Implant device and method for manufacture

Information

  • Patent Grant
  • 8735773
  • Patent Number
    8,735,773
  • Date Filed
    Friday, June 10, 2011
    13 years ago
  • Date Issued
    Tuesday, May 27, 2014
    10 years ago
Abstract
Disclosed are systems, devices and methods for optimizing the manufacture and/or production of patient-specific orthopedic implants. The methods include obtaining image data of a patient, selecting a blank implant to be optimized for the patient, and modifying the blank implant utilizing techniques disclosed herein to alter specific features of the implant to conform to the patient's anatomy.
Description

All of the above patent applications, as well as patent applications and other references mentioned hereinbelow, are hereby incorporated by reference in their entireties.


FIELD OF THE INVENTION

Disclosed are methods, systems and devices of making improved and/or patient-adapted (e.g., patient-specific and/or patient-engineered) orthopedic implants and methods for manufacture in a cost effective and timely manner. Applicants' disclosure utilizes and incorporates various technologies and advances, including medical imaging, computer-aided design and additive and/or subtractive manufacturing processes, production forecasting and financial and cost modeling to produce an orthopedic implant.


BACKGROUND OF THE INVENTION

Joint implants are well known in the art. For example, one of the most common types of joint prosthetic devices is a knee implant including a femoral component and a tibial component. Other common joint implants are associated with, for example, the hip and shoulder, although many other implant locations are contemplate by the present disclosure, including the spine, spinal articulations, intervertebral discs, facet joints, shoulder joints, elbows, wrists, hands, finger joints, ankles, wrists, feet and toe joints.


The shape and size of various joint implants are becoming increasingly more complex and may include, for example, one or more concavities and/or convexities, as described in various literature, including U.S. patent application Ser. No. 10/997,407, filed on Nov. 24, 2004, the disclosure of which is incorporated by reference herein. Traditional implant manufacturing processes, which may even include manual steps, and which may be satisfactory for less complex shaping, are becoming inadequate. Traditionally, a diseased, injured or defective joint, such as, for example, a joint exhibiting osteoarthritis, would be repaired using standard off-the-shelf implants and other surgical devices. The drawback to this approach is that typically a decision must be made between devices that are either too large or too small or otherwise just not the right shape for the patient's anatomy. In order to make one of these sub-optimal devices fit properly, a surgeon must typically remove an undesirable or unacceptable amount of healthy or undamaged tissue from the surgical site, or accept using an implant that is not optimally sized or capable of being well positioned for the patient—settling for an implant and surgery that is “good enough” in the surgeon's estimation.


Furthermore, joint implants, such as a knee implant that includes tibial and femoral components, often require a relatively large cut on, for example, the tibia. This is due, in part, to satisfy a desired minimum thickness (for strength and/or reliability) of the materials of the component, such as polyurethane for a portion of a tibial component. The cut on the tibia, upon which the tibial component rests, provides space for the desired thickness of the polyurethane tibial component, desirably without overstuffing the joint. Such cuts can often be highly invasive, resulting in loss of valuable bone stock, and over time, osteolysis frequently leads to loosening of the prosthesis. Further, the area where the implant and the bone mate will typically degrade over sufficient time and loading cycles, requiring that the prosthesis be replaced. Since the patient's bone stock is limited, the number of possible replacement surgeries is also limited to a generally finite number of joint arthroplasties.


There are now various custom-made, patient-specific orthopedic implants known in the art, and such implants can be developed using software modeling programs. Such patient-specific implants, such as the iForma®, iUni® and iDuo® (commercially available from ConforMIS, Inc., Burlington, Mass.), offer advantages over the traditional “several-sizes-fit-all” approach such as a better fit, more natural movement, reduction in the amount of bone removed during surgery and a less invasive procedure. Such patient-specific implants generally can be created from images of the patient's joint and/or surrounding anatomical structures. Based on the images, the patient-specific implant can be created both to include surfaces that match existing surfaces in the joint, as well as to include surfaces that approximate an ideal and/or healthy surface that may not exist in the patient prior to any procedure. However, this patient-specific, tailor-made approach can be costly, both in terms of money and time. There remains a need in the art, therefore, for systems and methods of designing, manufacturing and implanting implants, including custom-made or modular implants as well as custom, patient-specific implants, in a more timely and cost effective manner.


SUMMARY OF THE INVENTION

The disclosures herein provide systems and methods for designing, manufacturing and implanting orthopedic implants. Various methods include obtaining a three-dimensional image of a patient's joint, selecting a standard blank implant and modifying the blank to incorporate features that are specific and/or desirable to that patient. Various embodiments provide methods for making implants suitable for a joint, including providing a blank with a (i.e., at least one) dimension smaller than the desired implant size and/or shape, and material is added to the blank so as to form surface or other details on the implant. In related embodiments, adding material to the blank may include laser sintering and/or electron beam melting. Adding material to the blank may include adding ceramic(s), metal(s) and/or ceramic-metal composite(s). The material added to the blank may be polished. In further embodiments, the blank may be made of, e.g., polymer(s), metal(s), cross-linked polymer(s), ceramic(s), ceramic-metal composite(s), and/or alloy(s); or use-appropriate combinations thereof. Providing the blank may include forming the blank by casting and/or milling. In still further embodiments, a three-dimensional shape (i.e., at least one, or a portion of at least one) of a surface of the joint is determined. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence techniques. The material added to the blank may be, in various embodiments, such that a surface of the implant is formed as a substantial negative of and/or in a mirror image of a corresponding surface of the joint. Alternatively, the surface of the implant may conform to the corresponding surface of the joint, and may conform exactly or the conforming shape may be “filtered” or otherwise altered, yet still permit the implant to maintain substantial contact with an unmodified or modified joint surface. The implant may be, e.g., a cartilage repair, unicompartmental knee, bicompartmental knee, total knee replacement, hip, shoulder, or interpositional joint implant. An interpositional joint implant may be associated with, e.g., a knee, hip or shoulder or other joint as disclosed and contemplated herein.


Other embodiments describe a method for making an implant suitable for a joint including providing a blank having a dimension that is different from the implant. The blank is modified by removing material, such as by using, at least in part, a laser, and/or electron beam melting to form the implant. The formed surfaces may desirably be polished. In related embodiments, the blank may include a dimension that is larger than the implant, and wherein modifying the blank includes cutting the blank with the laser. Laser-cut surfaces may desirably be polished. In further related embodiments, the blank may include a dimension that is smaller than the implant, and wherein modifying the blank includes adding material by laser sintering. The added material may be desirably polished. The blank may be made of polymer(s), metal(s), cross-linked polymer(s), ceramic(s), ceramic-metal composite(s), and/or alloy(s); or use-appropriate combinations thereof. The blank may be formed by casting and/or milling. In related embodiments, a three-dimensional shape of a (i.e., at least one, or a portion of at least one) surface of the joint may be determined. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence techniques. The blank may be desirably modified such that a surface of the implant is substantially a negative of and/or a mirror image of a corresponding surface of the joint.


The disclosed methods may include the selection of implants having combinations of larger and/or smaller or other dimensions than a desired implant, including one or more portion(s) that are smaller than a desired dimension, and other portion(s) that are larger than desired. In such a case, various additive and subtractive steps, as herein disclosed, may be utilized to render the implant more suitable for the targeted anatomy.


In accordance with other embodiments, methods for making an implant suitable for a joint include providing blanks with at least one dimension larger than the desired or target implant. A laser, polishing, etching, milling and/or an abrading process is used to cut the blank so as to form surface detail of the implant. In related embodiments, the blank may be made of polymer(s), metal(s), cross-linked polymer(s), ceramic(s), ceramic-metal composite(s), and/or alloy(s); or use-appropriate combinations thereof. Providing the blank may include forming the blank by casting and/or milling.


In still further embodiments, a three-dimensional shape (i.e., at least one, or a portion of at least one) of a surface of the joint is determined. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence, and may further include computer modeling of the joint, opposing joints, and/or data from normalized or healthy joints. The blank may be desirably cut such that a surface of the implant is substantially a negative of or conforms to a corresponding surface of the joint. The implant may be, e.g., a cartilage repair, unicompartmental knee, bicompartmental knee, total knee replacement, hip, shoulder, or interpositional joint implant. An interpositional joint implant may be associated with, e.g., a knee, hip or shoulder, or other joints as previously discussed.


The field of the rapid prototyping of parts has, in recent years, made large improvements in broadening high strain, high density parts for use in the design and pilot production of many useful articles, including metal parts. The technologies have also been applied to the direct fabrication of articles, such as molds, from metal powders without a binder. Preferred metals for the powder include titanium, titanium alloys, stainless steel, cobalt chrome alloys, tantalum or niobium. The metal articles formed in these ways have been quite dense, for example, having densities of up to 70% to 80% of fully dense (prior to any infiltration). Prior applications of this technology have strived to increase the density of the metal structures formed by the remelting or sintering processes. The field of rapid prototyping of parts has focused on providing high strength, high density, parts for use and design in production of many useful articles, including metal parts.


In one embodiment, the method comprises (a) obtaining image data of a patient's joint; (b) providing a blank with a (i.e. at least one) dimension smaller than the implant; and (c) adding material to the blank so as to form surface detail on the implant. Adding material to the blank may include adding ceramic(s), metal(s) and/or ceramic-metal composite(s). The material added to the blank may be polished, also. In further embodiments, the blank may be made of, e.g. polymer(s), metal(s), cross-linked polymer(s), ceramic(s), ceramic-metal composite(s), and/or alloy(s); or use-appropriate combinations thereof.


Various embodiments relate to methods for forming or creating patient-adapted implants. Patient-adapted features of an implant component can be achieved by analyzing imaging test data and selecting, designing or modifying (e.g., preoperatively selecting from a library, preoperatively modifying or preoperatively designing) an implant component having at least one feature that is matched and/or optimized for the particular patient's biology. Accordingly, the patient-adapted implant components include one or more patient-adapted features.


In still further embodiments, a three-dimensional shape (i.e. at least one, or a portion of at least one) of a surface of the joint is determined. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence techniques, and may further include computer modeling of the joint, opposing joints, and/or data from normalized or healthy joints. The material added to the blank may be, in embodiments, such that a surface of the implant conforms to a corresponding surface of the joint. The implant may be, e.g. a cartilage repair, unicompartmental knee, bicompartmental knee, total knee replacement, hip, shoulder, or interpositional joint implant.


Other embodiments provide methods for making implants suitable for a joint including providing a blank having a dimension that is different from the implant. The blank is modified in some manner, including using, in various embodiments, at least in part, a laser, and/or electron beam melting to form the implant. The formed surfaces may desirably be polished. In related embodiments, the blank may include a dimension that is larger than the implant, and wherein modifying the blank includes cutting the blank with the laser. Laser-cut surfaces may desirably be polished. In further related embodiments, the blank may include a dimension that is smaller than the implant, and wherein modifying the blank includes adding material by laser sintering. The added material may be desirably polished. The blank may be made of polymer(s), metal(s), cross-linked polymer(s), ceramic(s), ceramic-metal composite(s), and/or alloy(s); or use-appropriate combinations thereof. The blank may be formed by casting and/or milling. In related embodiments, a three-dimensional shape of a (i.e., at least one, or a portion of at least one) surface of the joint may be determined. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence techniques. The blank may be desirably modified such that a surface of the implant conforms to a corresponding surface of the joint.


In accordance with another embodiment, a method for making an implant suitable for a joint includes providing a blank with at least one dimension larger than the implant. A laser, polishing, etching, milling and/or an abrading process is used to cut the blank so as to form surface detail of the implant. In related embodiments, the blank may be made of polymer(s), metal(s), cross-linked polymer(s), ceramic(s), ceramic-metal composite(s), and/or alloy(s); or use-appropriate combinations thereof. Providing the blank may include forming the blank by casting and/or milling.


In still further embodiments, a three-dimensional shape (i.e., at least one, or a portion of at least one) of a surface of the joint is determined. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence, and may further include computer modeling of the joint, opposing joints, and/or data from normalized or healthy joints. The blank may be desirably cut such that a surface of the implant conforms to a corresponding surface of the joint. The implant may be, e.g., a cartilage repair, unicompartmental knee, bicompartmental knee, total knee replacement, hip, shoulder, or interpositional joint implant. An interpositional joint implant may be associated with, e.g., a knee, hip or shoulder.


In accordance with another embodiment, a knee implant includes a femoral component having first and second femoral component surfaces. The first femoral component surface is for securing to a surgically prepared compartment of a distal end of a femur. The second femoral component surface is configured to replicate the femoral condyle. The knee implant further includes a tibial component having first and second tibial component surfaces. The first tibial component surface is for contacting a proximal surface of the tibia that is substantially uncut subchondral bone (which may further include overlying articular cartilage.) At least a portion of the first tibial component surface conforms to a corresponding proximal tibial surface. The second tibial component surface articulates with the second femoral component surface. In related embodiments, the second femoral component surface may include at least one of a ceramic and a metal, and the second tibial component surface may include ceramic(s) and/or metal(s). Both the second femoral component surface and the second tibial surface may include metal(s). Both the second femoral component surface and the second tibial surface may include ceramic(s).


The second femoral component surface may include one of a ceramic and a metal, and the second tibial surface may include the other of the one of a ceramic and a metal, e.g., the second femoral component surface may be ceramic, and the second tibial surface may be metal. The tibial component may have a thickness of 3 mm or less.


In accordance with another embodiment, a knee implant includes a femoral component having first and second femoral component surfaces. The first femoral component surface is for securing to a surgically prepared compartment of a distal end of a femur. The second femoral component surface is configured to replicate the femoral condyle. The knee implant further includes a tibial component having first and second tibial component surfaces. The first tibial component surface is for contacting a proximal surface of the tibia that is substantially uncut subchondral bone (which may further include overlying articular cartilage). In alternative embodiments, the surface may be cut bone. At least a portion of the first tibial component surface is substantially a negative of a corresponding proximal tibial surface. The second tibial component surface articulates with the second femoral component surface. In related embodiments, the second femoral component surface may include at least one of a ceramic and a metal, and the second tibial component surface may include ceramic(s) and/or metal(s). Both the second femoral component surface and the second tibial surface may include metal(s). Both the second femoral component surface and the second tibial surface may include ceramic(s).


The second femoral component surface may include one of a ceramic and a metal, and the second tibial surface may include the other of the one of a ceramic and a metal, e.g., the second femoral component surface may be ceramic, and the second tibial surface may be metal. The tibial component may have a thickness of 3 mm or less.


In related embodiments, the tibial component may include an anchoring mechanism, such as a peg and/or a keel. Alternatively, the tibial component may be an interpositional implant that does not include a physical anchoring mechanism.


In additional embodiments, a desired three-dimensional shape (i.e., at least one, or a portion of at least one) of a surface of the joint is determined. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence, and may further include computer modeling of the joint, opposing joints, and/or data from normalized or healthy joints. From the 3-D joint model, one or more “suitable” implant shapes and/or sizes (i.e., one or more implants that can be altered using the various methods disclosed herein to approximate a size/shape appropriate to the determined three-dimensional shape) may be determined and/or identified. The determined/identified implant(s) are then compared and evaluated against the desired shape, and the required modifications for each respective implant is identified and evaluated. Each “suitable” implant is then evaluated to determine a variety of factors, including cost of modification, equipment/facilities necessary to modify said implant, time and expertise necessary to modify said implant, geographical constraints (i.e., implant, equipment, patient and surgical center location, among other factors), current workload, blank inventory and availability, or other factors relevant to the manufacturing and modification expenses. The factors may then be compared and/or rated, and a “suitable” implant chosen for actual manufacture and modification. The implant “blanks” may be pre-manufactured, although concurrent blank manufacturing is contemplated herein. The blank may be desirably cut or have material added such that a surface of the implant conforms to a corresponding surface of the joint. The implant may be, e.g., a cartilage repair, unicompartmental knee, bicompartmental knee, total knee replacement, hip, shoulder, or interpositional joint implant. An interpositional joint implant may be associated with, e.g., a knee, hip or shoulder.


The methods of designing, making, and using the implants described herein can be applied to any joint including, without limitation, a spine, spinal articulations, an intervertebral disk, a facet joint, a shoulder joint, an elbow, a wrist, a hand, a finger joint, a hip, a knee, an ankle, a foot, or a toe joint.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the inventions will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1 is a flowchart depicting an embodiment of a method for manufacturing a joint implant;



FIG. 2 is a flowchart depicting an embodiment of a method for manufacturing a joint implant;



FIG. 3 shows an embodiment of a total knee implant, in cross-sectional view;



FIG. 4 is a side perspective view of a femoral implant implanted on a femur; and



FIG. 5 is a 3-dimensional view of the end of a femur.





DETAILED DESCRIPTION OF THE INVENTION AND EMBODIMENTS

Disclosed are systems and methods for making joint implants that leverage additive or subtractive manufacturing methods including laser sintering and electron beam melting, and to less-invasive and/or non-invasive joint implants which may be advantageously made by the methods described herein. Such implants may feature a surface of the implant that is advantageously a mirror image of, substantially a negative of or formed in a shape that substantially conforms to the joint surface, or combinations thereof. In other embodiments, non-invasive or less-invasive joint implants that rest on substantially uncut subchondral bone are described. Detailed disclosures are now described in further detail, below.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a device” includes a plurality of such devices and equivalents thereof known to those skilled in the art, and so forth. Similarly, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. Also, the terms “comprising”, “including”, and “having” can be used interchangeably.


It is to be understood that the implants described herein may be associated with a wide variety of joints, including, without limitation, joint implants used in a knee, shoulder, hip, vertebrae, elbow, ankle, hand, foot and wrist.



FIG. 1 is a flowchart depicting a method for manufacturing a joint implant, in accordance with one embodiment. In this method, a desired three-dimensional shape (i.e., at least one, or a portion of at least one) of a surface of the joint can be determined 103. Determining the three-dimensional shape may include the use of imaging, such as MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence, and may further include computer modeling of the joint, opposing joints, and/or data from normalized or healthy joints. From the 3-D joint model, one or more “suitable” implant shapes and/or sizes (i.e., one or more implants that can be altered using the various methods disclosed herein to approximate a size/shape appropriate to the determined three-dimensional shape) may be determined and/or identified. Alternatively, or in addition to the joint analysis, a desired implant or “final” implant shape can be selected, or it can be derived from this shape and blank information from step 103. Desirably, a blank is provided 101 with at least one dimension that is larger than that of a desired or “final” implant. The dimension of the implant may be, e.g., a partial or uniform thickness, length, width, or curvature. The blank may be made of, without limitation, a polymer, a metal, a cross-linked polymer, a ceramic, a ceramic-metal composite, and/or an alloy.


Suitable materials for use in joint implants and methods described herein can include metals and metal alloys including CoCrMo, CoCr, titanium alloys and commercially pure TI (cpTi), medical grade stainless steels, tantalum and tantalum alloys, and Nitinol (“NiTi”). Particularly advantageous materials are those well-suited, or specifically designed, for laser sintering or electron-beam melting manufacturing techniques, e.g., ASTM F-75 CoCr alloy, or Arcam Ti6Al4V ELI titanium alloy (available from Stratasys, Eden Prairie, Minn.). Ceramic materials, e.g., aluminum oxide or alumina, zirconium oxide or zirconia, compact of particulate diamond, and/or pyrolytic carbon may be used.


An example of a modern rapid prototyping technology is the selective laser sintering process practiced by systems available from DTM Corporation of Austin, Tex. According to this technology, articles are produced in layer-wise fashion from a laser-fusible powder that is dispensed one layer at a time. The powder is fused, remelted or sintered, by the application of laser energy that is directed in raster-scan fashion to portions of the powder layer corresponding to a cross section of the article. After the fusing of the powder in each layer, an additional layer of powder is dispensed, and the process repeated, with fused portions or lateral layers fusing so as to fuse portions of previous laid layers until the article is complete. Detailed descriptions of the selective laser sintering technology may be found in U.S. Pat. Nos. 4,863,538, 5,017,753, 5,076,869 and 4,944,817, all assigned to Board of Regents, the University of Texas, each of which is hereby incorporated herein by reference in its entirety.


In various embodiments, the blank is chosen such that it is, in one or more portions, only slightly larger than that of the implant. For example, the blank may have been initially milled or cast such that all, or certain portions of the blank, are only slightly larger than the implant. Providing a blank from which material will be removed to arrive at the precise implant size, geometry and surface characteristics, potentially simplifies manufacturing processing and may ensure reproducibility. The blank may be provided, e.g., by casting, milling, forging, compression molding, extruding or injection molding.


