Implant having adjustable filament coils

Information

  • Patent Grant
  • 10898178
  • Patent Number
    10,898,178
  • Date Filed
    Tuesday, July 31, 2018
    6 years ago
  • Date Issued
    Tuesday, January 26, 2021
    3 years ago
Abstract
Devices and methods for soft tissue reconstruction are provided. One exemplary embodiment of a device includes a body a suture filament extending through through-holes formed in the body. The suture is formed into an overhand knot having three collapsible openings with filament limbs extending from the knot. The limbs can be passed through the thru-holes of the body and selectively into the collapsible openings of the overhand knot to form coils extending to an opposite side of the body. For example, one limb can be passed through first and second collapsible openings to form two coils, while the other limb can be passed through the first and third collapsible openings to form two coils. The collapsible openings are collapsed around the limbs disposed in the openings, resulting in a secured overhand knot. Other configurations of knots, as well as devices and methods for use in tissue reconstruction, are also provided.
Description
FIELD

The present disclosure relates to devices, systems, and methods for securing soft tissue to bone, and more particularly it relates to securing an ACL graft to a femur.


BACKGROUND

Joint injuries may commonly result in the complete or partial detachment of ligaments, tendons, and soft tissues from bone. Tissue detachment may occur in many ways, e.g., as the result of an accident such as a fall, overexertion during a work related activity, during the course of an athletic event, or in any one of many other situations and/or activities. These types of injuries are generally the result of excess stress or extraordinary forces being placed upon the tissues.


In the case of a partial detachment, commonly referred to under the general term “sprain,” the injury frequently heals without medical intervention, the patient rests, and care is taken not to expose the injury to undue strenuous activities during the healing process. If, however, the ligament or tendon is completely detached from its attachment site on an associated bone or bones, or if it is severed as the result of a traumatic injury, surgical intervention may be necessary to restore full function to the injured joint. A number of conventional surgical procedures exist for re-attaching such tendons and ligaments to bone.


One such procedure involves forming aligned femoral and tibial tunnels in a knee to repair a damaged anterior cruciate ligament (“ACL”). In one ACL repair procedure, a ligament graft is associated with a surgical implant and secured to the femur. A common ACL femoral fixation means includes an elongate “button,” sometimes referred to as a cortical button. The cortical button is attached to a suture loop that is sized to allow an adequate length of a soft tissue graft to lie within the femoral tunnel while providing secure extra-cortical fixation.


Existing devices and methods can be limited because they do not always provide the desired strength. In some instances, one or more knots tied to help maintain a location of the suture loop with respect to a cortical button, and thus the graft associated therewith, can loosen or slip. Thus, even if a ligament graft is disposed at a desired location during a procedure, post-operatively the circumference of the loop can increase, causing the graft to move away from the desired location. Further, it can be desirable to limit the number of knots used in conjunction with such devices, because of the potential for the knots loosening and because the additional surface area knots can increase the risk of trauma. Some existing knot configurations used in conjunction with procedures of this nature can undesirably bind, which can prevent the knot from cinching down and leads to the knot having a higher profile. Still further, existing devices and methods also lack adjustability in many instances. For example, in procedures in which multiple ligament grafts are associated with the cortical button, it can be difficult to control placement of one ligament graft independently (i.e. without also moving the other ligament graft).


Accordingly, it is desirable to provide devices, systems, and methods that improve the strength and adjustability of surgical implants used in conjunction with ligament graft insertion, and to minimize the number of knots associated with maintaining a location of the grafts once the grafts are disposed at desired locations.


SUMMARY

Devices, systems, and methods are generally provided for performing ACL repairs. In one exemplary embodiment, a surgical implant includes a body having a plurality of thru-holes and a suture filament extending through the body. The filament can be configured to form a knot and a plurality of coils, with the knot being located on a top side of the body and a portion of each coil being disposed on both the top side of the body and a bottom side of the body as a result of the filament being disposed through at least two of the plurality of thru-holes of the body. The knot can be a self-locking knot, with the self-locking knot defining a collapsible opening. The knot can have a portion of the suture filament that is intermediate its first terminal end and the plurality of coils and is disposed on the top side of the body passed through the collapsible opening from a first side of the opening. Further, the knot can have a portion of the suture filament that is intermediate its second terminal end and the plurality of coils and disposed on the top side of the body passed through the collapsible opening from a second, opposite side of the opening. In some embodiments, the collapsible opening can be configured to collapse and move toward the body when tension is applied to at least one of the first and second terminal ends.


The plurality of coils can include a first coil and a second coil formed by a first portion of the filament extending between the self-locking knot and the first terminal end, and a third coil and a fourth coil formed by a second portion of the filament extending between the self-locking knot and the second terminal end. In some embodiments the thru-holes of the body include two outer thru-holes and two inner thru-holes, with each outer thru-hole being located adjacent to respective opposed terminal ends of the body and the inner thru-holes being disposed between the outer thru-holes. In such embodiments, the first and third coils can pass through each of the outer thru-holes and the second and fourth coils can pass through each of the inner thru-holes. Alternatively, in such embodiments, the first, second, third, and fourth coils can all pass through each of the inner thru-holes. At least one coil can be configured such that its circumference can be changed by applying tension to at least one of the first and second terminal ends. In some embodiments the plurality of coils can be configured such that a circumference of one coil can be adjusted independent from adjusting a circumference of another coil.


