara et al. | Sep 2001 | B1 |
6382977 | Kumar | May 2002 | B1 |
Number | Date | Country |
---|---|---|
2230615 | Feb 1996 | CA |
40 28 855 | Mar 1992 | DE |
0 231 730 | Aug 1987 | EP |
0 657 146 | Jun 1995 | EP |
0 727 193 | Feb 1996 | EP |
2 635 455 | Aug 1990 | FR |
WO 9629019 | Sep 1996 | WO |
WO 9706930 | Feb 1997 | WO |
WO 9724977 | Jul 1997 | WO |
WO 9728755 | Aug 1997 | WO |
WO 9852490 | Nov 1998 | WO |
WO 9855039 | Dec 1998 | WO |
WO 0002497 | Jan 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050191600 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
60043131 | Apr 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09812161 | Mar 2001 | US |
Child | 10641389 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09057087 | Apr 1998 | US |
Child | 09416221 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09416221 | Oct 1999 | US |
Child | 09812161 | US |