In various embodiments, a library of blanks may be kept of varying size and shapes. Upon determining an implant size, an appropriately sized blank may then be chosen. Alternatively, an appropriate blank may be manufactured in anticipation of immediate or future need, such as in a “just in time” type of manufacturing and inventory system.


Upon providing an appropriated sized and dimensioned blank, the blank is cut with a laser or other device so as to form a shape of at least surface detail of the implant 105. Separately, or in addition to laser cutting, the blank may also be cut using precision milling or grinding, or other abrading processes known in the art. For example, after cutting the blank with the laser, the surface of the blank may desirably be polished.


As previously noted, various embodiments of the present method can include determining a three-dimensional shape of at least one surface of the joint, as shown in step 103. Using the three-dimensional shape, the blank may be cut in step 105 such that a surface of the implant, or a portion thereof, is substantially a negative image of (or alternatively may conform to) the corresponding joint surface (or portion thereof). For example, the implant surface may comprise a surface that is a substantial negative image of (or conforms to) the joint surface to which the implant surface is designed to mate, so that the implant surface mirrors or conforms to the joint surface, ensuring that the device fits the joint surface in precisely the correct location. The implant surface may alternately comprise more than one such negative or mirror image or conforming surfaces, e.g., to assist in placement in the device, i.e., the implant surface need not comprise one contiguous mirror/conforming surface to the joint surface. A series or pattern of smaller implant negative/conforming surfaces, each corresponding to or matching an area of the joint surface, can similarly be provided. Without limitation, one application of this method could include providing grooves in the implant into which cement for affixing the device may be applied or reside, so the device may be attached to the joint surface without cement flowing onto other areas of the implant surface. Another non-limiting application would be where a continuous conforming surface were not necessary, e.g., where the device may be properly seated by matching two, three, four or more conforming “reference surfaces” to corresponding areas of the joint surface. The area of the substantially negative (or conforming) surface desirably should be sufficient to ensure that the device is located properly. Where there are more than one of these “reference surfaces”, the area of each should be use and application-appropriate, but a range of 1, 2, 3, 4, 5 cm2 or more for each reference surface is contemplated. Where there is one implant surface with a substantially negative surface (or conforming surface), smaller areas comprising a substantial negative or conforming surface are possible, as well as the entire implant surface. Combinations of uncut and cut surfaces, and their corresponding conforming or substantial negative or mirror image implant surfaces, may be utilized as well. The joint surface may include at least one concavity and/or convexity.


Using the approach generally outlined in FIG. 1, a non-invasive joint implant, such as those described in above-mentioned U.S. application Ser. No. 10/997,407, may be manufactured. The implant may be, for example, a cartilage repair implant, a unicompartmental knee implant, a bicompartmental knee implant, a total knee replacement implant, a hip implant, and a shoulder implant. The implant may also be an interpositional implant, such as the implant described in U.S. Application No. 60/784,255.


As previously noted, determining the three-dimensional shape of the joint surface may include a wide variety of imaging methodologies. For example, the imaging may include MRI, CT, ultrasound, digital tomosynthesis, and/or optical coherence. Reference is made to U.S. application Ser. Nos. 10/997,407 and 10/728,731 for how imaging technologies are used to derive the three-dimensional shape of the joint surface. The 3-D information is then used in the CAD/CAM system to form the implant shape, geometry, and surfaces to make the desired implant.



FIG. 2 is a flowchart depicting a method for manufacturing a joint implant, in accordance with another embodiment. In step 201, a blank is provided with at least one dimension that is smaller than that of the (final) implant. The dimension of the implant may be, e.g. a partial or uniform thickness, length, width, or curvature. The blank may be made of, without limitation, a polymer, a metal, a crosslinked polymer, a ceramic, a ceramic-metal composite, and/or an alloy. A three-dimensional shape of at least one surface of a patient's joint is desirably obtained in step 203. Using laser sintering, material can be added to the blank, which has at least one dimension smaller than that of the final implant, making it conform to the size and shape of the patient's joint in step 205. If required, material can further be added to the block to form surface detail on the implant (step 205.)


The material may be added to the block using additive manufacturing technologies including laser sintering and/or electron beam melting. In laser sintering, a high power laser, such as a carbon dioxide laser, is used to fuse small particles of plastic, metal, or ceramic powders into a mass representing a desired three-dimensional object. Generally, the laser selectively fuses powdered material by scanning cross-sections generated from a 3-D digital description of the part (e.g., from a CAD file or scan data) on the surface of a powder bed. After each cross-section is scanned, the powder bed is lowered by one layer thickness, a new layer of material is applied on top, and the process is repeated until the part is completed. Laser sintering can produce parts from a relatively wide range of commercially available powder materials, including polymers, ceramics, and metals (such as steel, titanium, alloys and composites)


Full melting, partial melting, or liquid-phase sintering may be used. Electron beam melting involves melting or fusing metal, ceramic or other various powders, so as to build the part layer by layer. Exemplary electron beam melting systems are available from Stratasys, Eden Prairie, Minn.


After adding material to the blank, the surface of the blank may be desirably polished. Furthermore, and similar to above-described embodiments, the method may further include determining a three-dimensional shape of at least one surface of the joint, step 203. Using the three-dimensional shape, material may be added to the blank in step 205 such that at least one surface of the implant is substantially a negative of, a mirror image of and/or conforms to at least one surface of the joint. The implant may be, for example, a cartilage repair implant, a unicompartmental knee implant, a bicompartmental knee implant, a total knee replacement implant, a hip implant, and a shoulder implant. The implant may also be an interpositional implant, such as the implant described in U.S. Application No. 60/784,255.


Implant components can be generated using any technique known in the art today, as well as by newly developing techniques. Such techniques include, but are not limited to standard casting, molding and machining processes, as well as other processes listed in Table 1.









TABLE 1







Exemplary techniques for forming a patient-specific, patient-


engineered and/or standard blank implant component for a patient's anatomy








Technique
Brief description of technique and related notes





CNC
CNC refers to computer numerically controlled (CNC) machine tools, a



computer-driven technique, e.g., computer-code instructions, in which machine



tools are driven by one or more computers. Embodiments of this method can



interface with CAD software to streamline the automated design and



manufacturing process.


CAM
CAM refers to computer-aided manufacturing (CAM) and can be



used to describe the use of software programming tools to efficiently manage



manufacturing and production of products and prototypes. CAM can be used



with CAD to generate CNC code for manufacturing three-dimensional objects.


Casting, including casting using
Casting is a manufacturing technique that employs a mold. Typically, a mold


rapid prototyped casting
includes the negative of the desired shape of a product. A liquid material is


patterns
poured into the mold and allowed to cure, for example, with time, cooling,



and/or with the addition of a solidifying agent. The resulting solid material or



casting can be worked subsequently, for example, by sanding or bonding to



another casting to generate a final product.


Welding
Welding is a manufacturing technique in which two components are fused



together at one or more locations. In certain embodiments, the component



joining surfaces include metal or thermoplastic and heat is administered as part



of the fusion technique.


Forging
Forging is a manufacturing technique in which a product or component,



typically a metal, is shaped, typically by heating and applying force.









Freeform fabrication is a set of manufacturing processes that produce solid 3D objects by building up successive 2D layers. The field of freeform fabrication has seen many important recent advances in the fabrication of articles directly from computer controlled databases. These advances, many of which are in the field of rapid prototyping of articles such as prototype parts and mold dies, exhibit advantages, such as greatly reduced time and expense required to fabricate articles and elimination of custom fixtures, over conventional machining processes in which a block of material, such as a metal, is machined according to engineering drawings. Exemplary techniques for manufacturing and/or adapting an implant to a patient's anatomy (such as creating three dimensional surface contours) include, but are not limited to those shown in Table 2.









TABLE 2







Exemplary techniques for forming or altering a patient-specific


and/or patient-engineered implant component for a patient's anatomy








Technique
Brief description of technique and related notes





Rapid prototyping
Rapid prototyping refers generally to automated construction of a prototype or



product, typically using an additive manufacturing technology, such as EBM,



SLS, SLM, SLA, DMLS, 3DP, FDM and other technologies


EBM
EBM refers to electron beam melting (EBM), which is a powder-based



additive manufacturing technology. Typically, successive layers of metal



powder are deposited and melted with an electron beam in a vacuum.


SLS
SLS refers to selective laser sintering (SLS), which is a powder-based additive



manufacturing technology. Typically, successive layers of a powder (e.g.,



polymer, metal, sand, or other material) are deposited and melted with a



scanning laser, for example, a carbon dioxide laser.


SLM
SLM refers to selective laser melting ™ (SLM), which is a technology similar



to SLS; however, with SLM the powder material is fully melted to form a



fully-dense product.


SLA or SL
SLA or SL refers to stereolithography (SLA or SL), which is a liquid-based



additive manufacturing technology. Typically, successive layers of a liquid



resin are exposed to a curing, for example, with UV laser light, to solidify each



layer and bond it to the layer below. This technology typically requires the



additional and removal of support structures when creating particular



geometries.


DMLS
DMLS refers to direct metal laser sintering (DMLS), which is a powder-based



additive manufacturing technology. Typically, metal powder is deposited and



melted locally using a fiber optic laser. Complex and highly accurate



geometries can be produced with this technology. This technology supports



net-shaping, which means that the product generated from the technology



requires little or no subsequent surface finishing.


LC
LC refers to LaserCusing ® (LC), which is a powder-based additive



manufacturing technology. LC is similar to DMLS; however, with LC a high-



energy laser is used to completely melt the powder, thereby creating a fully-



dense product.


3DP
3DP refers to three-dimensional printing (3DP), which is a high-speed additive



manufacturing technology that can deposit various types of materials in



powder, liquid, or granular form in a printer-like fashion. Deposited layers can



be cured layer by layer or, alternatively, for granular deposition, an intervening



adhesive step can be used to secure layered granules together in bed of



granules and the multiple layers subsequently can be cured together, for



example, with laser or light curing.


LENS
LENS ® refers to Laser Engineered Net Shaping ™ (LENS ®), which is powder-



based additive manufacturing technology. Typically, a metal powder is



supplied to the focus of the laser beam at a deposition head. The laser beam



melts the powder as it is applied, in raster fashion. The process continues layer



by and layer and requires no subsequent curing. This technology supports net-



shaping, which means that the product generated from the technology requires



little or no subsequent surface finishing.


FDM
FDM refers to fused deposition modeling ™ (FDM) is an extrusion-based



additive manufacturing technology. Typically, beads of heated extruded



polymers are deposited row by row and layer by layer. The beads harden as



the extruded polymer cools.


LASER CLADDING
Laser cladding injects a powder, normally of a metallic nature, into the system



by either coaxial or lateral nozzles. The interaction of the metallic powder



stream and the laser causes melting to occur, and is known as the melt pool.



This is deposited onto a substrate; moving the substrate allows the melt pool to



solidify and thus produces a track of solid metal.









Various of the above-listed technologies, as applied to manufacturing implants, are available from various sources, including, for example, as described in Wohlers Report 2009, State of the Industry Annual Worldwide Progress Report on Additive Manufacturing, Wohlers Associates, 2009 (ISBN 0-9754429-5-3), available from www.wohlersassociates.com; Pham and Dimov, Rapid manufacturing, Springer-Verlag, 2001 (ISBN 1-85233-360-X); Grenda, Printing the Future, The 3D Printing and Rapid Prototyping Source Book, Castle Island Co., 2009; Virtual Prototyping & Bio Manufacturing in Medical Applications, Bidanda and Bartolo (Eds.), Springer, Dec. 17, 2007 (ISBN: 10: 0387334297; 13: 978-0387334295); Bio-Materials and Prototyping Applications in Medicine, Bartolo and Bidanda (Eds.), Springer, Dec. 10, 2007 (ISBN: 10: 0387476822; 13: 978-0387476827); Liou, Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development, CRC, Sep. 26, 2007 (ISBN: 10: 0849334098; 13: 978-0849334092); Advanced Manufacturing Technology for Medical Applications: Reverse Engineering, Software Conversion and Rapid Prototyping, Gibson (Ed.), Wiley, January 2006 (ISBN: 10: 0470016884; 13: 978-0470016886); and Brauner et al., “Coupled Field Simulation in Additive Layer Manufacturing,” 3rd International Conference PMI, 2008 (10 pages), each of which is hereby incorporated herein by reference in its entirety.


Joint repair systems often employ metal and/or polymeric materials including, for example, prostheses which are anchored into the underlying bone (e.g., a femur in the case of a knee prosthesis). See, e.g., U.S. Pat. No. 6,203,576 to Afriat et al. issued Mar. 20, 2001 and U.S. Pat. No. 6,322,588 to Ogle, et al. issued Nov. 27, 2001, each of which are hereby incorporated herein by reference in its entirety, and references cited therein. A wide variety of metals is useful in the practice of the present concept, and can be selected based on any criteria. For example, material selection can be based on resiliency to impart a desired degree of rigidity. Non-limiting examples of suitable metals include silver, gold, platinum, palladium, iridium, copper, tin, lead, antimony, bismuth, zinc, titanium, cobalt, stainless steel, nickel, iron alloys, cobalt alloys, such as Elgiloy®, a cobalt-chromium-nickel alloy, and MP35N, a nickel-cobalt-chromium molybdenum alloy, and Nitinol T™, a nickel-titanium alloy, aluminum, manganese, iron, tantalum, crystal free metals, such as LiquidMetal® alloys (available from LiquidMetal Technologies, www.liquidmetal.com), other metals that can slowly form polyvalent metal ions, for example to inhibit calcification of implanted substrates in contact with a patient's bodily fluids or tissues, and combinations thereof. Particularly advantageous materials are those well-suited, or specifically designed, for laser sintering or electron-beam melting manufacturing techniques, e.g., ASTM F-75 CoCr alloy, or Arcam Ti6Al4V ELI titanium alloy (available from Stratasys, Eden Prairie, Minn.). Ceramic materials, e.g., aluminum oxide or alumina, zirconium oxide or zirconia, compact of particulate diamond, and/or pyrolytic carbon may be used with varying results.


Suitable synthetic polymers include, without limitation, polyamides (e.g., nylon), polyesters, polystyrenes, polyacrylates, vinyl polymers (e.g., polyethylene, polytetrafluoroethylene, polypropylene and polyvinyl chloride), polycarbonates, polyurethanes, polydimethyl siloxanes, cellulose acetates, polymethyl methacrylates, polyether ether ketones, ethylene vinyl acetates, polysulfones, nitrocelluloses, similar copolymers and mixtures thereof. Bioresorbable synthetic polymers can also be used such as dextran, hydroxyethyl starch, derivatives of gelatin, polyvinylpyrrolidone, polyvinyl alcohol, poly[N-(2-hydroxypropyl)methacrylamide], poly(hydroxy acids), poly(epsilon-caprolactone), polylactic acid, polyglycolic acid, poly(dimethyl glycolic acid), poly(hydroxy butyrate), and similar copolymers.


Other appropriate materials include, for example, the polyketone known as polyetheretherketone (PEEKT). This includes the material PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (www.ghardapolymers.com).


It should be noted that the material selected can also be filled. For example, other grades of PEEK are also available and contemplated, such as 30% glass-filled or 30% carbon filled, provided such materials are appropriate for use in implantable devices, typically those approved by the FDA or other regulatory body. Glass filled PEEK reduces the expansion rate and increases the flexural modulus of PEEK relative to that portion which is unfilled. The resulting product is known to be ideal for improved strength, stiffness, or stability. Carbon filled PEEK is known to enhance the compressive strength and stiffness of PEEK and lower its expansion rate. Carbon filled PEEK offers wear resistance and load carrying capability.


As will be appreciated, other suitable similar biocompatible thermoplastic or thermoplastic polycondensate materials that resist fatigue, have good memory, are flexible, are deflectable, have very low moisture absorption, and/or have good wear and/or abrasion resistance, can be used without departing from the scope of the disclosure. The implant can also be comprised of polyctherketoneketone (PEKK).


Other materials that can be used include polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK), and, generally, a polyaryletheretherketone. Further, other polyketones can be used as well as other thermoplastics.


Reference to appropriate polymers that can be used for the implant can be made to the following documents, all of which are incorporated herein by reference. These documents include: PCT Publication WO 02/02158 A1, dated Jan. 10, 2002 and entitled Bio-Compatible Polymeric Materials; PCT Publication WO 02/00275 A1, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials; and PCT Publication WO 02/00270 A1, dated Jan. 3, 2002 and entitled Bio-Compatible Polymeric Materials.


The polymers used herein can be prepared by any of a variety of approaches including conventional polymer processing methods. Preferred approaches include, for example, injection molding, which is suitable for the production of polymer components with significant structural features, and rapid prototyping approaches, such as reaction injection molding and stereo-lithography. The substrate can be textured or made porous by either physical abrasion or chemical alteration to facilitate incorporation of the metal coating. Other processes are also appropriate, such as extrusion, injection, compression molding and/or machining techniques. Typically, the polymer is chosen for its physical and mechanical properties and is suitable for carrying and spreading the physical load between the joint surfaces.


More than one metal and/or polymer can be used in combination with each other. For example, one or more metal-containing substrates can be coated with polymers in one or more regions or, alternatively, one or more polymer-containing substrate can be coated in one or more regions with one or more metals.


The system or prosthesis can be porous or porous coated. The porous surface components can be made of various materials including metals, ceramics, and polymers. These surface components can, in turn, be secured by various means to a multitude of structural cores formed of various metals. Suitable porous coatings include, but are not limited to, metal, ceramic, polymeric (e.g., biologically neutral elastomers such as silicone rubber, polyethylene terephthalate and/or combinations thereof or combinations thereof. See, e.g., U.S. Pat. No. 3,605,123 to Hahn, issued Sep. 20, 1971; U.S. Pat. No. 3,808,606 to Tronzo issued May 7, 1974; U.S. Pat. No. 3,843,975 to Tronzo issued Oct. 29, 1974; U.S. Pat. No. 3,314,420 to Smith issued Apr. 18, 1967; U.S. Pat. No. 3,987,499 to Scharbach issued Oct. 26, 1976; and German Offenlegungsschrift 2,306,552, each of which is hereby incorporated by reference in its entirety. There can be more than one coating layer and the layers can have the same or different porosities. See, e.g., U.S. Pat. No. 3,938,198 to Kahn, et al., issued Feb. 17, 1976, which is hereby incorporated herein by reference in its entirety.


The coating can be applied by surrounding a core with powdered polymer and heating until cured to form a coating with an internal network of interconnected pores. The tortuosity of the pores (e.g., a measure of length to diameter of the paths through the pores) can be important in evaluating the probable success of such a coating in use on a prosthetic device. See, also, U.S. Pat. No. 4,213,816 to Morris issued Jul. 22, 1980, which is hereby incorporated herein by reference in its entirety. The porous coating can be applied in the form of a powder and the article as a whole subjected to an elevated temperature that bonds the powder to the substrate. Selection of suitable polymers and/or powder coatings can be determined in view of the teachings and references cited herein, for example based on the melt index of each.


An implant can include components and/or implant component parts produced via various methods. For example, in certain embodiments for a knee implant, the knee implant can include a metal femoral implant component produced by casting or by an additive manufacturing technique and having a patient-specific femoral intercondylar distance; a tibial component cut from a blank and machined to be patient-specific for the perimeter of the patient's cut tibia; and a tibial insert having a standard lock and a top surface that is patient-specific for at least the patient's intercondylar distance between the tibial insert dishes to accommodate the patient-specific femoral intercondylar distance of the femoral implant.


As another example, in certain embodiments a knee implant can include a metal femoral implant component produced by casting or by an additive manufacturing technique that is patient-specific with respect to a particular patient's M-L dimension and standard with respect to the patient's femoral intercondylar distance; a tibial component cut from a blank and machined to be patient-specific for the perimeter of the patient's cut tibia; and a tibial insert having a standard lock and a top surface that includes a standard intercondylar distance between the tibial insert dishes to accommodate the standard femoral intercondylar distance of the femoral implant.


Any of the materials listed above may be used with the associated manufacturing processes listed in Table 1 or Table 2 to manufacture a blank implant. In various embodiments, the blank is dimensioned to be, in one or more portions, only slightly larger than that of the implant. For example, the blank may be milled or cast such that all, or certain portions of the blank, are only slightly larger than the implant. Providing a blank from which material will be removed to arrive at the precise implant size, geometry and surface characteristics, can simplify the manufacturing processing and potentially ensure reproducibility.


The blank may be provided, e.g. by casting, milling, forging, compression molding, extruding or injection molding. A blank implant may be described as an implant that incorporates standard features of an “off-the shelf” implant, such as locking mechanisms, slots for coupling with bearing components, etc., but has at least one or more features that may be adapted in accordance with the image data of a patient's joint (e.g. perimeter size) in order to create an implant customized for that patient. For example, the outside geometry of the femoral component can be customized to be patient-specific or patient-matched. As an illustration, the width W and height H, and/or optionally the shape and dimensions of the entire articulating or outer surface, or portions thereof, can match/conform with that of the patient's corresponding joint surface.


Features of the implant that may be altered according to the patient's specific measurements of biological features can include any one or more of the illustrative measurements identified in Table 3.









TABLE 3







Exemplary patient-specific measurements of anatomical features


that can be used in the selection and/or design of an implant








Anatomical feature
Exemplary measurement





Joint-line, joint gap
Location relative to proximal reference point



Location relative to distal reference point



Angle



Gap distance between opposing surfaces in



one or more locations



Location, angle, and/or distance relative to



contralateral joint


Soft tissue tension
Joint gap distance


and/or balance
Joint gap differential, e.g., medial to lateral


Medullary cavity
Shape in one or more dimensions



Shape in one or more locations



Diameter of cavity



Volume of cavity


Subchondral bone
Shape in one or more dimensions



Shape in one or more locations



Thickness in one or more dimensions



Thickness in one or more locations



Angle, e.g., resection cut angle


Cortical bone
Shape in one or more dimensions



Shape in one or more locations



Thickness in one or more dimensions



Thickness in one or more locations



Angle, e.g., resection cut angle


Endosteal bone
Shape in one or more dimensions



Shape in one or more locations



Thickness in one or more dimensions



Thickness in one or more locations



Angle, e.g., resection cut angle


Cartilage
Shape in one or more dimensions



Shape in one or more locations



Thickness in one or more dimensions



Thickness in one or more locations



Angle, e.g., resection cut angle


Intercondylar notch
Shape in one or more dimensions



Location



Height in one or more locations



Width in one or more locations



Depth in one or more locations



Angle, e.g., resection cut angle


Medial condyle
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Lateral condyle
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Trochlea
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Medial trochlea
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Central trochlea
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Lateral trochlea
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Entire tibia
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Medial tibia
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Lateral tibia
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Entire patella
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Medial patella
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Central patella
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Lateral patella
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Femoral head
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Acetabulum
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Glenoid
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Humeral head
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Ankle joint
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Elbow
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Wrist
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Hand
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Finger
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle


Spine
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle


Spinal facet joint
2D and/or 3D shape of a portion or all



Height in one or more locations



Length in one or more locations



Width in one or more locations



Depth in one or more locations



Thickness in one or more locations



Curvature in one or more locations



Slope in one or more locations and/or directions



Angle, e.g., resection cut angle









In accordance with other embodiments, a joint implant is presented wherein at least one surface of the implant rests on subchondral bone, and advantageously does not require invasive cutting of bone. These implants may be made by the methods described hereinabove. While an exemplary knee implant is described, it is to be understood that the joint implant may be associated with, for example, a shoulder, a hip, a vertebrae, an elbow, an ankle, a hand, a foot or a wrist.



FIG. 3 shows in cross-section a total knee implant, in accordance with one embodiment. A femoral component 301 includes a first femoral component surface 303 for securing to a surgically prepared compartment of a distal end of a femur 305. A second femoral component surface 307 desirably replicates the shape of the femoral condyle(s).


A tibial component 311 includes a first tibial component surface 313 for resting on and contacting a proximal surface of the tibia. The proximal surface of the tibia may advantageously include substantially uncut subchondral bone. In illustrative embodiments, at least a portion of the first tibial component surface 313 is substantially a negative of or conforms to the proximal surface. For example, a three-dimensional image of the proximal surface may be obtained as described above, with the first tibial component surface 313 manufactured based on the three-dimensional image. A second tibial component surface 317 articulates with the second femoral component surface 307. It is to be understood that in a total knee joint implant, the tibial component(s) can cover both the medial and lateral plateau. In various embodiments, the tibial component may be a single component that covers both the medial and lateral plateau (and may or may not leave the tibial spines intact), or may include two components (i.e., a tibial component for the medial side and a tibial component for the lateral side). In other embodiments, for example, a unicondylar knee implant, the tibial component may cover either only the medial or lateral plateau.


In an exemplary embodiment, the femoral component 301 and the tibial component 311 may each be approximately 2-3 mm thick. The thickness may be, for example, similar to the thickness of cartilage removed in preparing the joint for implantation. Thus, overstuffing of the joint is desirably minimized while providing a non-invasive or less-invasive alternative to traditional invasive knee surgery. By following the teaching of the present disclosure, the manufacture of such implants having the requisite dimensions and strength can be easily achievable. Some or all of the cartilage on the femoral and/or tibial articular surfaces may be removed to prepare the joint for receiving an implant (i.e., to expose some or all of the subchondral bone) as necessary, depending on the progression of cartilage wear, disease, etc. The interior surfaces of the femoral and/or tibial component may be accordingly designed so that the implant may be affixed directly to the desired exposed area(s) of subchondral bone. The thickness and/or shape of the femoral and/or tibial components may be determined (e.g., so as to reconstruct the thickness of the originally present articular cartilage) from an image-derived subchondral bone shape of the joint surfaces, as described in U.S. application Ser. No. 10/305,652.


To provide a desired implant strength (e.g., for biomechanical loading) and reliability, and still be thin enough (or of a desired size or shape) to avoid overstuffing the joint, the first tibial surface 313 and/or the second tibial surface 317 may include, without limitation, a metal and/or a ceramic. For example, the second femoral component surface 307 may include at least one of a ceramic and a metal, and the second tibial component surface 317 includes at least one of a ceramic and a metal. In another example, both the second femoral component surface 307 and the second tibial surface 317 include a metal. In still another example, both the second femoral component surface 307 and the second tibial surface 317 include a ceramic. In yet another example, the second femoral component surface 307 includes one of a ceramic and a metal, and the second tibial surface 317 includes the other of the one of a ceramic and a metal.


In various embodiments, the knee implant includes an anchoring mechanism 330. The anchoring mechanism 330 may be, without limitation, a peg and/or a keel protruding from the first tibial surface 313.


Implant components generated by different techniques can be assessed and compared for their accuracy of shape relative to the intended shape design, for their mechanical strength, and for other factors. In this way, different manufacturing techniques can supply other considerations for achieving an implant component design with one or more target features.


The disclosed methods may use a wide variety of materials, including, but not limited to, plastics, metals, crystal free metals, ceramics, biological materials (e.g., collagen or other extracellular matrix materials), hydroxyapatite, cells (e.g., stem cells, chondrocyte cells or the like), or combinations thereof. Based on the information (e.g., measurements and/or calculations) obtained regarding the defect and the articular surface and/or the subchondral bone, a repair material can be formed or selected. Further, using one or more of these techniques described herein, a cartilage replacement or regenerating material having a curvature that will fit into a particular cartilage defect, desirably following the contour and shape of the articular surface, and further desirably matching the thickness of the surrounding cartilage. The repair material can include any combination of materials, and typically includes at least one non-pliable material, for example materials that are not easily bent or changed.


Assessment/Evaluation Systems

Applicant's disclosure also includes the realization that there are numerous factors that may be relevant to the optimal creation of a joint implant, which may skew or otherwise alter a desired blank choice and/or chosen manufacturing method(s) for various reasons. As previously noted, these factors should desirably be taken into consideration during the implant planning process. In addition, the importance and/or criticality of one or more of these factors may be reduced, or may rise to a level of “absolutely necessary” during certain situations, and it is highly desirably that any assessment system consider many if not all of these factors when planning the manufacturing and/or modification process in the creation of a patient-specific implant. Desirably, the proper consideration of such factors will result in choice and creation of an optimal implant that satisfies other user requirements/desires, such as price, time or implant availability, design strength or durability, or other user or system defined requirements.


As previously noted, one or more factors may include assessing the available methods for altering the implant shape and/or size from the blank to the final implant. Additive and subtractive processing techniques may be limited in their applicability, and the assessment system should be capable of evaluating multiple processing types and approaches to obtain a desired implant from one or more blanks. For example, a potential assessment system may determine a first set of manufacturing steps required to increase various dimensions (using additive manufacturing steps) on a first blank to obtain a desired implant size. The same assessment system may determine a second set of manufacturing steps required to decrease various dimensions (using subtractive manufacturing steps) on a second blank to obtain the same desired implant size. The system may then evaluate the two sets of manufacturing steps to determine which set may be more desirable according to pre-determined criteria or, alternatively, to implant-specific criteria entered by a user during the specific implant creation process (i.e., the user determines that cost for an implant is more critical than manufacturing time, so the assessment system may choose or weigh more heavily a more cost-effective manufacturing method). As previously noted, a wide variety of potential factors may be evaluated to determine an optimal method of manufacturing the implant, and the assessment system could optionally combine various manufacturing methods in its assessment of the manufacturing steps contributing to a single implant (i.e., using both additive and subtractive manufacturing on a single blank to create a desired implant thickness and/or shape).


In a similar manner, the costs of manufacturing an implant for patient-specific use may be a factor utilized in determining the type of implant used, in a similar manner to methods of manufacture. Such costs can include raw material costs for the implant blank, as well as manufacturing costs to reach the blank stage. Further costs can include costs relating to differing types and degrees of manufacturing (i.e., costs for various depths of additive or subtractive manufacturing, as well as operating costs for equipment, personnel, consumables, etc.). Additional cost factors could include shipping and material treatment costs (i.e., differing coating, surface treatments, polishing, passivation and/or sterilization requirements relating to different manufacturing methods) as well as others.


An additional factor could include the availability of materials and equipment for manufacturing the desired implant. The availability and location of various sized blanks may be limited, and it may be desirable to assess different blanks (as well as blanks that may be manufactured “on demand” or “just in time”) to determine the most suitable relating to the various weighted factors. In a similar manner, the presence and availability of required process and manufacturing equipment should be assessed, as equipment for one manufacturing method, currently sitting idle and/or underutilized, may be more desirable than other equipment (for other manufacturing methods) being currently used at or near full capacity. Similarly, a blank located near the manufacturing facility may be deemed more desirable than one located a continent away.


Another additional factor could include the time required for manufacturing the desired implant from the various available blanks Differing manufacturing methods will likely require differing amounts of processing time, as well as any additional post-processing (i.e., cleaning, passivating, coating, surface treatment, sterilization, etc.), and time may be a critical commodity (i.e., surgery is scheduled in 48 hours), or may not be a significant factor (i.e., surgery will be scheduled when the implant is available).


Another potential factor could include the accuracies and/or shapes/tolerances obtainable by each manufacturing method. For example, if accuracy of shape relative to the intended shape design is deemed critical to a particular patient's implant component design, then the manufacturing technique supplying the most accurate shape can be selected. If a minimum implant thickness is critical to a particular patient's implant component design, then the manufacturing technique supplying the highest mechanical strength and therefore allowing the most minimal implant component thickness, can be selected. Branner et al. describe a method a method for the design and optimization of additive layer manufacturing through a numerical coupled-field simulation, based on the finite element analysis (FEA). Branner's method can be used for assessing and comparing product mechanical strength generated by different additive layer manufacturing techniques, for example, SLM, DMLS, and LC.


It may also be desirous to account for differing material types, strengths and/or durability when designing and/or manufacturing an implant. For example, material additive processes are often limited to certain types of materials (i.e., powders and/or fluids) that may have various structural limitations—various manufacturing methods may create an implant highly resistant to compressive loading, but possibly less resistant to torsional and/or tensive loading as compared to a cast or wrought implant created using machining methods. Similarly, various material removal methods may alter the strength of materials in undesirable or unaccounted for ways, such as heat generation and/or micro-fracture due to interaction with a cutting head, or various manufacturing methods may harden or strengthen materials in other ways. In concert, the different types of materials and manufacturing methods utilized may necessitate different minimal or maximal implant thicknesses to achieve the desire implant strength or durability, which may impact the final implant design in ways that affect the suitability of different size blanks as related to the final implant. In addition, different manufacturing methods may also create different types of surfaces best suited to different purposes, such as, for example, a material additive process which can (if desired) create a relatively porous structure (possibly suited for bone in-growth and/or cement interdigitation, and thus better suited for a bone-facing surface of the implant), while a material subtractive process may create a relatively smooth, hard surface (possibly suited for an articulating surface of the implant, and thus better suited for a joint-facing surface of the implant).


In a similar manner, numerous other relevant factors can utilized to determine a desired and/or appropriate construction of a desired implant. Aside from strength and design factors, other factors such as cost, manufacturing time, available manufacturing and machining equipment and trained personnel, competing priorities, geographic location of equipment and supplies, current blank inventory, implant features, materials, implant durability requirements, transportation costs and availability, etc., may contribute to the final choice of blank and manufacturing method (or combination of methods) to create a designed implant.


An additional exemplary listing of features that may be altered to create a patient specific implant from a blank implant is included in Table 4.



FIG. 4 shows a standard femoral implant 405 correctly fitted and seated on a femur 400. In order to obtain a correct fit, in accordance with one embodiment, a three-dimensional model may be used to measure dimensions of the patient's joint. FIG. 5 depicts measurements of medial condyle height 410 and lateral condyle heights 415 (relative to an epicondylar axis 420) on a femur. Based on these measurements, a blank implant could be tailored to the exact dimensions of the patient's joint using the described methods. Any of the patient measurements listed in Table 3 may dictate what modifications may be needed to alter the blank implant using any of the manufacturing process listed in Table 2 in order to customize the blank implant. For example, once a patient's image data is analyzed, a blank implant is selected and then may be machined to carve out or increase the patella track, if necessary, of the implant based on the configuration of the patient's joint. The size of the perimeter of the implant, the shape of the perimeter of the implant, the width of the implant, the height of the implant, are but a few of the geometrical adjustments that may be made to the blank in order to render an implant that conforms to the patient's joint. Additional features may be adjusted as well, such as, the intercondylar notch area may be machined for line or area contact with the articular surfaces of a tibial component of various degrees of flexion.









TABLE 4





Exemplary implant features that can be selected and/or designed


based on patient-specific measurements
















Implant or implant
One or more portions of, or all of,


or component
an external implant component curvature


(applies to most
One or more portions of, or all of,


implants and
an internal implant dimension


implant
One or more portions of, or all of,


components)
an internal or external implant angle



Portions or all of one or more of the ML, AP,



SI dimension of the internal and external



component and component features



An outer locking mechanism dimension between



a plastic or non-metallic insert and a metal



backing component in one or more dimensions



Component height



Component profile



Component 2D or 3D shape



Component volume



Composite implant height



Insert width



Insert shape



Insert length



Insert height



Insert profile



Insert curvature



Insert angle



Distance between two curvatures or concavities



Polyethylene or plastic width



Polyethylene or plastic shape



Polyethylene or plastic length



Polyethylene or plastic height



Polyethylene or plastic profile



Polyethylene or plastic curvature



Polyethylene or plastic angle



Component stem width



Component stem shape



Component stem length



Component stem height



Component stem profile



Component stem curvature



Component stem position



Component stem thickness



Component stem angle



Component peg width



Component peg shape



Component peg length



Component peg height



Component peg profile



Component peg curvature



Component peg position



Component peg thickness



Component peg angle



Slope of an implant surface



Number of sections, facets, or cuts on an



implant surface


Femoral implant
Condylar distance of a femoral component, e.g.,


or implant
between femoral condyles


component
A condylar coronal radius of a femoral component



A condylar sagittal radius of a femoral component


Tibial implant
Slope of an implant surface


or implant
Condylar distance, e.g., between tibial joint-facing


component
surface concavities that engage femoral condyles



Coronal curvature (e.g., one or more radii of



curvature in the coronal plane) of one or



both joint-facing surface concavities that



engage each femoral condyle



Sagittal curvature (e.g., one or more radii of



curvature in the sagittal plane) of one or



both joint-facing surface concavities that



engage each femoral condyle









In addition to the above discussion of altering a blank by removing material, adding material to a blank using any of the process listed in Table 2 may also be considered. Again, any of the geometrical measurements may be altered using an additive manufacturing process in order to incorporate additional material onto the blank implant. Additional features may also be incorporated using an additive process, such as adding material to one condyle of a femoral component in order to compensate for a varus or valgus deformity.


The foregoing description of embodiments has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles and practical applications, thereby enabling others skilled in the art to understand the inventions and the various embodiments and with various modifications that are suited to the particular uses contemplated.

Claims
  • 1. A method for making an implant suitable for a joint, the method comprising: a. determining a three-dimensional shape of at least a portion of an articular surface of the joint from electronic image data of the joint; andb. altering a blank to form an implant, wherein at least a portion of the surface of the implant conforms to the three-dimensional shape, wherein the implant further includes one or more standard features.
  • 2. The method of claim 1, wherein the step of altering the blank comprises adding material to the blank.
  • 3. The method of claim 2, wherein the step of altering the blank comprises adding material to the blank using a laser-enabled material additive manufacturing technology.
  • 4. The method of claim 1, wherein the joint is a knee joint, wherein the implant includes a femoral component having a medial condylar portion and a lateral condylar portion, and wherein the one or more standard features include a standard intercondylar distance.
  • 5. The method of claim 1, wherein the joint is a knee joint, wherein the implant includes a tibial component having a tibial insert engaged with a tibial tray through a standard lock.
  • 6. The method of claim 1, wherein the joint is a knee joint and the implant includes a femoral component, wherein the step of determining the three-dimensional shape includes determining an intercondylar distance of the knee joint, wherein the blank is altered to create the femoral component having the intercondylar distance.
  • 7. The method of claim 1, wherein the joint is a knee joint and the implant includes a femoral component, wherein the step of determining the three-dimensional shape includes determining a medio-lateral width of one or both femoral condyles of the knee joint, wherein the blank is altered to create the femoral component having the medio-lateral width.
  • 8. The method of claim 5, wherein the step of determining the three-dimensional shape includes determining a perimeter of a cut tibia of the knee joint, wherein the blank is altered to create the tibial component having the perimeter.
  • 9. The method of claim 6, further comprising providing a tibial component having a top surface articulating against the femoral component, wherein the top surface is configured based on the intercondylar distance.
  • 10. The method of claim 4, further comprising providing a tibial component having a top surface articulating against the femoral component, wherein the top surface is configured based on the standard intercondylar distance.
  • 11. The method of claim 1, wherein the step of altering the blank comprises subtracting material from a portion of the blank and adding material to the same or another portion of the blank.
  • 12. The method of claim 1, further comprising adding a porous coating to the implant.
  • 13. A method for making an implant suitable for a joint, the method comprising: a. determining a three-dimensional shape of at least a portion of an articular surface of the joint from electronic image data of the joint; andb. subtracting material from a blank to form a surface of the implant, wherein at least a portion of the surface of the implant conforms to the three-dimensional shape, wherein the implant includes one or more standard features not derived from the electronic image data.
  • 14. The method of claim 13, wherein the joint is a knee joint, wherein the implant includes a femoral component that includes at least one of the standard features.
  • 15. The method of claim 13, wherein the joint is a knee joint, wherein the implant includes a tibial component that includes at least one of the standard features.
  • 16. The method of claim 14, wherein the step of determining the three-dimensional shape includes determining an intercondylar distance of the knee joint, wherein the blank is altered to create the femoral component having the intercondylar distance.
  • 17. The method of claim 15, wherein the step of determining the three-dimensional shape includes determining a perimeter of a cut tibia of the knee joint, wherein the blank is altered to create the tibial component having the perimeter.
  • 18. The method of claim 16, further comprising providing a tibial component having a top surface articulating against the femoral component, wherein the top surface is configured based on the intercondylar distance.
  • 19. The method of claim 14, wherein the step of determining the three-dimensional shape includes determining a medio-lateral width of one or both femoral condyles of the knee joint, wherein the blank is altered to create the femoral component having the medio-lateral width.
  • 20. The method of claim 14, wherein the at least one of the standard features includes a standard intercondylar width of the femoral component.
  • 21. The method of claim 15, wherein the at least one of the standard features includes a standard lock that engages a tibial insert with a tibial tray of the tibial component.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/353,386, filed on Jun. 10, 2010, entitled “Production of Patient-Specific Implants,” the disclosure of which is hereby incorporated herein by reference in its entirety. This application is also a continuation-in-part of copending U.S. patent application Ser. No. 12/031,239 filed Feb. 14, 2008, entitled, “Implant Device and Method for Manufacture,” which in turn claims priority to U.S. Provisional Patent Application No. 60/889,859, filed on Feb. 14, 2007, entitled “Implant Device and Method for Manufacture,” the disclosures of which are both herein incorporated by reference in their entireties.

US Referenced Citations (590)
Number Name Date Kind
3314420 Smith et al. Apr 1967 A
3605123 Hahn Sep 1971 A
3694820 Scales et al. Oct 1972 A
3798679 Ewald Mar 1974 A
3808606 Tronzo May 1974 A
3816855 Saleh Jun 1974 A
3843975 Tronzo Oct 1974 A
3852830 Marmor Dec 1974 A
3855638 Pilliar Dec 1974 A
3938198 Kahn et al. Feb 1976 A
3987499 Scharbach et al. Oct 1976 A
3991425 Martin et al. Nov 1976 A
4052753 Dedo Oct 1977 A
4055862 Farling Nov 1977 A
4085466 Goodfellow et al. Apr 1978 A
4098626 Graham et al. Jul 1978 A
4164793 Swanson Aug 1979 A
4178641 Grundei et al. Dec 1979 A
4203444 Bonnell et al. May 1980 A
4207627 Cloutier Jun 1980 A
4211228 Cloutier Jul 1980 A
4213816 Morris Jul 1980 A
4219893 Noiles Sep 1980 A
4280231 Swanson Jul 1981 A
4309778 Buechel et al. Jan 1982 A
4340978 Buechel et al. Jul 1982 A
4344193 Kenny Aug 1982 A
4368040 Weissman Jan 1983 A
4436684 White Mar 1984 A
4459985 McKay et al. Jul 1984 A
4502161 Wall Mar 1985 A
4575805 Moermann et al. Mar 1986 A
4586496 Keller May 1986 A
4594380 Chapin et al. Jun 1986 A
4601290 Effron et al. Jul 1986 A
4609551 Caplan et al. Sep 1986 A
4627853 Campbell et al. Dec 1986 A
4655227 Gracovetsky Apr 1987 A
4673409 Van Kampen Jun 1987 A
4699156 Gracovetsky Oct 1987 A
4714472 Averill et al. Dec 1987 A
4714474 Brooks, Jr. et al. Dec 1987 A
4769040 Wevers Sep 1988 A
4813436 Au Mar 1989 A
4822365 Walker et al. Apr 1989 A
4823807 Russell et al. Apr 1989 A
4846835 Grande Jul 1989 A
4865607 Witzel et al. Sep 1989 A
4872452 Alexson Oct 1989 A
4880429 Stone Nov 1989 A
4883488 Bloebaum et al. Nov 1989 A
4888021 Forte et al. Dec 1989 A
4936853 Fabian et al. Jun 1990 A
4936862 Walker et al. Jun 1990 A
4944757 Martinez et al. Jul 1990 A
5019103 Van Zile et al. May 1991 A
5021061 Wevers et al. Jun 1991 A
5041138 Vacanti et al. Aug 1991 A
5047057 Lawes Sep 1991 A
5059216 Winters Oct 1991 A
5067964 Richmond et al. Nov 1991 A
5099859 Bell Mar 1992 A
5108452 Fallin Apr 1992 A
5123927 Duncan et al. Jun 1992 A
5129908 Peterson Jul 1992 A
5133759 Turner Jul 1992 A
5150304 Berchem et al. Sep 1992 A
5154178 Shah Oct 1992 A
5162430 Rhee et al. Nov 1992 A
5171322 Kenny Dec 1992 A
5197985 Caplan et al. Mar 1993 A
5206023 Hunziker Apr 1993 A
5226914 Caplan et al. Jul 1993 A
5234433 Bert et al. Aug 1993 A
5245282 Mugler, III et al. Sep 1993 A
5246013 Frank et al. Sep 1993 A
5246530 Bugle et al. Sep 1993 A
5270300 Hunziker Dec 1993 A
5274565 Reuben Dec 1993 A
5282868 Bahler Feb 1994 A
5288797 Khalil et al. Feb 1994 A
5303148 Mattson et al. Apr 1994 A
5306307 Senter et al. Apr 1994 A
5306311 Stone et al. Apr 1994 A
5314478 Oka et al. May 1994 A
5314482 Goodfellow et al. May 1994 A
5320102 Paul et al. Jun 1994 A
5326363 Aikins Jul 1994 A
5326365 Alvine Jul 1994 A
5344459 Swartz Sep 1994 A
5360446 Kennedy Nov 1994 A
5365996 Crook Nov 1994 A
5368858 Hunziker Nov 1994 A
5403319 Matsen, III et al. Apr 1995 A
5413116 Radke et al. May 1995 A
5423828 Benson Jun 1995 A
5433215 Athanasiou et al. Jul 1995 A
5445152 Bell et al. Aug 1995 A
5448489 Reuben Sep 1995 A
5468787 Braden et al. Nov 1995 A
5478739 Slivka et al. Dec 1995 A
5489309 Lackey et al. Feb 1996 A
5501687 Willert et al. Mar 1996 A
5503162 Athanasiou et al. Apr 1996 A
5507820 Pappas Apr 1996 A
5510121 Rhee et al. Apr 1996 A
5522900 Hollister Jun 1996 A
5523843 Yamane et al. Jun 1996 A
5541515 Tsujita Jul 1996 A
5549690 Hollister et al. Aug 1996 A
5554190 Draenert Sep 1996 A
5556432 Kubein-Meesenburg et al. Sep 1996 A
5560096 Stephens Oct 1996 A
5564437 Bainville et al. Oct 1996 A
5571191 Fitz Nov 1996 A
5571205 James Nov 1996 A
5609640 Johnson Mar 1997 A
5611802 Samuelson et al. Mar 1997 A
5616146 Murray Apr 1997 A
5632745 Schwartz May 1997 A
5671741 Lang et al. Sep 1997 A
5681354 Eckhoff Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683466 Vitale Nov 1997 A
5683468 Pappas Nov 1997 A
5684562 Fujieda Nov 1997 A
5687210 Maitrejean et al. Nov 1997 A
5690635 Matsen, III et al. Nov 1997 A
5702463 Pothier et al. Dec 1997 A
5723331 Tubo et al. Mar 1998 A
5728162 Eckhoff Mar 1998 A
5735277 Schuster Apr 1998 A
5749362 Funda et al. May 1998 A
5749874 Schwartz May 1998 A
5749876 Duvillier et al. May 1998 A
5759205 Valentini Jun 1998 A
5768134 Swaelens et al. Jun 1998 A
5769899 Schwartz et al. Jun 1998 A
5772595 Votruba et al. Jun 1998 A
5779651 Buschmann et al. Jul 1998 A
5786217 Tubo et al. Jul 1998 A
5810006 Votruba et al. Sep 1998 A
5824085 Sahay et al. Oct 1998 A
5824102 Buscayret Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5832422 Wiedenhoefer Nov 1998 A
5835619 Morimoto et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5847804 Sarver et al. Dec 1998 A
5853746 Hunziker Dec 1998 A
5871018 Delp et al. Feb 1999 A
5871540 Weissman et al. Feb 1999 A
5871542 Goodfellow et al. Feb 1999 A
5871546 Colleran et al. Feb 1999 A
5879390 Kubein-Meesenburg et al. Mar 1999 A
5880976 DiGioia, III et al. Mar 1999 A
5885296 Masini Mar 1999 A
5885298 Herrington et al. Mar 1999 A
5897559 Masini Apr 1999 A
5899859 Votruba et al. May 1999 A
5900245 Sawhney et al. May 1999 A
5906643 Walker May 1999 A
5906934 Grande et al. May 1999 A
5913821 Farese et al. Jun 1999 A
5916220 Masini Jun 1999 A
5928945 Seliktar et al. Jul 1999 A
5939323 Valentini et al. Aug 1999 A
5961523 Masini Oct 1999 A
5968051 Luckman et al. Oct 1999 A
5968099 Badorf et al. Oct 1999 A
5972385 Liu et al. Oct 1999 A
5995738 DiGioia, III et al. Nov 1999 A
6002859 DiGioia, III et al. Dec 1999 A
6013103 Kaufman et al. Jan 2000 A
6046379 Stone et al. Apr 2000 A
6057927 Lévesque et al. May 2000 A
6078680 Yoshida et al. Jun 2000 A
6081577 Webber Jun 2000 A
6082364 Balian et al. Jul 2000 A
6090144 Letot et al. Jul 2000 A
6093204 Stone Jul 2000 A
6102916 Masini Aug 2000 A
6102955 Mendes et al. Aug 2000 A
6110209 Stone Aug 2000 A
6112109 D'Urso Aug 2000 A
6120541 Johnson Sep 2000 A
6120543 Kubein-Meesenburg et al. Sep 2000 A
6126690 Ateshian et al. Oct 2000 A
6139578 Lee et al. Oct 2000 A
6146422 Lawson Nov 2000 A
6151521 Guo et al. Nov 2000 A
6152960 Pappas Nov 2000 A
6156069 Amstutz Dec 2000 A
6161080 Aouni-Ateshian et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6165221 Schmotzer Dec 2000 A
6171340 McDowell Jan 2001 B1
6175655 George, III et al. Jan 2001 B1
6178225 Zur et al. Jan 2001 B1
6187010 Masini Feb 2001 B1
6197064 Haines et al. Mar 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6200606 Peterson et al. Mar 2001 B1
6203576 Afriat et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6206927 Fell et al. Mar 2001 B1
6214369 Grande et al. Apr 2001 B1
6217894 Sawhney et al. Apr 2001 B1
6219571 Hargreaves et al. Apr 2001 B1
6224632 Pappas et al. May 2001 B1
6235060 Kubein-Meesenburg et al. May 2001 B1
6249692 Cowin Jun 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6254639 Peckitt Jul 2001 B1
6261296 Aebi et al. Jul 2001 B1
6277151 Lee et al. Aug 2001 B1
6281195 Rueger et al. Aug 2001 B1
6283980 Vibe-Hansen et al. Sep 2001 B1
6289115 Takeo Sep 2001 B1
6289753 Basser et al. Sep 2001 B1
6299645 Ogden Oct 2001 B1
6299905 Peterson et al. Oct 2001 B1
6302582 Nord et al. Oct 2001 B1
6310477 Schneider Oct 2001 B1
6310619 Rice Oct 2001 B1
6316153 Goodman et al. Nov 2001 B1
6319712 Meenen et al. Nov 2001 B1
6322588 Ogle et al. Nov 2001 B1
6328765 Hardwick et al. Dec 2001 B1
6334006 Tanabe Dec 2001 B1
6334066 Rupprecht et al. Dec 2001 B1
6342075 MacArthur Jan 2002 B1
6344043 Pappas Feb 2002 B1
6344059 Krakovits et al. Feb 2002 B1
6352558 Spector Mar 2002 B1
6358253 Torrie et al. Mar 2002 B1
6365405 Salzmann et al. Apr 2002 B1
6371958 Overaker Apr 2002 B1
6373250 Tsoref et al. Apr 2002 B1
6375658 Hangody et al. Apr 2002 B1
6379367 Vibe-Hansen et al. Apr 2002 B1
6379388 Ensign et al. Apr 2002 B1
6382028 Wooh et al. May 2002 B1
6383228 Schmotzer May 2002 B1
6387131 Miehlke et al. May 2002 B1
6429013 Halvorsen et al. Aug 2002 B1
6443988 Felt et al. Sep 2002 B2
6443991 Running Sep 2002 B1
6444222 Asculai et al. Sep 2002 B1
6450978 Brosseau et al. Sep 2002 B1
6459948 Ateshian et al. Oct 2002 B1
6468314 Schwartz et al. Oct 2002 B2
6479996 Hoogeveen et al. Nov 2002 B1
6482209 Engh et al. Nov 2002 B1
6510334 Schuster et al. Jan 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6520964 Tallarida et al. Feb 2003 B2
6533737 Brosseau et al. Mar 2003 B1
6556855 Thesen Apr 2003 B2
6558421 Fell et al. May 2003 B1
6560476 Pelletier et al. May 2003 B1
6575980 Robie et al. Jun 2003 B1
6591581 Schmieding Jul 2003 B2
6592624 Fraser et al. Jul 2003 B1
6623526 Lloyd Sep 2003 B1
6626945 Simon et al. Sep 2003 B2
6632235 Weikel et al. Oct 2003 B2
6632246 Simon et al. Oct 2003 B1
6652587 Felt et al. Nov 2003 B2
6679917 Ek Jan 2004 B2
6690816 Aylward et al. Feb 2004 B2
6692448 Tanaka et al. Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6712856 Carignan et al. Mar 2004 B1
6719794 Gerber et al. Apr 2004 B2
6770078 Bonutti Aug 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6799066 Steines et al. Sep 2004 B2
6816607 O'Donnell et al. Nov 2004 B2
6835377 Goldberg et al. Dec 2004 B2
6855165 Fell et al. Feb 2005 B2
6873741 Li Mar 2005 B2
6893463 Fell et al. May 2005 B2
6893467 Bercovy May 2005 B1
6902582 Kubein-Meesenburg et al. Jun 2005 B2
6905514 Carignan et al. Jun 2005 B2
6911044 Fell et al. Jun 2005 B2
6916341 Rolston Jul 2005 B2
6923831 Fell et al. Aug 2005 B2
6932842 Litschko et al. Aug 2005 B1
6964687 Bernard et al. Nov 2005 B1
6966928 Fell et al. Nov 2005 B2
6984981 Tamez-Peña et al. Jan 2006 B2
6998841 Tamez-Peña et al. Feb 2006 B1
7001672 Justin et al. Feb 2006 B2
7020314 Suri et al. Mar 2006 B1
7050534 Lang May 2006 B2
7058159 Lang et al. Jun 2006 B2
7058209 Chen et al. Jun 2006 B2
7060101 O'Connor et al. Jun 2006 B2
7105026 Johnson et al. Sep 2006 B2
7115131 Engh et al. Oct 2006 B2
7174282 Hollister et al. Feb 2007 B2
7184814 Lang et al. Feb 2007 B2
7204807 Tsoref Apr 2007 B2
7238203 Bagga et al. Jul 2007 B2
7239908 Alexander et al. Jul 2007 B1
7244273 Pedersen et al. Jul 2007 B2
7245697 Lang Jul 2007 B2
7292674 Lang Nov 2007 B2
7326252 Otto et al. Feb 2008 B2
7368065 Yang et al. May 2008 B2
7379529 Lang May 2008 B2
7438685 Burdette et al. Oct 2008 B2
7445640 Despres, III et al. Nov 2008 B2
7467892 Lang et al. Dec 2008 B2
7468075 Lang et al. Dec 2008 B2
7517358 Petersen Apr 2009 B2
7520901 Engh et al. Apr 2009 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7603192 Martin et al. Oct 2009 B2
7611519 Lefevre et al. Nov 2009 B2
7611653 Elsner et al. Nov 2009 B1
7615054 Bonutti Nov 2009 B1
7618451 Berez et al. Nov 2009 B2
7632575 Justin et al. Dec 2009 B2
7634119 Tsougarakis et al. Dec 2009 B2
7796791 Tsougarakis et al. Sep 2010 B2
7799077 Lang et al. Sep 2010 B2
7806896 Bonutti Oct 2010 B1
7842092 Otto et al. Nov 2010 B2
7881768 Lang et al. Feb 2011 B2
7914582 Felt et al. Mar 2011 B2
7935151 Haines May 2011 B2
7981158 Fitz et al. Jul 2011 B2
7983777 Melton et al. Jul 2011 B2
8036729 Lang et al. Oct 2011 B2
8062302 Lang et al. Nov 2011 B2
8066708 Lang et al. Nov 2011 B2
8070821 Roger Dec 2011 B2
8077950 Tsougarakis et al. Dec 2011 B2
8083745 Lang et al. Dec 2011 B2
8094900 Steines et al. Jan 2012 B2
8105330 Fitz et al. Jan 2012 B2
8112142 Alexander et al. Feb 2012 B2
RE43282 Alexander et al. Mar 2012 E
8192498 Wagner et al. Jun 2012 B2
8211181 Walker Jul 2012 B2
8234097 Steines et al. Jul 2012 B2
8236061 Heldreth et al. Aug 2012 B2
8265730 Alexander et al. Sep 2012 B2
8306601 Lang et al. Nov 2012 B2
8311306 Pavlovskaia et al. Nov 2012 B2
8337501 Fitz et al. Dec 2012 B2
8337507 Lang et al. Dec 2012 B2
8343218 Lang et al. Jan 2013 B2
8361076 Roose et al. Jan 2013 B2
8366771 Burdulis, Jr. et al. Feb 2013 B2
8369926 Lang et al. Feb 2013 B2
8377129 Fitz et al. Feb 2013 B2
8380471 Iannotti et al. Feb 2013 B2
8407067 Uthgenannt et al. Mar 2013 B2
8439926 Bojarski et al. May 2013 B2
8457930 Schroeder Jun 2013 B2
8460304 Fitz et al. Jun 2013 B2
8473305 Belcher et al. Jun 2013 B2
8480754 Bojarski et al. Jul 2013 B2
8486150 White et al. Jul 2013 B2
8500740 Bojarski et al. Aug 2013 B2
8521492 Otto et al. Aug 2013 B2
8529568 Bouadi Sep 2013 B2
8529630 Bojarski et al. Sep 2013 B2
8532807 Metzger Sep 2013 B2
8545569 Fitz et al. Oct 2013 B2
8551099 Lang et al. Oct 2013 B2
8551102 Fitz et al. Oct 2013 B2
8551103 Fitz et al. Oct 2013 B2
8551169 Fitz et al. Oct 2013 B2
8556906 Fitz et al. Oct 2013 B2
8556907 Fitz et al. Oct 2013 B2
8556971 Lang Oct 2013 B2
8556983 Bojarski et al. Oct 2013 B2
8561278 Fitz et al. Oct 2013 B2
8562611 Fitz et al. Oct 2013 B2
8562618 Fitz et al. Oct 2013 B2
20010001120 Masini May 2001 A1
20010010023 Schwartz et al. Jul 2001 A1
20010039455 Simon et al. Nov 2001 A1
20020013626 Geistlich et al. Jan 2002 A1
20020016543 Tyler Feb 2002 A1
20020022884 Mansmann Feb 2002 A1
20020045940 Giannetti et al. Apr 2002 A1
20020059049 Bradbury et al. May 2002 A1
20020067798 Lang et al. Jun 2002 A1
20020068979 Brown et al. Jun 2002 A1
20020072821 Baker Jun 2002 A1
20020082703 Repicci Jun 2002 A1
20020087274 Alexander et al. Jul 2002 A1
20020106625 Hung et al. Aug 2002 A1
20020111694 Ellingsen et al. Aug 2002 A1
20020115647 Halvorsen et al. Aug 2002 A1
20020120274 Overaker et al. Aug 2002 A1
20020120281 Overaker Aug 2002 A1
20020127264 Felt et al. Sep 2002 A1
20020133230 Repicci Sep 2002 A1
20020147392 Steines et al. Oct 2002 A1
20020151986 Asculai et al. Oct 2002 A1
20020156150 Williams et al. Oct 2002 A1
20020173852 Felt et al. Nov 2002 A1
20020177770 Lang et al. Nov 2002 A1
20020183850 Felt et al. Dec 2002 A1
20030015208 Lang et al. Jan 2003 A1
20030031292 Lang Feb 2003 A1
20030035773 Totterman et al. Feb 2003 A1
20030045935 Angelucci et al. Mar 2003 A1
20030055500 Fell et al. Mar 2003 A1
20030055501 Fell et al. Mar 2003 A1
20030055502 Lang et al. Mar 2003 A1
20030060882 Fell et al. Mar 2003 A1
20030060883 Fell et al. Mar 2003 A1
20030060884 Fell et al. Mar 2003 A1
20030060885 Fell et al. Mar 2003 A1
20030063704 Lang Apr 2003 A1
20030069591 Carson et al. Apr 2003 A1
20030100953 Rosa et al. May 2003 A1
20030158606 Coon et al. Aug 2003 A1
20030216669 Lang et al. Nov 2003 A1
20030225457 Justin et al. Dec 2003 A1
20030236473 Dore et al. Dec 2003 A1
20040006393 Burkinshaw Jan 2004 A1
20040062358 Lang et al. Apr 2004 A1
20040081287 Lang et al. Apr 2004 A1
20040098132 Andriacchi et al. May 2004 A1
20040098133 Carignan et al. May 2004 A1
20040102851 Saladino May 2004 A1
20040102852 Johnson et al. May 2004 A1
20040102866 Harris et al. May 2004 A1
20040117015 Biscup Jun 2004 A1
20040117023 Gerbec et al. Jun 2004 A1
20040122521 Lee et al. Jun 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040138755 O'Connor et al. Jul 2004 A1
20040147927 Tsougarakis et al. Jul 2004 A1
20040153079 Tsougarakis et al. Aug 2004 A1
20040153162 Sanford et al. Aug 2004 A1
20040153164 Sanford et al. Aug 2004 A1
20040167390 Alexander et al. Aug 2004 A1
20040167630 Rolston Aug 2004 A1
20040193280 Webster et al. Sep 2004 A1
20040204644 Tsougarakis et al. Oct 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040204766 Siebel Oct 2004 A1
20040236424 Berez et al. Nov 2004 A1
20050010106 Lang et al. Jan 2005 A1
20050015153 Goble et al. Jan 2005 A1
20050021042 Marnay et al. Jan 2005 A1
20050033424 Fell Feb 2005 A1
20050043807 Wood Feb 2005 A1
20050055028 Haines Mar 2005 A1
20050078802 Lang et al. Apr 2005 A1
20050107883 Goodfried et al. May 2005 A1
20050107884 Johnson et al. May 2005 A1
20050119664 Carignan et al. Jun 2005 A1
20050125029 Bernard et al. Jun 2005 A1
20050148843 Roose Jul 2005 A1
20050154471 Aram et al. Jul 2005 A1
20050171612 Rolston Aug 2005 A1
20050203384 Sati et al. Sep 2005 A1
20050216305 Funderud Sep 2005 A1
20050226374 Lang et al. Oct 2005 A1
20050234461 Burdulis, Jr. et al. Oct 2005 A1
20050267584 Burdulis et al. Dec 2005 A1
20050278034 Johnson et al. Dec 2005 A1
20060009853 Justin et al. Jan 2006 A1
20060069318 Keaveny et al. Mar 2006 A1
20060111722 Bouadi May 2006 A1
20060111726 Felt et al. May 2006 A1
20060129246 Steffensmeier Jun 2006 A1
20060149374 Winslow et al. Jul 2006 A1
20060210017 Lang Sep 2006 A1
20060210018 Lang Sep 2006 A1
20060265078 McMinn Nov 2006 A1
20070015995 Lang Jan 2007 A1
20070047794 Lang et al. Mar 2007 A1
20070067032 Felt et al. Mar 2007 A1
20070083266 Lang Apr 2007 A1
20070100462 Lang et al. May 2007 A1
20070118055 McCombs May 2007 A1
20070118222 Lang May 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070156171 Lang et al. Jul 2007 A1
20070190108 Datta et al. Aug 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070203430 Lang et al. Aug 2007 A1
20070233156 Metzger Oct 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070250169 Lang Oct 2007 A1
20070255288 Mahfouz et al. Nov 2007 A1
20070274444 Lang Nov 2007 A1
20070276224 Lang et al. Nov 2007 A1
20070276501 Betz et al. Nov 2007 A1
20080004709 O'Neill et al. Jan 2008 A1
20080009950 Richardson Jan 2008 A1
20080015433 Alexander et al. Jan 2008 A1
20080025463 Lang Jan 2008 A1
20080031412 Lang et al. Feb 2008 A1
20080058613 Lang et al. Mar 2008 A1
20080058945 Hajaj et al. Mar 2008 A1
20080119940 Otto et al. May 2008 A1
20080147072 Park et al. Jun 2008 A1
20080170659 Lang et al. Jul 2008 A1
20080172125 Ek Jul 2008 A1
20080195108 Bhatnagar et al. Aug 2008 A1
20080195216 Philipp Aug 2008 A1
20080215059 Carignan et al. Sep 2008 A1
20080219412 Lang Sep 2008 A1
20080243127 Lang et al. Oct 2008 A1
20080262624 White et al. Oct 2008 A1
20080275452 Lang et al. Nov 2008 A1
20080281328 Lang et al. Nov 2008 A1
20080281329 Fitz et al. Nov 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080319448 Lavallee et al. Dec 2008 A1
20090076371 Lang et al. Mar 2009 A1
20090076508 Weinans et al. Mar 2009 A1
20090118830 Fell May 2009 A1
20090131941 Park et al. May 2009 A1
20090149977 Schendel Jun 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090226068 Fitz et al. Sep 2009 A1
20090228111 Otto Sep 2009 A1
20090228113 Lang et al. Sep 2009 A1
20090270868 Park et al. Oct 2009 A1
20090276045 Lang Nov 2009 A1
20090306676 Lang et al. Dec 2009 A1
20090312805 Lang et al. Dec 2009 A1
20090326666 Wyss et al. Dec 2009 A1
20100054572 Tsougarakis et al. Mar 2010 A1
20100274534 Steines et al. Oct 2010 A1
20100303313 Lang et al. Dec 2010 A1
20100303317 Tsougarakis et al. Dec 2010 A1
20100303324 Lang et al. Dec 2010 A1
20100305708 Lang et al. Dec 2010 A1
20100305907 Fitz et al. Dec 2010 A1
20100329530 Lang et al. Dec 2010 A1
20100331991 Wilkinson et al. Dec 2010 A1
20110022179 Andriacchi et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110029093 Bojarski et al. Feb 2011 A1
20110046735 Metzger et al. Feb 2011 A1
20110066245 Lang et al. Mar 2011 A1
20110071645 Bojarski et al. Mar 2011 A1
20110071802 Bojarski et al. Mar 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110087465 Mahfouz Apr 2011 A1
20110092804 Schoenefeld et al. Apr 2011 A1
20110125009 Lang et al. May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110218635 Amis et al. Sep 2011 A1
20110266265 Lang Nov 2011 A1
20110288669 Sanford et al. Nov 2011 A1
20110295378 Bojarski et al. Dec 2011 A1
20110305379 Mahfouz Dec 2011 A1
20120093377 Tsougarakis et al. Apr 2012 A1
20120116203 Vancraen et al. May 2012 A1
20120191205 Bojarski et al. Jul 2012 A1
20120191420 Bojarski et al. Jul 2012 A1
20120197408 Lang et al. Aug 2012 A1
20120201440 Steines et al. Aug 2012 A1
20120209394 Bojarski et al. Aug 2012 A1
20120232669 Bojarski et al. Sep 2012 A1
20120232670 Bojarski et al. Sep 2012 A1
20120232671 Bojarski et al. Sep 2012 A1
20120265496 Mahfouz Oct 2012 A1
20130006598 Alexander et al. Jan 2013 A1
20130071828 Lang et al. Mar 2013 A1
20130079781 Fitz et al. Mar 2013 A1
20130079876 Fitz et al. Mar 2013 A1
20130081247 Fitz et al. Apr 2013 A1
20130103363 Lang et al. Apr 2013 A1
20130110471 Lang et al. May 2013 A1
20130144570 Axelson, Jr. et al. Jun 2013 A1
20130158671 Uthgenannt et al. Jun 2013 A1
20130165939 Ries et al. Jun 2013 A1
20130197870 Steines et al. Aug 2013 A1
20130199259 Smith Aug 2013 A1
20130203031 Mckinnon et al. Aug 2013 A1
20130211531 Steines et al. Aug 2013 A1
20130245803 Lang Sep 2013 A1
Foreign Referenced Citations (157)
Number Date Country
86209787 Nov 1987 CN
2305966 Feb 1999 CN
2306552 Aug 1974 DE
3516743 Nov 1986 DE
8909091 Sep 1989 DE
3933459 Apr 1991 DE
44 34 539 Apr 1996 DE
19803673 Aug 1999 DE
19926083 Dec 2000 DE
10055465 May 2002 DE
10135771 Feb 2003 DE
102006037067 Feb 2006 DE
0528080 Feb 1993 EP
0600806 Jun 1994 EP
0672397 Sep 1995 EP
0 704 193 Apr 1996 EP
0626156 Jul 1997 EP
0613380 Dec 1999 EP
1074229 Feb 2001 EP
1077253 Feb 2001 EP
1120087 Aug 2001 EP
1129675 Sep 2001 EP
0732091 Dec 2001 EP
0896825 Jul 2002 EP
0814731 Aug 2002 EP
1234552 Aug 2002 EP
1234555 Aug 2002 EP
0809987 Oct 2002 EP
0833620 Oct 2002 EP
1327423 Jul 2003 EP
1329205 Jul 2003 EP
0530804 Jun 2004 EP
1437101 Jul 2004 EP
1070487 Sep 2005 EP
1683593 Jul 2006 EP
1886640 Feb 2008 EP
2324799 May 2011 EP
2589720 Nov 1985 FR
2740326 Apr 1997 FR
1451283 Sep 1976 GB
2291355 Jan 1996 GB
2304051 Mar 1997 GB
2348373 Oct 2000 GB
56-083343 Jul 1981 JP
61-247448 Nov 1986 JP
1-249049 Oct 1989 JP
05-184612 Jul 1993 JP
7-236648 Sep 1995 JP
8-173465 Jul 1996 JP
9-206322 Aug 1997 JP
11-19104 Jan 1999 JP
11-276510 Oct 1999 JP
2007-521881 Aug 2007 JP
WO 8702882 May 1987 WO
WO 9009769 Sep 1990 WO
WO 9304710 Mar 1993 WO
WO 9309819 May 1993 WO
WO 9325157 Dec 1993 WO
WO 9527450 Oct 1995 WO
WO 9528688 Oct 1995 WO
WO 9530390 Nov 1995 WO
WO 9532623 Dec 1995 WO
WO 9624302 Aug 1996 WO
WO 9725942 Jul 1997 WO
WO 9727885 Aug 1997 WO
WO 9738676 Oct 1997 WO
WO 9746665 Dec 1997 WO
WO 9808469 Mar 1998 WO
WO 9812994 Apr 1998 WO
WO 9820816 May 1998 WO
WO 9830617 Jul 1998 WO
WO 9852498 Nov 1998 WO
WO 9902654 Jan 1999 WO
WO 9908598 Feb 1999 WO
WO 9908728 Feb 1999 WO
WO 9942061 Aug 1999 WO
WO 9947186 Sep 1999 WO
WO 9951719 Oct 1999 WO
WO 0009179 Feb 2000 WO
WO 0015153 Mar 2000 WO
WO 0019911 Apr 2000 WO
WO 0035346 Jun 2000 WO
WO 0048550 Aug 2000 WO
WO 0059411 Oct 2000 WO
WO 0068749 Nov 2000 WO
WO 0074554 Dec 2000 WO
WO 0074741 Dec 2000 WO
WO 0076428 Dec 2000 WO
WO 0110356 Feb 2001 WO
WO 0117463 Mar 2001 WO
WO 0119254 Mar 2001 WO
WO 0135968 May 2001 WO
WO 0145764 Jun 2001 WO
WO 0168800 Sep 2001 WO
WO 0170142 Sep 2001 WO
WO 0177988 Oct 2001 WO
WO 0182677 Nov 2001 WO
WO 0191672 Dec 2001 WO
WO 0202021 Jan 2002 WO
WO 0209623 Feb 2002 WO
WO 0222013 Mar 2002 WO
WO 0222014 Mar 2002 WO
WO 0223483 Mar 2002 WO
WO 0234310 May 2002 WO
WO 0236147 May 2002 WO
WO 0237423 May 2002 WO
WO 02096268 Dec 2002 WO
WO 03007788 Jan 2003 WO
WO 03037192 May 2003 WO
WO 03047470 Jun 2003 WO
WO 03051210 Jun 2003 WO
WO 03061522 Jul 2003 WO
WO 03099106 Dec 2003 WO
WO 2004006811 Jan 2004 WO
WO 2004032806 Apr 2004 WO
WO 2004043305 May 2004 WO
WO 2004047688 Jun 2004 WO
WO 2004049981 Jun 2004 WO
WO 2004051301 Jun 2004 WO
WO 2004073550 Sep 2004 WO
WO 2005016175 Feb 2005 WO
WO 2005020850 Mar 2005 WO
WO 2005051239 Jun 2005 WO
WO 2005051240 Jun 2005 WO
WO 2005067521 Jul 2005 WO
WO 2005076974 Aug 2005 WO
WO 2006058057 Jun 2006 WO
WO 2006060795 Jun 2006 WO
WO 2006065774 Jun 2006 WO
WO 2006092600 Sep 2006 WO
WO 2007041375 Apr 2007 WO
WO 2007062079 May 2007 WO
WO 2007092841 Aug 2007 WO
WO 2007109641 Sep 2007 WO
WO 2008021494 Feb 2008 WO
WO 2008055161 May 2008 WO
WO 2008101090 Aug 2008 WO
WO 2008117028 Oct 2008 WO
WO 2008157412 Dec 2008 WO
WO 2009140294 Nov 2009 WO
WO 2010099231 Sep 2010 WO
WO 2010099353 Sep 2010 WO
WO 2010099359 Sep 2010 WO
WO 2010140036 Dec 2010 WO
WO 2010151564 Dec 2010 WO
WO 2011028624 Mar 2011 WO
WO 2011056995 May 2011 WO
WO 2011072235 Jun 2011 WO
WO 2011101474 Aug 2011 WO
WO 2012027150 Mar 2012 WO
WO 2012027185 Mar 2012 WO
WO 2012112694 Aug 2012 WO
WO 2012112698 Aug 2012 WO
WO 2012112701 Aug 2012 WO
WO 2012112702 Aug 2012 WO
WO 2013020026 Feb 2013 WO
WO 2013056036 Apr 2013 WO
Non-Patent Literature Citations (401)
Entry
International Searching Authority, International Search Report—International Application No. PCT/US2009/036165, dated May 7, 2009, together with the Written Opinion of the International Searching Authority, 9 pages.
European Patent Office, European Search Report—Application No. 10192339.9-1257, dated Jan. 23, 2013, 5 pages.
European Patent Office, Extended European Search Report—Application No. 10746859.7-1654 dated Mar. 4, 2013, 7 pages.
Adam et al., “NMR tomography of the cartilage structures of the knee joint with 3-D volume image combined with a rapid optical-imaging computer,” ROFO Fortschr. Geb. Rontgenstr. Nuklearmed., 150(1): 44-48 (1989) Abstract Only.
Adam et al., “MR Imaging of the Knee: Three-Dimensional Volume Imaging Combined with Fast Processing,”J. Compt. Asst. Tomogr., 13(6): 984-988 (1989).
Adams et al., “Quantitative Imaging of Osteoarthritis,” Semin Arthritis Rheum, 20(6) Suppl. 2: 26-39 (Jun. 1991).
Ahmad et al., “Biomechanical and Topographic Considerations for Autologous Osteochondral Grafting in the Knee,” Am J Sports Med, 29(2): 201-206 (Mar.-Apr. 2001).
Alexander, “Estimating the motion of bones from markers on the skin,” University of Illinois at Chicago (Doctoral Dissertation) (1998).
Alexander et al., “Correcting for deformation in skin-based marker systems,” Proceedings of the 3rd Annual Gait and Clinical Movement Analysis Meeting, San Diego, CA (1998).
Alexander et al., “Internal to external correspondence in the analysis of lower limb bone motion,” Proceedings of the 1999 ASME Summer Bioengineering Conference, Big Sky, Montana (1999).
Alexander et al., “State estimation theory in human movement analysis,” Proceedings of the ASME International Mechanical Engineering Congress (1998).
Alexander et al., “Optimization techniques for skin deformation correction,” International Symposium on 3-D Human Movement Conference, Chattanooga, TN, (1998).
Alexander et al., “Dynamic Functional Imaging of the Musculoskeletal System,” ASME Winter International Congress and Exposition, Nashville, TN (1999).
Allen et al., “Late degenerative changes after meniscectomy 5 factors affecting the knee after operations,” J Bone Joint Surg 66B: 666-671 (1984).
Alley et al., “Ultrafast contrast-enhanced three dimensional MR Aagiography: State of the art,” Radiographics 18:273-285 (1998).
Andersson et al., “MacIntosh Arthroplasty in Rheumatoid Arthritis,” Acta. Orthrop. Scand. 45(2):245-259 (1974).
Andriacchi, “Dynamics of knee Malalignment,” Orthop Clin North Am 25: 395-403 (1994).
Andriacchi, et al., “A point cluster method for in vivo motion analysis: Applied to a study of knee kinematics,” J. Biomech Eng 120(12): 743-749 (1998).
Andriacchi, et al., “Methods for evaluating the progression of Osterarthiritis,” Journal of Rehabilitation Research and Development 37(2): 163-170 (2000).
Andriacchi et al., “Gait analysis as a tool to assess joint kinetics biomechanics of normal and pathological human articulating joints,” Nijhoff, Series E 93: 83-102 (1985).
Andriacchi et al., “In vivo measurement of six-degrees-of-freedom knee movement during functional testing,” Transactions of the Orthopedic Research Society 698 (1995).
Argenson et al., “Is There a Place for Patellofemoral Arthroplasty?,” Clinical Orthopaedics and Related Research No. 321, pp. 162-167 (1995).
Aro et al., “Clinical Use of Bone Allografts,” Ann Med 25:403-412 (1993).
Bashir, “Validation of Gadolinium-Enhanced MRI of FAF Measurement in Human Cartilage,” Intl. Soc. Mag. Resonance Med. (1998).
Beaulieu et al., “Glenohumeral relationships during physiological shoulder motion and stress testing: Initial experience with open MRI and active Scan-25 plane registration,” Radiology (1999).
Beaulieu et al., “Dynamic imaging of glenohumeral instability with open MRI,” Int. Society for Magnetic Resonance in Medicine Sydney, Australia (1998).
Beckmann et al., “Noninvasive 3D MR Microscopy as Tool in Pharmacological Research: Application to a Model of Rheumatoid Arthritis,” Magn Reson Imaging 13(7): 1013-1017 (1995).
Billet, Philippe, French Version—“Gliding Knee Prostheses—Analysis of Mechanical Failures”, Thesis, Medical School of Marseilles, 1982, 64 pages.
Billet, Philippe, Translated Version—“Gliding Knee Prostheses—Analysis of Mechanical Failures”, Thesis, Medical School of Marseilles, 1982, 93 pages.
Blazina et al., “Patellofemoral replacement: Utilizing a customized femoral groove replacement,” 5(1)53-55 (1990).
Blum et al., “Knee Arthroplasty in Patients with Rheumatoid Arthritis,” ANN. Rheum. Dis. 33 (1): 1-11 (1974).
Bobic, “Arthroscopic osteochondral autogaft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study,” Knee Surg Sports Traumatol Arthrosc 3(4): 262-264 (1996).
Boe et al., “Arthroscopic partial meniscectomy in patients aged over 50,” J. Bone Joint Surg 68B: 707 (1986).
Bogoch, et al., “Supracondylar Fractures of the Femur Adjacent to Resurfacing and MacIntosh Arthroplasties of the Knee in Patients with Rheumatoid Arthritis,” Clin. Orthop. (229):213-220 (Apr. 1988).
Borthakur et al., “In Vivo Triple Quantum Filtered Sodium MRI of Human Articular Cartilage,” Proc. Intl. Soc. Mag. Resonance Med., 7:549 (1999).
Brandt et al., In German: “CRIGOS—Development of a Compact Robot System for Image-Guided Orthopedic Surgery,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 645-649 (Jul. 2000).
Brandt et al., English Translation with Certification: “CRIGOS—Development of a Compact Robot System for Image-Guided Orthopedic Surgery,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 645-649 (Jul. 2000).
Bregler et al., “Recovering non-rigid 3D shape from image streams,” Proc. IEEE Conference on Computer Vision and Pattern Recognition (Jun. 2000).
Brett et al., “Quantitative Analysis of Biomedical Images,” Univ. of Manchester, Zeneca Pharmaceuticals, IBM UK, http://www.wiau.man.ac.uk/˜ads/imv (1998).
Brittberg et al., “A critical analysis of cartilage repair,” Acta Orthop Scand 68(2): 186-191 (1997).
Brittberg et al., “Treatment of deep cartilage defects in the knee with autologous chrondrocyte transplantation,” N Engl J Med 331(14): 889-895 (1994).
Broderick et al., “Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs. arthroscopy,” AJR 162: 99-103 (1994).
Brown, Ph.D., et al., “MRI Basic Principles and Applications”, Second Ed., Mark A. Brown and Richard C. Semelka, 1999, Wiley-Liss Inc., Title page and Table of Contents Pages Only (ISBN 0471330620).
Burgkart et al., “Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis,” Arth Rheum; 44(9): 2072-2077 (Sep. 2001).
Butterworth et al., “A T1O2 Dielectric-Filled Toroidal Resonator,” Depts of Biomedical Engineering, Medicine, Neurology, & Center for Nuclear Imaging Research, U. of Alabama at Birmingham, USA, 1 Page (1999).
Butts et al., “Real-Time MR imaging of joint motion on an open MR imaging scanner,” Radiological Society of North America, 83rd Scientific Assembly and Annual Meeting, Chicago, IL (1997).
Cameron, et al., “Review of a Failed Knee Replacement and Some Observations on the Design of a Knee Resurfacing Prosthesis,” Arch. Orthop Trauma Surg. 97(2):87-89 (1980).
CAOS, “MIS meets CAOS Spring 2005 Symposium Schedule”, CAOS Spring 2005 Symposium, pp. 1-9, May 19, 2005.
Carano et al., “Estimation of Erosive Changes in Rheumatoid Arthritis by Temporal Multispectral Analysis,” Proc. Intl. Soc. Mag. Resonance Med., 7:408 (1999).
Carr et al., “Surface Interpolation with Radial Basis Functions for Medical Imaging,” IEEE Transactions on Medical Imaging, IEEE, Inc. New York, vol. 16, pp. 96-107 (Feb. 1997).
Castriota-Scanderbeg et al., “Precision of Sonographic Measurement of Articular Cartilage: Inter-and Intraobserver Analysis,” Skeletal Radiol 25: 545-549 (1996).
Chan et al., “Osteoarthritis of the Knee: Comparison of Radiography, CT and MR Imaging to Asses Extent and Severity,” AJR Am J Roentgenol 157(4): 799-806 (1991).
Chelule et al., “Patient-Specific Template to Preserve Bone Stock in Total Knee Replacement: Preliminary Results”, 15th Annual ISTA Symposium, Sep. 2002, 1 page.
Clarke et al., “Human Hip Joint Geometry and Hemiarthroplasty Selection,” The Hip. C.V. Mosby, St. Louis 63-89 (1975).
Clary et al., “Experience with the MacIntosh Knee Prosthesis,” South Med. J. 65(3):265-272 (1972).
Cohen et al., “Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements,” Osteoarthritis and Cartilage 7: 95-109 (1999).
Conaty, et al., “Surgery of the Hip and Knee in Patients with Rheumatoid Arthritis,” J. Bone Joint Surg. Am. 55(2):301-314 (1973).
Creamer et al., “Quantitative Magnetic Resonance Imaging of the Knee: A Method of Measuring Response to Intra-Articular Treatments,” Ann Rheum Dis. 378-381 (1997).
Daniel et al., “Breast cancer-gadolinium-enhanced MR imaging with a 0.5T open imager and three-point Dixon technique,” Radiology 207(1): 183-190 (1998).
Dardzinski et al., “Entropy Mapping of Articular Cartilage”, ISMRM Seventh Scientific Meeting, Philadelphia, PA (1999) T. 41, V. II.
Dardzinski et al., “T1-T2 Comparison in Adult Articular Cartilage,” ISMRM Seventh Scientific Meeting, Philadelphia, PA (May 22-28, 1999).
De Winter et al., “The Richards Type II Patellofemoral Arthroplasty”, Acta Orthop Scand 2001; 72 (5): 487-490.
Disler, “Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging: assessment of articular and physeal hyaline cartilage,” AJR 169: 1117-1123 (1997).
Disler et al., “Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy,” AJR 167: 127-132 (1996).
Disler et al., “Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy,” AJR 165: 377-382 (1995).
Doherty et al., Osteoarthritis, Oxford Textbook of Theumatology, Oxford University Press 959-983 (1993).
Dougados et al., “Longitudinal radiologic evaluation of osteoarthritis of the knee,” J Theumatol 19: 378-384 (1992).
Du et al., “Vessel enhancement filtering in three-dimensional MR angiography,” J. Magn Res Imaging 5: 151-157 (1995).
Du et al., “Reduction of partial-volume artifacts with zero filled interpolation in three-dimensional MR Angiography,” J Magn Res Imaging 4: 733-741 (1994).
Dufour et al., “A Technique for the Dynamical Evaluation of the Acromiohumeral Distance of the Shoulder in the Seated Position under Open-field MRI,” Proc. Intl. Soc. Mag. Resonance Med., 7:406 (1999).
Dumoulin et al., “Real-time position monitoring of invasive devises using magnetic resonance,” Magn Reson Med 29: 411-5 (1993).
Dupuy et al., “Quantification of Articular Cartilage in the Knee with Three-Dimensional MR Imaging,” Acad Radiol 3: 919-924 (1996).
Eckstein et al., “Determination of Knee Joint Cartilage Thickness Using Three-Dimensional Magnetic Resonance Chondro-Crassometry (3D MR-CCM),” Magn. Reson. Med. 36(2):256-265, (1996).
Eckstein et al., “Effect of Gradient and Section Orientation on Quantitative Analyses of Knee Joint Cartilage,” Journal of Magnetic Resonance Imaging 11: 161-167 (2000).
Eckstein et al., “Effect of Physical Exercise on Cartilage Volume and Thickness in Vivo: An MR Imaging Study,” Radiology 207: 243-248 (1998).
Eckstein et al., “Functional Analysis of Articular Cartilage Deformation, Recovery, and Fluid Flow Following Dynamic Exercise in Vivo,” Anatomy and Embryology 200: 419-424 (1999).
Eckstein et al., “In Vivo Reproducibility of Three-Dimensional Cartilage Volume and Thickness Measurements With MR Imaging”, AJR 170(3): 593-597 (1998).
Eckstein et al., “New Quantitative Approaches With 3-D MRI: Cartilage Morphology, Function and Degeneration”, Medical Imaging International, Nov.-Dec. 1998.
Eckstein et al., “Side Differences of Knee Joint Cartilage Volume, Thickness, and Surface Area, and Correlation With Lower Limb Dominance—An MRI-Based Study,” Osteoarthritis and Cartilage 10: 914-921 (2002).
Eckstein et al., Accuracy of Cartilage Volume and Thickness Measurements with Magnetic Resonance Imaging, Clin. Orthop. 1998; 352: 137-148 T. 60 V. II.
Eckstein et al., “Magnetic Resonance Chondro-Crassometry (MR CCM): A Method for Accurate Determination of Articular Cartilage Thickness?” Magn. Reson. Med. 35: 89-96 (1996).
Eckstein et al., “The Influence of Geometry on the Stress Distribution in Joints—A Finite Element Analysis,” Anat Embryol, 189: 545-552 (1994).
Eckstein et al., “The Morphology of Articular Cartilage Assessed by Magnetic Resonance Imaging: Reproducibility and Anatomical Correlation,” Sur. Radiol Anat 16: 429-438 (1994).
Elting et al., “Unilateral frame distraction: proximal tibial valgus osteotomy for medial gonarthritis,” Contemp Orthrop 27(6): 522-524 (1993).
Faber et al., “Gender Differences in Knee Joint Cartilage Thickness, Volume and Articular Surface Areas: Assessment With Quantitative Three-Dimensional MR Imaging,” Skeletal Radiology 30 (3): 144-150 (2001).
Faber et al., “Quantitative Changes of Articular Cartilage Microstructure During Compression of an Intact Joint,” Proc. Intl. Soc. Mag. Resonance Med., 7:547 (1999).
Falcao et al., “User-steered image segmentation paradigms. Live wire and live lane,” Graphical Models and Image Processing 60: 233-260 (1998).
Felson et al, “Weight Loss Reduces the risk for symptomatic knee osteoarthritis in women: the Framingham study,” Ann Intern Med 116: 535-539 (1992).
Gandy et al., “One-Year Longitudinal Study of Femoral Cartilage Lesions in Knee Arthritis,” Proc. Intl. Soc. Mag. Resonance Med., 7:1032 (1999).
Garrett, “Osteochondral allografts for reconstruction of articular defects of the knee,” Instr Course Lect 47: 517-522 (1998).
Gerscovich, “A Radiologist's Guide to the Imaging in the Diagnosis and Treatment of Developmental Dysplasia of the Hip,” Skeletal Radiol 26: 447-456 (1997).
Ghelman et al., “Kinematics of the Knee After Prosthetic Replacements”, Clin. Orthop. May 1975: (108): 149-157.
Ghosh et al., “Watershed Segmentation of High Resolution Articular Cartilage Images for Assessment of Osteoarthritis,” International Society for Magnetic Resonance in Medicine, Philadelphia, (1999).
Glaser et al., “Optimization and Validation of a Rapid Highresolution T1-W 3-D Flash Waterexcitation MR Sequence for the Quantitative Assessment of Articular Cartilage Volume and Thickness,” Magnetic Resonance Imaging 19: 177-185 (2001).
Goodwin et al., “MR Imaging of Articular Cartilage: Striations in the Radial Layer Reflect the Fibrous Structure of Cartilage,” Proc. Intl. Soc. Mag. Resonance Med., 7:546 (1999).
Gouraud, “Continuous shading of curved surfaces,” IEEE Trans on Computers C-20(6) (1971).
Graichen et al., “Three-Dimensional Analysis of the Width of the Subacromial Space in Healthy Subjects and Patients With Impingement Syndrome,” American Journal of Roentgenology 172: 1081-1086 (1999).
Hafez et al., “Computer Assisted Total Knee Replacement: Could a Two-Piece Custom Template Replace the Complex Conventional Instrumentations?” Session 6: Novel Instruments; Computer Aided Surgery, Session 6, vol. 9, No. 3, pp. 93-94 (Jun. 2004).
Hafez et al., “Computer-assisted Total Knee Arthroplasty Using Patient-specific Templating,” Clinical Orthopaedics and Related Research, No. 444, pp. 184-192 (Mar. 2006).
Hall et al., “Quantitative MRI for Clinical Drug Trials of Joint Diseases; Virtual Biopsy of Articular Cartilage” NIH-FDA Conf. on Biomarkers and Surrogate Endpoints: Advancing Clinical Research and Applications (1998).
Hardy et al., “Measuring the Thickness of Articular Cartilage From MR Images,” J. Magnetic Resonance Imaging 13: 120-126 (2001).
Hardy et al., “The Influence of the Resolution and Contrast on Measuring the Articular Cartilage Volume in Magnetic Resonance Images” Magn Reson Imaging. 18(8): 965-972 (Oct. 2000).
Hargreaves et al., “MR Imaging of Articular Cartilage Using Driven Equilibrium,” Magnetic Resonance in Medicine 42(4): 695-703 (Oct. 1999).
Hargreaves et al., “Technical considerations for DEFT imaging,” International Society for Magnetic Resonance in Medicine, Sydney, Australia (Apr. 17-24, 1998).
Hargreaves et al., “Imaging of articular cartilage using driven equilibrium,” International Society for Magnetic Resonance in Medicine, Sydney, Australia (Apr. 17-24, 1998).
Hastings et al., “Double Hemiarthroplasty of the Knee in Rheumatoid Arthritis,” A Survey of Fifty Consecutive Cases, J. Bone Joint Surg. Br. 55(1):112-118 (1973).
Haubner M, et al., “A Non-Invasive Technique for 3-Dimensional Assessment of Articular Cartilage Thickness Based on MRI Part @: Validation Using CT Arthrography,” Magn Reson Imaging; 15(7): 805-813 (1997).
Haut et al., “A High Accuracy Three-Dimensional Coordinate Digitizing System for Reconstructing the Geometry of Diarthrodial Joints,” J. Biomechanics 31: 571-577 (1998).
Hayes et al., “Evaluation of Articular Cartilage: Radiographic and Cross-Sectional Imaging Techniques,” Radiographics 12: 409-428 (1992).
Henderson et al., “Experience with the Use of the Macintosh Prosthesis in Knees of Patients with Pheumatoid Arthritis,” South. Med. J. 62(11):1311-1315 (1969).
Henkelman, “Anisotropy of NMR Properties of Tissues”, Magn Res Med. 32: 592-601 (1994).
Herberhold et al., “An MR-Based Technique for Quantifying the Deformation of Articular Cartilage During Mechanical Loading in an Intact Cadaver Joint,” Magnetic Resonance in Medicine 39(5): 843-850 (1998).
Herberhold, “In Situ Measurement of Articular Cartilage Deformation in Intact Femorapatellar Joints Under Static Loading”, Journal of biomechanics 32: 1287-1295 (1999).
Herrmann et al., “High Resolution Imaging of Normal and Osteoarthritic Cartilage with Optical Coherence Tomogrqaphy,” J. Rheumatoil 26: 627-635 (1999).
High et al., “Early Macromolecular Collagen Changes in Articular Cartilage of Osteoarthritis (OA): An in Vivo MT-MRI and Histopathologic Study,” Proc. Intl. Soc. Mag. Resonance Med., 7:550 (1999).
Hohe, “Surface Size, Curvature Analysis, and Assessment of Knee Joint Incongruity With MR Imaging in Vivo”, Magnetic Resonance in Medicine, 47: 554-561 (2002).
Holdsworth et al., “Benefits of Articular Cartilage Imaging at 4 Tesla: An in Vivo Study of Normal Volunteers,” Proc. Intl. Soc. Mag. Resonance Med., 7:1028 (1999).
Hughes et al., “Technical Note: A Technique for Measuring the Surface Area of Articular Cartilage in Acetabular Fractures,” Br. J. Radiol; 67: 584-588 (1994).
Husmann et al., “Three-Dimensional Morphology of the Proximal Femur,” J. Arthroplasty; 12(4): 444-450 (Jun. 1997).
Hyhlik-Durr et al., “Precision of Tibial Cartilage Morphometry with a coronal water-excitation MR sequence,” European Radiology 10(2): 297-303 (2000).
Ihara H., “Double-Contrast CT Arthrography of the Cartilage of the Patellofemoral Joint,” Clin. Orthop.; 198: 50-55 (Sep. 1985).
Iida et al., “Socket Location in Total Hip Replacement: Preoperative Computed Tomography and Computer Simulation” Acta Orthop Scand; 59(1): 1-5 (1998).
Irarrazabal et al., “Fast three-dimensional magnetic resonance imaging,” Mag Res. Med. 33: 656-662 (1995).
Jessop et al., “Follow-up of the MacIntosh Arthroplasty of the Knee Joint,” Rheumatol Phys. Med. 11(5):217-224 (1972).
Johnson et al., “The distribution of load across the knee. A comparison of static and dynamic measurements,” J. Bone Joint Surg 62B: 346-349 (1980).
Johnson, “In vivo contact kinematics of the knee joint: Advancing the point cluster technique,” Ph.D. Thesis, University of Minnesota (1999).
Johnson et al., “Development of a knee wear method based on prosthetic in vivo slip velocity,” Transaction of the Orthopedic Research Society, 46th Annual Meeting (Mar. 2000).
Jonsson et al., “Precision of Hyaline Cartilage Thickness Measurements,” Acta Radiol 1992; 33(3): 234-239 (1992).
Kaneuji et al., “Three Dimensional Morphological Analysis of the Proximal Femoral Canal, Using Computer-Aided Design System, in Japanese Patients with Osteoarthrosis of the Hip,” J. Orthop Sci; 5(4): 361-368 (2000).
Karvonen et al., “Articular Cartilage Defects of the Knee: Correlation Between Magnetic Resonance Imaging and Gross Pathology,” Ann Rheum Dis. 49: 672-675 (1990).
Kass et al., “Snakes: Active contour models.,” Int J Comput Vision 1: 321-331 (1988).
Kates, et al., “Experiences of Arthroplasty of the Rheumatoid Knee Using MacIntosh Prostheses,” Ann. Rheum. Dis. 28(3):328 (1969).
Kaufman et al., “Articular Cartilage Sodium content as a function of compression” Seventh Scientific Meeting of ISMRM, p. 1022, 1999 T. 105, V. III.
Kay et al., The MacIntosh Tibial Plateau Hemiprosthesis for the Rheumatoid Knee, J. Bone Joint Surg. Br. 54(2):256-262 (1972).
Kidder et al., “3D Model Acquisition, Design, Planning and Manufacturing of Orthopaedic Devices: A Framework,” Proceedings of the SPIE—Advanced Sensor and Control-System Interface, Boston, MA, vol. 2911, pp. 9-22, 21 (Nov. 1996).
Klosterman et al., “T2 Measurements in Adult Patellar Cartilage at 1.5 and 3.0 Tesla,” ISMRM Seventh Scientific Meeting, Philadelphia, PA, (May 22-28, 1999).
Knauss et al., “Self-Diffusion of Water in Cartilage and Cartilage Components as Studied by Pulsed Field Gradient NMR,” Magnetic Resonance in Medicine 41:285-292 (1999).
Koh et al., “Visualization by Magnetic Resonance Imaging of Focal Cartilage Lesions in the Excised Mini-Pig Knee,” J. Orthop. Res; 14(4): 554-561 (Jul. 1996).
Korhonen et al., “Importance of the Superficial Tissue Layer for the Indentation Stiffness of Articular Cartilage,” Med. Eng. Phys; 24(2): 99-108 (Mar. 2002).
Korkala et al., “Autogenous Osteoperiosteal Grafts in the Reconstruction of Full-Thickness Joint Surface Defects,” Int. Orthop.; 15(3): 233-237 (1991).
Kshirsagar et al., “Measurement of Localized Cartilage Volume and Thickness of Human Knee Joints by Computer Analysis of Three-Dimensional Magnetic Resonance Images,” Invest Radiol. 33(5): 289-299 (May 1998).
Kwak et al., “Anatomy of Human Patellofemoral Joint Articular Cartilage: Surface Curvature Analysis,” J. Orthop. Res.; 15: 468-472 (1997).
LaFortune et al., “Three dimensional kinematics of the human knee during walking,” J. Biomechanics 25: 347-357 (1992).
Lam et al., “X-Ray Diagnosis: A Physician's Approach”, Editor Lam, 1998, Springer-Verlag publishers, Title page and Index Only (ISBN 9813083247).
Lang et al., “Functional joint imaging: a new technique integrating MRI and biomotion studies,” International Society for Magnetic Resonance in Medicine, Denver (Apr. 18-24, 2000).
Lang et al., Risk factors for progression of cartilage loss: a longitudinal MRI study. European Society of Musculoskeletal Radiology, 6th Annual Meeting, Edinburgh, Scotland (1999).
Lang et al., Cartilage imaging: comparison of driven equilibrium with gradient-echo, SPAR, and fast spin-echo sequences. International Society for Magnetic Resonance in Medicine, Sydney, Australia, (Apr. 17-24, 1998).
Ledingham et al., “Factors affecting radiographic progression of knee osteoarthritis,” Ann Rheum Dis 54: 53-58 (1995).
Leenslag et al., “A Porous Composite for Reconstruction of Meniscus Lesions,” Biological and Biomechanical Perform. of Biomaterials, Elsevier Science Publishers Amsterdam pp. 147-152 (1986).
Lefebvre et al., “Automatic Three-Dimensional Reconstruction and Characterization of Articular Cartilage from High-Resolution Ultrasound Acquisitions,” Ultrasound Med. Biol.; 24(9): 1369-1381 (Nov. 1998).
Li et al., A Boundary Optimization Algorithm for Delineating Brain Objects from CT Scans: Nuclear Science Symposium and Medical Imaging Conference 1993 IEEE Conference Record, San Francisco, CA (1993).
Lin et al., “Three-Dimensional Characteristics of Cartilagenous and Bony Components of Dysplastic Hips in Children: Three-Dimensional Computed Tomography Quantitative Analysis,” J. Pediatr. Orthop.; 17: 152-157 (1997).
Lorensen et al., “Marching cubes: a high resolution 3d surface construction algorithm,” Comput Graph 21: 163-169 (1987).
Losch et al., “A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI part 1: development of a computational method,” Magn Res Imaging 15(7): 795-804 (1997).
Lu et al., “Bone position estimation from skin marker coordinates using globals optimization with joint constraints,” J Biomechanics 32: 129-134 (1999).
Lu et al., “In vitro degradation of porous poly(L-lactic acid) foams”, Biomaterials, 21(15):1595-1605, Aug. 2000.
Lucchetti et al., “Skin movement artifact assessment and compensation in the estimation of knee-joint kinematics,” J Biomechanics 31: 977-984 (1998).
Lusse et al., “Measurement of Distribution of Water Content of Human Articular Cartilage Based on Transverse Relaxation Times: An In Vitro Study,” Seventh Scientific Meeting of ISMRM, p. 1020 (1999).
Lynch et al., “Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours,” Proc. SPIE 3979 Medical Imaging, San Diego pp. 925-935 (Feb. 2000).
MacIntosh, “Arthroplasty of the Knee in Rheumatoid Arthritis,” Proceedings and Reports of Councils and Assotions, J. Bone & Joint Surg., vol. 48B No. (1): 179 (Feb. 1996).
MacIntosh et al., “The Use of the Hemiarthroplasty Prosthesis for Advanced Osteoarthritis and Rheumatoid Arthritis of the Knee,” J. of Bone & Joint Surg., vol. 54B, No. 2, pp. 244-255 (1972).
MacIntosh, “Arthroplasty of the Knee in Rheumatoid Arthritis Using the Hemiarthroplasty Prosthesis,” Synovectomy and Arthroplasty in Rheumatoid Arthritis pp. 79-80, Second Int'l. Symposium, Jan. 27-29, 1967 (Basle, Switzerland).
MacIntosh, “Hemiarthroplasty of the Knee Using a Space Occupying Prosthesis for Painful Varus and Valgus Deformities,” J. Bone Joint Surg. Am. Dec. 1958:40-A:1431.
Maki et al., “SNR improvement in NMR microscopy using DEFT,” J Mag Res; pp. 482-492 (1988).
Marler et al., “Soft-Tissue Augmentation with Injectable Alginate and Syngeneic Fibroblasts”, Plastic & Reconstructive Surgery, 105(6):2049-2058, May 2000.
Marshall et al., “Quantitation of Articular Cartilage Using Magnetic Resonance Imaging and Three-Dimensional Reconstruction,” J. Orthop. Res.; 13: 814-823 (1995).
Matsen, III et al., “Robotic Assistance in Orthopaedic Surgery: A Proof of Principle Using Distal Femoral Arthroplasty”, Clinical Ortho. and Related Research, 296:178-186 (1993).
Mattila et al., “Massive Osteoarticular Knee Allografts: Structural Changes Evaluated with CT,” Radiology; 196: 657-660 (1995).
McCollum et al., “Tibial Plateau Prosthesis in Arthroplasty of the Knee,” J. Bone Joint Surg. Am. 1970 52(4):827-8 (Feb. 1996).
McKeever, “The Classic Tibial Plateau Prosthesis,” Clin. Orthop. Relat. Res. (192):3-12 (1985).
Merkle et al., “A Transceiver Coil Assembly for Hetero-Nuclear Investigations of Human Breast At 4T,” Proc. Intl. Soc. Mag. Resonance Med., 7:170 (1999).
Meyer et al., “Simultaneous spatial and spectral selective excitation,” Magn Res Med 15: 287-304 (1990).
Mills et al., “Magnetic Resonance Imaging of the Knee: Evaluation of Meniscal Disease,” Curr. Opin. Radiol. 4(6): 77-82 (1992).
Milz et al., “The Thickness of the Subchondral Plate and Its Correlation with the thickness of the Uncalcified Articular Cartilage in the Human Patella,” Anat. Embryol.; 192: 437-444 (1995).
Minas, “Chondrocyte Implantation in the Repair of Chondral Lesions of the Knee: Economics and Quality of Life”, Am. J. Orthop. Nov. 1998; 27: 739-744.
Modest et al., “Optical Verification of a Technique for in Situ Ultrasonic Measurement of Articular Cartilage Thickness,” J. Biomechanics 22(2): 171-176 (1989).
Mollica et al., “Surgical treatment of arthritic varus knee by tibial corticotomy and angular distraction with an external fixator,” Ital J Orthrop Traumatol 18(1): 17-23 (1992).
Moussa, “Rotational Malalignment and Femoral Torsion in Osteoarthritic Knees with Patellofemoral Joint Imvolvement: A CT Scan Study,” Clin. Orthop.; 304: 176-183 (Jul. 1994).
Mundinger et al., “Magnetic Resonance Tomography in the Diagnosis of Peripheral Joints,” Schweiz Med. Wochenschr. 121(15): 517-527 (1991) (Abstract Only).
Myers et al., “Experimental Assessment by High Frequency Ultrasound of Articular Cartilage Thickness and Osteoarthritic Changes,” J. Rheumatol; 22: 109-116 (1995).
Nelson et al., “Arthroplasty and Arthrodesis of the Knee Joint,” Orthop. Clin. North Am. 2 (1): 245-64 (1971).
Nieminen et al., “T2 Indicates Incompletely the Biomechanical Status of Enzymatically Degraded Articular Cartilage of 9.4T,” Proc. Intl. Soc. Mag. Resonance Med., 7:551 (1999).
Nishii et al., “Three Dimensional Evaluation of the Acetabular and Femoral Articular Cartilage in the Osteoarthritis of the Hip Joint,” Proc. Intl. Soc. Mag. Resonance Med., 7:1030 (1999).
Nizard, “Role of tibial osteotomy in the treatment of medical femorotibial osteoarthritis,” Rev Rhum Engl Ed 65(7-9): 443-446 (1998).
Noll et al., “Homodyne detection in magnetic resonance imaging,” IEEE Trans Med Imag 10(2): 154-163 (1991).
Ogilvie-Harris et al., “Arthroscopic management of the degenerative knee,” Arthroscopy 7: 151-157 (1991).
Parkkinen et al., “A Mechanical Apparatus With Microprocessor Controlled Stress Profile for Cyclic Compression of Cultured Articular Cartilage Explants,” J. Biomech.; 22 (11-12): 1285-1290 (1989).
Pearle et al., “Use of an external MR-tracking coil for active scan plane registration during dynamic Musculoskeletal MR imaging in a vertically open MR unit,” American Roentgen Ray Society, San Francisco, CA (1998).
Peterfy et al., “Quantification of the Volume of articular cartilage in the carpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging,” AJR 165: 371-375 (1995).
Peterfy et al., “MR Imaging of the arthritic knee: improved discrimination of cartilage, synovium, and effusion with pulsed saturation transfer and fat-suppressed TI-weighted sequences,” Radiology 191(2): 413-419 (1994).
Peterfy et al., “Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation,” Radiology 192(2): 485-491 (1994).
Peterfy et al., “Emerging Applications of Magnetic Resonance Imaging in the Evaluation of Articular Cartilage,” Radiol Clin North Am.; 34(2): 195-213 (Mar. 1996).
Pilch et al., “Assessment of Cartilage Volume in the Femorotibial Joint With Magnetic Resonance Imaging and 3D Computer Reconstruction,” J. Rheumatol. 21(12): 2307-2319 (1994).
Piplani et al., “Articular cartilage volume in the knee: semi-automated determination from three-dimensional reformations of MR images,” Radiology 198: 855-859 (1996).
Platt et al., “Mould Arthroplasty of the Knee: A Ten-Yr Follow-up Study,” Oxford Regional Rheumatic Diseases Resch. Ctre, J. of Bone & Joint Surg., vol. 51B, pp. 76-87 (1969).
Porter et al., “MacIntosh Arthroplasty: A Long-Term Review,” J. R. Coll. Surg. Edin. (192):199-201 (1988).
Portheine et al., “CT-Based Planning and Individual Template Navigation in TKA”, Navigation and Robotics in Total Joint and Spine Surgery, Springer, 48:336-342 (2004).
Portheine et al., “Development of a Clinical Demonstrator for Computer Assisted Orthopedic Surgery with CT Image Based Individual Templates.” In Lemke HU, Vannier MW, Inamura K (eds). Computer Assisted Radiology and Surgery. Amsterdam, Elsevier 944-949, 1997.
Potter, “Arthroplasty of the Knee With Tibial Metallic Implants of the McKeever and MacIntosh Design,” Sug. Clin. North Am. 49(4):903-915 (1969).
Potter et al., “Arthroplasty of the Knee in Rheumatoid Arthritis and Osteoarthritis: A Follow-up Study After Implantation of the McKeever and MacIntosh Prostheses,” J. Bone Joint Surg. Am. 54(1):1-24 (1972).
Potter et al., “Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast-spin-echo imaging,” J Bone Joint Surg 80-A(9): 1276-1284 (1998).
Potter et al., “Sensitivity of Quantitative NMR Imaging to Matrix Composition in Engineered Cartilage Tissue” Proc. Intl. Soc. Mag. Resonance Med., 7:552 (1999).
Probst et al., “Technique for Measuring the Area of Canine Articular Surfaces,” Am. J. Vet. Res. 48(4): 608-609 (1987).
Prodromos et al., “A relationship between gait and clinical changes following high tibial osteotomy,” J Bone Joint Surg 67A: 1188-1194 (1985).
Radermacher et al., “Computer Assisted Orthopedic Surgery by Means of Individual Templates •Aspects and Analysis of Potential Applications •” Proceedings of the First International Symposium on Medical Robotics and Computer Assisted Surgery, vol. 1: Sessions I—III, MRCAS '94, Pittsburgh, PA, pp. 42-48 (Sep. 22-24, 1994).
Radermacher, English Translation: Helmholtz Institute of Biomedical Technology, “Computer-Assisted Planning and Execution of Orthopedic Surgery Using Individual Surgical Templates”, May 18, 1999.
Radermacher, German Version: Helmholtz Institute of Biomedical Technology, “Computer-Assisted Planning and Execution of Orthopedic Surgery Using Individual Surgical Templates”, May 18, 1999.
Radermacher, “Computer Assisted Orthopaedic Surgery With Image Based Individual Templates” Clinical Orthopaedics, Sep. 1998, vol. 354, pp. 28-38.
Radermacher et al., “Image Guided Orthopedic Surgery Using Individual Templates—Experimental Results and Aspects of the Development of a Demonstrator for Pelvis Surgery.” In Troccaz J. Grimson E., Mosges R (eds). Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer Assisted Surgery, Lecture Notes in Computer Science. Berlin, Springer-Verlag 606-615, 1997.
Radermacher et al., “Computer Integrated Orthopedic Surgery—Connection of Planning and Execution in Surgical Inventions.” In Taylor, R., Lavallee, S., Burdea G. Mosges, R. (eds). Computer Integrated Surgery. Cambridge, MIT press 451-463, 1996.
Radermacher et al., “Technique for Better Execution of CT Scan Planned Orthopedic Surgery on Bone Structures.” In Lemke HW, Inamura, K., Jaffe, CC, Vannier, MW (eds). Computer Assisted Radiology, Berlin, Springer 933-938, 1995.
Radermacher et al., “CT Image Based Planning and Execution of Interventions in Orthopedic Surgery Using Individual Templates—Experimental Results and Aspects of Clinical Applications.” In Nolte LP, Ganz, R. (eds). CAOS—Computer Assisted Orthopaedic Surgery. Bern, Hans Huber (In Press) 1998.
Radin et al., “Mechanical Determination of Osteoarthrosis,” Sem Arthr Rheum 21(3): 12-21 (1991).
Radin et al., Characteristics of Joint Loading as it Applies to Osteoarthrosis in: Mow VC, Woo S.Y., Ratcliffe T., eds. Symposium on Biomechanics of Diathrodial Joints, vol. 2, New York, NY: Springer-Verlag, pp. 437-451 (1990).
Ranawat et al., “MacIntosh Hemiarthroplasty in Rheumatoid Knee,” Acta Orthop Belg., 39 (1): 1-11 (1973).
Recht et al., “Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities,” Radiology 198: 209-212 (1996).
Recht et al., “MR imaging of articular cartilage: current status and future directions,” AJR 163: 283-290 (1994).
Reiser et al., “Magnetic Resonance in Cartilaginous Lesions of the Knee Joint With Three-Dimensional Gradient-Echo Imaging,” Skeletal Radiol. 17(7): 465-471, (1988).
Ritter et al., “Postoperative alignment of total knee replacement,” Clin Orthop 299: 153-156 (1994).
Robarts Research Institute, Abstract #1028 (1999).
Robson et al., “A Combined Analysis and Magnetic Resonance Imaging Technique for Computerized Automatic Measurement of Cartilage Thickness in Distal Interphalangeal Joint,” Magnetic Resonance Imaging 13(5): 709-718 (1995).
Rushfeldt et al., “Improved Techniques for Measuring in Vitro the Geometry and Pressure Distribution in the Human Acetabulum—1. Ultrasonic Measurement of Acetabular Surfaces, Sphericity and Cartilage Thickness,” J. Biomech; 14(4): 253-260 (1981).
Saied, “Assessment of Articular Cartilage and Subchondral Bone: Subtle and Progressive Changes in Experimental Osteoarthritis Using 50 MHz Echography in Vitro”, J. Bone Miner Res. 1997; 12(9): 1378-1386.
Saito et al., “New algorithms for Euclidean distance transformation of an—dimensional digitized picture with applications,” Pattern Recognition 27(11): 1551-1565 (1994).
Schiffers et al., In German: “Planning and execution of orthopedic surgery using individualized templates,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 636-640, (Jul. 2000).
Schiffers et al., English Translation with Certification: “Planning and execution of orthopedic surgery using individualized templates,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 636-640, (Jul. 2000).
Schipplein et al., “Interaction between active and passive knee stabilizers during level walking,” J Orthop Res 9: 113-119 (1991).
Schorn et al., “MacIntosh Arthroplasty in Rheumatoid Arthritis,” Rheumatol Rehabil. Aug. 1978:17(3):155-163.
Schouten et al., “A 12 year follow up study in the general population on prognostic factors of cartilage loss in osteoarthritis of the knee,” Ann Rheum Dis 51: 932-937 (1992).
Shapiro et al., “In-Vivo Evaluation of Human Cartilage Compression and Recovery using 1H and 23Na MRI,” Proc. Intl. Soc. Mag. Resonance Med., 7:548 (1999).
Sharif et al., “Serum hyaluronic acid level as a predictor of disease progression in osteoarthritis of the knee,” Arthritis Rheum 38: 760-767 (1995).
Sharma et al., “Knee adduction moment, serum hyaluronic acid level, and disease severity in medial tibiofemoral osteoarthritis,” Arthritis and Rheumatism 41(7): 1233-40 (1998).
Shoup et al., “The driven equilibrium Fourier transform NMR technique: an experimental study,” J Mag Res p. 298-310 (1972).
Sittek et al., “Assessment of Normal Patellar Cartilage Volume and Thickness Using MRI: an Analysis of Currently Available Pulse Sequences”, Skeletal Radiol 1996; 25: 55-61.
Slemenda et al., “Lower extremity lean tissue mass strength predict increases in pain and in functional impairment in knee osteoarthritis,” Arthritis Rheum 39(suppl): S212 (1996).
Slemenda et al., “Lower extremity strength, lean tissue mass and bone density in progression of knee osteoarthritis,” Arthritis Rheum 39(suppl): S169 (1996).
Slone et al., “Body CT: A Practical Approach”, Editor Slone, 1999 McGraw-Hill publishers, Title Page and Table of Contents pgs. Only (ISBN 007058219).
Solloway et al., “The use of active shape models for making thickness measurements of articular cartilage from MR images,” Mag Res Med 37: 943-952 (1997).
Soslowsky et al., “Articular Geometry of the Glenohumeral Joint,” Clin. Orthop.; 285: 181-190 (Dec. 1992).
Spoor et al., “Rigid body motion calculated from spatial coordinates of markers,” J. Biomechanics 13: 391-393 (1980).
Stammberger et al., “A Method for Quantifying Time Dependent Changes in MR Signal Intensity of Articular Cartilage As a Function of Tissue Deformation in Intact Joints” Medical Engineering & Physics 20: 741-749 (1998).
Stammberger et al., “A New Method for 3D Cartilage Thickness Measurement with MRI, Based on Euclidean Distance Transformation, and its Reproducibility in the Living,” Proc. Intl. Soc. Mag. Resonance Med., 6:562 (1998).
Stammberger et al., “Elastic Registration of 3D Cartilage Surfaces From MR Image Data for Detecting Local Changes of the Cartilage Thickness,” Magnetic Resonance in Medicine 44: 592-601 (2000).
Stammberger et al., “Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living,” Mag Res Med 41: 529-536 (1999).
Stammberger et al., “Interobserver to reproducibility of quantitative cartilage measurements: Comparison of B-spline snakes and manual segmentation,” Mag Res Imaging 17: 1033-1042 (1999).
Stauffer et al., “The MacIntosh Prosthesis. Prospective Clinical and Gait Evaluation,” Arch. Surg. 110(6):717-720 (1975).
Steines et al., Segmentation of osteoarthritic femoral cartilage using live wire, Proc. Intl. Soc. Mag. Resonance Med., 8:220 (2000).
Steines et al., “Segmentation of osteoarthritis femoral cartilage from MR images,” CARS—Computer-Assisted Radiology and Surgery, pp. 578-583, San Francisco (2000).
Steines et al., “Measuring volume of articular cartilage defects in osteoarthritis using MRI,” ACR 64th Annual Scientific Meeting, Philadelphia, (Oct. 2000).
Stevenson et al., “The fate of articular cartilage after transplantation of fresh and cryopreserved tissue-antigen-matched and mismatched osteochondral allografts in dogs,” J. Bone Joint Surg 71(9): 1297-1307 (1989).
Stout et al., “X-Ray Structure Determination: A Practical Guide”, 2nd Ed. Editors Stout and Jensen, 1989, John Wiley & Sons, Title page and Table of Contents pgs. Only (ISBN 0471607118).
Taha et al., “Modeling and Design of a Custom Made Cranium Implant for Large Skull Reconstruction Before a Tumor Removal”, Phidias Newsletter No. 6, pp. 3, 6, Jun. 2001. Retrieved from the Internet: URL:http://www.materialise.com/medical/files/pdf.
Tamez-Pena et al., MRI Isotropic Resolution Reconstruction from two Orthogonal Scans:, Proceedings of the SPIE—The International Society for Optical Engineering SOIE-OMT. vol. 4322, pp. 87-97, 2001.
Tebben et al., “Three-Dimensional Computerized Reconstruction. Illustration of Incremental Articular Cartilage Thinning,” Invest. Radiol. 32(8): 475-484 (1997).
Thoma et al., In German: “Use of a New Subtraction Procedure Based on Three-Dimensional CT Scans for the Individual Treatment of Bone Defects in the Hip and Knee,” Journal DGPW, No. 17, pp. 27-28 (May 1999).
Thoma et al., English Translation with Certification: “Use of a New Subtraction Procedure Based on Three-Dimensional CT Scans for the Individual Treatment of Bone Defects in the Hip and Knee,” Journal DGPW, No. 17, pp. 27-28 (May 1999).
Thoma et al., In German: “Custom-made knee endoprosthetics using subtraction data of three-dimensional CT scans—A new approach,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 641-644, (Jul. 2000).
Thoma et al., English Translation with Certification: “Custom-made knee endoprosthetics using subtraction data of three-dimensional CT scans—A new approach,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 641-644, (Jul. 2000).
Tieschky et al., “Repeatability of patellar cartilage thickness patterns in the living, using a fat-suppressed magnetic resonance imaging sequence with short acquisition time and three-dimensional data processing,” J. Orthop Res 15(6): 808-813 (1997).
Tomasi et al., “Shape and motion from image streams under orthography—a factorization method,” Proc. Nat. Acad. Sci. 90(21): 9795-9802 (1993).
Tsai et al., “Application of a flexible loop-gap resonator for MR imaging of articular cartilage at 3.TO,” International Society for Magnetic Resonance in Medicine, Denver (Apr. 24-28, 2000) 8:2127.
Tyler et al., “Detection and Monitoring of Progressive Degeneration of Osteoarthritic Cartilage by MRI,” Acta Orthop Scand 1995; 66 Suppl. 266: 130-138 (1995).
Van Leersum et al., “Thickness of Patellofemoral Articular Cartilage as Measured on MR Imaging: Sequence Comparison of accuracy, reproducibility, and interobserver variation,” Skeletal Radiol 1995; 24: 431-435 (1995).
Vandeberg et al., “Assessment of Knee Cartilage in Cadavers with Dual-Detector Sprial CT ARthrography and MR Imaging”, Radiology, Feb. 2002: 222(2): 430-435 T. 195, V.V.
Van der Linden et al., “MR Imaging of Hyaline Cartilage at 0.5 T: A Quantitative and Qualitative in vitro Evaluation of Three Types of Sequences” pp. 297-305 (Jun. 1998).
Velyvis et al., “Evaluation of Articular Cartilage with Delayed Gd(DTPA)2-Enhanced MRI: Promise and Pitfalls,” Proc. Intl. Soc. Mag. Resonance Med., 7:554 (1999).
Wang et al., “The influence of walking mechanics and time on the results of proximal tibial osteotomy,” J. Bone Joint Surg 72A: 905-909 (1990).
Warfield et al., “Automatic Segmentation of MRI of the Knee,” ISMRM Sixth Scientific Meeting and Exhibition p. 563, Sydney, Australia (Apr. 17-24, 1998).
Warfield et al., “Adaptive Template Moderated Spatially Varying Statistical Classification,” Proc. First International Conference on Medical Image Computing and Computer Assisted, MICCAI, pp. 231-238 (1998).
Warfield et al., “Adaptive, Template Moderated Spatially Varying Statistical Classification,” Medical Image Analysis 4(1): 43-55 (2000).
Waterton et al., “Diurnal variation in the femoral articular cartilage of the knee in young adult humans,” Mag Res Med 43: 126-132 (2000).
Waterton et al., “Magnetic Resonance Methods for Measurement of Disease Progression in Rheumatoid Arthritis,” Mag. Res. Imaging; 11: 1033-1038 (1993).
Watson et al., “MR Protocols for Imaging the Guinea Pig Knee,” Mag. Res. Imaging 15(8): 957-970 (1997).
Wayne et al., “Measurement of Articular Cartilage Thickness in the Articulated Knee,” ANN Biomed Eng.; 26(1): 96-102 (1998).
Wayne et al., “Finite Element Analyses of Repaired Articular Surfaces,” Proc. Instn. Mech. Eng.; 205(3): 155-162 (1991).
Wiese et al., “Biomaterial properties and biocompatibility in cell culture of a novel self-inflating hydrogel tissue expander”, J. Biomedical Materials Research Part A, 54(2):179-188, Nov. 2000.
Wolff et al., “Magnetization transfer contrast: MR imaging of the knee,” Radiology 179: 623-628 (1991).
Wordsworth et al., “MacIntosh Arthroplasty for the Rheumatoid Knee: A 10-year Follow Up,” Ann. Rheum. Dis. 44(11):738-741 (1985).
Worring et al., “Digital curvature estimation. CVGIP,” Image Understanding 58(3): 366-382 (1993).
Yan, “Measuring changes in local volumetric bone density,” new approaches to quantitative computed tomography, Ph.D. thesis, Dept. of Electrical Engineering, Stanford University (1998).
Yao et al., “Incidental magnetization transfer contrast in fast spin-echo imaging of cartilage,” J. Magn Reson Imaging 6(1): 180-184 (1996).
Yao et al., “MR imaging of joints: analytic optimization of GRE techniques at 1.5T,” AJR 158(2): 339-345 (1992).
Yasuda et al., “A 10 to 15 year follow up observation of high tibial osteotomy in medial compartment osteoarthritis,” Clin Orthop 282: 186-195 (1992).
Yusof et al., “Preparation and characterization of chitin beads as a wound dressing precursor”, J. Biomedical Materials Research Part A, 54(1):59-68, Oct. 2000.
Zimmer, Inc., “There's a New Addition to the Flex Family! The Zimmer® Unicompartmental Knee System”, pp. 1-8 (2004).
International Searching Authority, International Search Report—International Application No. PCT/US02/16945, dated Mar. 26, 2003, 6 pages.
European Patent Office, Supplementary European Search Report—Application No. 03713907.8, dated Dec. 6, 2006, 3 pages.
European Patent Office, Supplementary Partial European Search Report—Application No. 02737254.9, dated Mar. 2, 2007, 5 pages.
International Searching Authority, International Search Report—International Application No. PCT/US03/38158, dated Feb. 23, 2005, 7 pages.
European Patent Office, European Search Report—Application No. EP 03790194, dated Jul. 13, 2006, 7 pages.
International Searching Authority, International Search Report—International Application No. PCT/US03/32123, dated Mar. 17, 2004, 7 pages.
International Searching Authority, International Search Report—International Application No. PCT/US03/36079, dated Apr. 15, 2004, 7 pages.
International Searching Authority, International Search Report—International Application No. PCT/US04/39714, dated May 13, 2005, together with the Written Opinion of the International Searching Authority, 8 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2005/042421, dated May 18, 2006, together with the Written Opinion of the International Searching Authority, 7 pages.
European Patent Office, Supplementary European Search Report—Application No. 04812273.3, dated Oct. 8, 2007, 5 pages.
International Searching Authority, Invitation to Pay Additional Fees—International Application No. PCT/US2007/064349 dated Aug. 7, 2007, 8 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2007/064349, dated Oct. 12, 2007, together with the Written Opinion of the International Searching Authority, 20 pages.
European Patent Office, Supplementary European Search Report—Application No. 04812273.3-2310, dated Dec. 10, 2007, 7 pages.
International Searching Authority, International Search Report—International Application No. PCT/US06/45131, dated Jul. 11, 2007, together with the Written Opinion of the International Searching Authority, 6 pages.
International Searching Authority, International Search Report—International Application No. PCT/US06/38212, dated Apr. 22, 2008, together with the Written Opinion of the International Searching Authority, 7 pages.
International Searching Authority, International Preliminary Report on Patentability—International Application No. PCT/US2006/045131, dated Jun. 5, 2008, together with the Written Opinion of the International Searching Authority, 6 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2009/043656, dated Jul. 9, 2009, together with the Written Opinion of the International Searching Authority, 8 pages.
United States Patent and Trademark Office, Office Action dated Jul. 30, 2009, pertaining to U.S. Appl. No. 11/537,318, 56 pages.
Sunstein Kann Murphy & Timbers LLP, Request for Continued Examination and Response dated Aug. 27, 2009 pertaining to U.S. Appl. No. 10/752,438, 22 pages.
United States Patent and Trademark Office, Office Action dated Nov. 10, 2009 pertaining to U.S. Appl. No. 10/752,438, 8 pages.
Sunstein Kann Murphy & Timbers LLP, Request for Continued Examination and Response dated Jul. 27, 2009 pertaining to U.S. Appl. No. 10/997,407, 26 pages.
United States Patent and Trademark Office, Office Action dated Nov. 24, 2009 pertaining to U.S. Appl. No. 10/997,407, 14 pages.
United States Patent and Trademark Office, Office Action dated Jan. 9, 2009, pertaining to U.S. Appl. No. 10/764,010 (US Patent Publication No. US 2004/0167390), 11 pages.
Bromberg & Sunstein LLP, Response to Office Action dated Jan. 9, 2009, pertaining to U.S. Appl. No. 10/764,010 (US Patent Publication No. US 2004/0167390), 25 pages.
United States Patent and Trademark Office, Office Action dated Oct. 23, 2009, pertaining to U.S. Appl. No. 10/764,010 (US Patent Publication No. US 2004/0167390), 13 pages.
United States Patent and Trademark Office, Office Action dated Jul. 9, 2009, pertaining to U.S. Appl. No. 10/160,667, 5 pages.
Sunstein Kann Murphy & Timbers LLP, Amendment dated Jan. 11, 2010, pertaining to U.S. Appl. No. 10/160,667, 12 pages.
United States Patent and Trademark Office, Office Action dated Aug. 6, 2009, pertaining to U.S. Appl. No. 10/681,749, 6 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Aug. 6, 2009, pertaining to U.S. Appl. No. 10/681,749, 18 pages.
United States Patent and Trademark Office, Office Action dated Nov. 25, 2008, pertaining to U.S. Appl. No. 10/681,750, 21 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Nov. 25, 2008, pertaining to U.S. Appl. No. 10/681,750, 17 pages.
United States Patent and Trademark Office, Office Action dated Sep. 22, 2009, pertaining to U.S. Appl. No. 10/681,750, 21 pages.
European Patent Office, European Search Report—International Application No. PCT/US2006/045131 dated Mar. 3, 2010, 6 pages.
United States Patent and Trademark Office, Office Action dated Apr. 24, 2009, pertaining to U.S. Appl. No. 10/704,208, 23 pages.
Sunstein Kann Murphy & Timbers LLP, Request for Continued Examination and Response dated Oct. 26, 2009, pertaining to U.S. Appl. No. 10/704,208, 17 pages.
United States Patent and Trademark Office, Office Action dated Dec. 30, 2009, pertaining to U.S. Appl. No. 10/704,208, 10 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2010/025459, dated Apr. 20, 2010, together with the Written Opinion of the International Searching Authority, 15 pages.
Bromberg & Sunstein LLP, Request for Continued Examination dated May 24, 2007, pertaining to U.S. Appl. No. 10/305,652, 21 pages.
United States Patent and Trademark Office, Office Action dated Aug. 13, 2007, pertaining to U.S. Appl. No. 10/305,652, 6 pages.
Bromberg & Sunstein LLP, Response to Office Action dated Aug. 13, 2007, pertaining to U.S. Appl. No. 10/305,652, 10 pages.
United States Patent and Trademark Office, Office Action dated Dec. 19, 2007, pertaining to U.S. Appl. No. 10/305,652, 6 pages.
Bromberg & Sunstein LLP, Response to Office Action dated Dec. 19, 2007, pertaining to U.S. Appl. No. 10/305,652, 17 pages.
Bromberg & Sunstein LLP, Supplemental Response dated May 2, 2008, pertaining to U.S. Appl. No. 10/305,652, 12 pages.
United States Patent and Trademark Office, Office Action dated Jul. 29, 2008, pertaining to U.S. Appl. No. 10/305,652, 10 pages.
Bromberg & Sunstein LLP, Amendment After Final Rejection dated Aug. 26, 2008, pertaining to U.S. Appl. No. 10/305,652, 17 pages.
United States Patent and Trademark Office, Office Action dated Aug. 4, 2009, pertaining to U.S. Appl. No. 10/704,325, 11 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Aug. 4, 2009, pertaining to U.S. Appl. No. 10/704,325, 15 pages.
United States Patent and Trademark Office, Notice of Allowance dated May 17, 2010, pertaining to U.S. Appl. No. 10/704,325, 20 pages.
United States Patent and Trademark Office, Office Action dated Jul. 23, 2010, pertaining to U.S. Appl. No. 12/317,416, 7 pages.
United States Patent and Trademark Office, Office Action dated Apr. 26, 2010, pertaining to U.S. Appl. No. 10/160,667, 11 pages.
United States Patent and Trademark Office, Office Action dated Aug. 2, 2010, pertaining to U.S. Appl. No. 12/317,472, 7 pages.
United States Patent and Trademark Office, Office Action dated Aug. 5, 2010, pertaining to U.S. Appl. No. 10/997,407, 12 pages.
United States Patent and Trademark Office, Office Action dated May 26, 2010, pertaining to U.S. Appl. No. 11/602,713, 10 pages.
United States Patent and Trademark Office, Office Action dated Jun. 28, 2010, pertaining to U.S. Appl. No. 10/752,438, 9 pages.
United States Patent and Trademark Office, Office Action dated Mar. 4, 2010, pertaining to U.S. Appl. No. 11/688,340, 15 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Jul. 30, 2009, pertaining to U.S. Appl. No. 11/537,318, 9 pages.
United States Patent and Trademark Office, Office Action dated Jun. 3, 2010, pertaining to U.S. Appl. No. 11/537,318, 10 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2010/039587, dated Aug. 19, 2010, together with the Written Opinion of the International Searching Authority, 15 pages.
European Patent Office, Extended European Search Report—European Application No. 06815884.9-2310, dated Sep. 14, 2010, 7 pages.
United States Patent and Trademark Office, Office Action dated Sep. 15, 2010, pertaining to U.S. Appl. No. 10/704,208, 13 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2010/025274, dated Sep. 20, 2010, together with the Written Opinion of the International Searching Authority, 18 pages.
Sunstein Kann Murphy & Timbers LLP, Preliminary Amendment dated Jul. 31, 2009, pertaining to U.S. Appl. No. 11/739,326, 19 pages.
United States Patent and Trademark Office, Office Action dated Apr. 20, 2010, pertaining to U.S. Appl. No. 11/739,326, 13 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Apr. 20, 2010, pertaining to U.S. Appl. No. 11/739,326, 22 pages.
United States Patent and Trademark Office, Notice of Allowance dated Nov. 24, 2010, pertaining to U.S. Appl. No. 11/739,326, 8 pages.
United States Patent and Trademark Office, Office Action dated May 17, 2010, pertaining to U.S. Appl. No. 10/764,010, 12 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated May 17, 2010, pertaining to U.S. Appl. No. 10,764,010, 21 pages.
United States Patent and Trademark Office, Notice of Allowance dated Dec. 16, 2010, pertaining to U.S. Appl. No. 10/764,010, 11 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Aug. 2, 2010, pertaining to U.S. Appl. No. 12/317,472, 15 pages.
United States Patent and Trademark Office, Office Action dated Feb. 10, 2011, pertaining to U.S. Appl. No. 12/317,416, 10 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2010/046868, dated Jan. 7, 2011, together with the Written Opinion of the International Searching Authority, 11 pages.
United States Patent and Trademark Office, Office Action dated Feb. 22, 2011, pertaining to U.S. Appl. No. 11/602,713, 10 pages.
United States Patent and Trademark Office, Office Action dated Feb. 24, 2011, pertaining to U.S. Appl. No. 12/317,472, 12 pages.
United States Patent and Trademark Office, Office Action dated Mar. 2, 2011, pertaining to U.S. Appl. No. 10/752,438, 8 pages.
European Patent Office, Extended European Search Report—European Application No. 10012404.9-2310, dated Apr. 1, 2011, 7 pages.
United States Patent and Trademark Office, Office Action dated Apr. 18, 2011, pertaining to U.S. Appl. No. 12/464,763, 13 pages.
United States Patent and Trademark Office, Notice of Allowance dated Aug. 5, 2011, pertaining to U.S. Appl. No. 10/764,010, 14 pages.
United States Patent and Trademark Office, Office Action dated Sep. 15, 2011, pertaining to U.S. Appl. No. 10/997,407, 13 pages.
United States Patent and Trademark Office, Office Action dated Dec. 6, 2010, pertaining to U.S. Appl. No. 12/853,599, 11 pages.
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Dec. 6, 2010, pertaining to U.S. Appl. No. 12/853,599, 16 pages.
United States Patent and Trademark Office, Notice of Allowance dated Sep. 14, 2011, pertaining to U.S. Appl. No. 12/853,599, 9 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2010/055483, dated Jul. 28, 2011, together with the Written Opinion of the International Searching Authority, 9 pages.
Bromberg & Sunstein LLP, Preliminary Amendment dated Aug. 22, 2006, pertaining to U.S. Appl. No. 11/410,515, 10 pages.
United States Patent and Trademark Office, Office Action dated Dec. 30, 2008, pertaining to U.S. Appl. No. 11/410,515, 32 pages.
Bromberg & Sunstein LLP, Amendment dated Jun. 30, 2009, pertaining to U.S. Appl. No. 11/410,515, 18 pages.
Sunstein Kann Murphy & Timbers LLP, Supplemental Amendment dated Aug. 26, 2009, pertaining to U.S. Appl. No. 11/410,515, 11 pages.
Sunstein Kann Murphy & Timbers LLP, Supplemental Amendment dated Sep. 21, 2009, pertaining to U.S. Appl. No. 11/410,515, 11 pages.
United States Patent and Trademark Office, Office Action dated Dec. 28, 2009, pertaining to U.S. Appl. No. 11/410,515, 43 pages.
Sunstein Kann Murphy & Timbers LLP, Amendment dated Jun. 28, 2010 pertaining to U.S. Appl. No. 11/410,515, 16 pages.
United States Patent and Trademark Office, Office Action dated Oct. 6, 2010 pertaining to U.S. Appl. No. 11/410,515, 20 pages.
Sunstein Kann Murphy & Timbers LLP, Amendment dated Apr. 6, 2011 pertaining to U.S. Appl. No. 11/410,515, 12 pages.
Sunstein Kann Murphy & Timbers LLP, Preliminary Amendment dated Jul. 31, 2009 pertaining to U.S. Appl. No. 11/769,434, 44 pages.
United States Patent and Trademark Office, Office Action dated Aug. 2, 2010 pertaining to U.S. Appl. No. 11/769,434, 83 pages.
Sunstein Kann Murphy & Timbers LLP, Amendment dated Feb. 2, 2011 pertaining to U.S. Appl. No. 11/769,434, 44 pages.
Sunstein Kann Murphy & Timbers LLP, Preliminary Amendment dated Aug. 12, 2011, pertaining to U.S. Appl. No. 13/017,886, 13 pages.
United States Patent and Trademark Office, Office Action dated Jun. 23, 2011 pertaining to U.S. Appl. No. 11/410,515, 13 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2010/059910 dated Oct. 25, 2011, together with the Written Opinion of the International Searching Authority, 9 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2012/025269 dated Aug. 31, 2012, together with the Written Opinion of the International Searching Authority, 14 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2012/049472 dated Oct. 16, 2012, together with the Written Opinion of the International Searching Authority, 12 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2012/050964 dated Oct. 22, 2012, together with the Written Opinion of the International Searching Authority, 13 pages.
European Patent Office, European Search Report—Application No. 12170854.9-1526 dated Oct. 9, 2012, 6 pages.
International Searching Authority, International Search Report—International Application No. PCT/US12/59936 dated Jan. 9, 2013, together with the Written Opinion of the International Searching Authority, 11 pages.
European Patent Office, Extended European Search Report—Application No. 10792589.3-2310 dated Feb. 7, 2013, 9 pages.
Cohen et al., “Computer-Aided Planning of Patellofemoral Joint OA Surgery: Developing Physical Models from Patient MRI”, MICCAI, Oct. 11-13, 1998, 13 pages.
Delp et al., “A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures,” Comput. Biol. Med., vol. 25, No. 1, pp. 21-34, 1995.
Overhoff et al., “Total Knee Arthroplasty: Coordinate System Definition and Planning Based on 3-D Ultrasound Image Volumes”, CARS 2001, pp. 283-288.
Robinson et al., “The Early Innovators of Today's Resurfacing Condylar Knees”, The Journal of Arthroplasty, vol. 20, No. 1, Suppl. 1, 2005.
Tsai et al., “Accurate Surface Voxelization for Manipulating Volumetric Surfaces and Solids with Application in Simulating Musculoskeletal Surgery”, Inst. of Information and Computer Engineering, pp. 234-243, 2001.
European Patent Office, Extended European Search Report—Application No. 12192903.8-1654 dated Apr. 17, 2013, 8 pages.
European Patent Office, European Search Report—Application No. 10829105.5-1654 dated Nov. 5, 2013, 3 pages.
European Patent Office, Extended European Search Report—Application No. 10838327.4-1654 dated Nov. 14, 2013, 6 pages.
International Searching Authority, Invitation to Pay Additional Fees—International Application No. PCT/US2008/053977, dated Jul. 11, 2008, together with the Written Opinion of the International Searching Authority, 6 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2008/05377, dated Sep. 30, 2008, together with the Written Opinion of the International Searching Authority, 17 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2012/025274, dated Oct. 25, 2012, together with the Written Opinion of the International Searching Authority, 12 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2012/025277, dated Oct. 25, 2012, together with the Written Opinion of the International Searching Authority, 12 pages.
International Searching Authority, International Search Report—International Application No. PCT/US2012/025280 dated Oct. 25, 2012, together with the Written Opinion of the International Searching Authority, 11 pages.
Related Publications (1)
Number Date Country
20110266265 A1 Nov 2011 US
Provisional Applications (2)
Number Date Country
61353386 Jun 2010 US
60889859 Feb 2007 US
Continuation in Parts (1)
Number Date Country
Parent 12031239 Feb 2008 US
Child 13157857 US