The self-locking knot can include a Lark's Head knot. The Lark's Head knot can have certain modifications or additions to allow it to be self-locking, as described in greater detail herein. In some embodiments the implant can include a second suture filament extending longitudinally through the body. The second suture filament can pass through each thru-hole of the plurality of thru-holes, and can be used, for example, as a shuttle to help guide the implant through a bone tunnel.


A sleeve can be included as part of the implant. A sleeve can be disposed over a first portion of the suture filament that extends between the self-locking knot and the first terminal end, and a sleeve can be disposed over a second portion of the suture filament that extends between the self-locking knot and the second terminal end, with each sleeve being located on the top side of the body. In some embodiments the sleeve disposed over the first portion and the sleeve disposed over the second portion can be the same sleeve, with a portion of that sleeve being disposed around the bottom side of the body.


Another exemplary embodiment of a surgical implant includes a body having a plurality of thru-holes formed therein and a suture filament attached to the body such that the filament has a first terminal end, a second terminal end, and a Lark's Head knot formed therein, all of which are located on a top side of the body. The suture filament can be arranged with respect to the body such that a first portion of the filament extending between the Lark's Head knot and the first terminal end passes through one thru-hole to a bottom side of the body and through a different thru-hole to the top side of the body to form a first loop. Similarly, a second portion of the filament extending between the Lark's Head knot and the second terminal end passes through one thru-hole to the bottom side of the body and through a different thru-hole to the top side of the body to form a second loop. Further, the first terminal end can pass through an opening defined by the Lark's Head knot from a first side of the opening and the second terminal end can pass through the same opening from a second, opposite side of the opening.


In some embodiments, additional loops can be formed from the suture filament. For example, the suture filament can be arranged with respect to the body such that its first portion passes through one thru-hole to the bottom side of the body and through a different thru-hole to the top side to form a third loop, while its second portion passes through one thru-hole to the bottom side of the body and through a different thru-hole to the top side to form a fourth loop. In some embodiments the thru-holes of the body include two outer thru-holes and two inner thru-holes, with each outer thru-hole being located on an outer portion of the body and the inner thru-holes being disposed between the outer thru-holes. In such embodiments, the first and second portions of the suture filament can pass through each of the outer thru-holes and through each of the inner thru-holes at least once. Alternatively, in such embodiments, the first and second portions of the suture filament can pass through each of the inner thru-holes at least twice. A length of the filament's first portion and a length of the filament's second portion can be adjustable. In some embodiments the implant can include a second suture filament extending longitudinally through the body. The second suture filament can pass through each thru-hole of the plurality of thru-holes, and can be used, for example, as a shuttle to help guide the implant through a bone tunnel.


One exemplary embodiment of a surgical method includes loading a graft onto one or more coils of a plurality of coils of an implant filament that is coupled to an implant body, pulling a leading end of a shuttle filament that is disposed through the implant body through a bone tunnel until the implant body is pulled out of the tunnel while at least a portion of the implant filament and the graft remain in the tunnel, and orienting the implant body so that its bottom side is facing the bone tunnel through which the implant body passed. Pulling the leading end of the shuttle filament also necessarily pulls the implant body, the implant filament, and the graft through the tunnel. The resulting orientation of the implant's bottom side facing the tunnel is such that the plurality of coils are disposed substantially within the tunnel and a sliding knot first and second terminal ends of the implant filament are located outside of the tunnel, adjacent to a top side of the implant body.


In some embodiments, the step of orienting the implant body can be performed by pulling a trailing end of the shuttle filament. Alternatively, the step of orienting the implant body can be performed by pulling both the leading and trailing ends of the shuttle filament. The method can further include selectively applying tension to at least one of the first and second terminal ends to adjust a circumference of one or more of the coils.


Yet another exemplary embodiment of a surgical implant includes a body having a plurality of thru-holes and a filament. The filament has an overhand knot located on a top side of the body and a plurality of loops that extend from the overhand knot towards the body. The overhand knot has a first collapsible opening, a second collapsible opening, and a third collapsible opening. The loops can be a first filament loop, a second filament loop, a third filament loop, and a fourth filament loop, with each filament loop passing through two thru-holes of the plurality of thru-holes, and each filament loop having a distal end disposed on a bottom side of the body. At least two tensioning limbs extend from the overhand knot, in a direction opposite to a direction that the filament loops extend from the overhand knot. A portion of filament of the first filament loop disposed on the top side of the body extends through the first collapsible opening, a portion of filament of the second filament loop disposed on the top side of the body extends through the second collapsible opening, a portion of filament of the third filament loop disposed on the top side of the body extends through the first collapsible opening, and a portion of filament of the fourth filament loop disposed on the top side of the body extends through the third collapsible opening. The first, second, and third collapsible openings are collapsed around, and thus engaged with, the respective filaments extending through the respective openings to form the overhand knot.


In some embodiments, the plurality of thru-holes can include two outer thru-holes and two inner thru-holes, with each outer thru-hole being located adjacent to respective opposed terminal ends of the body and the inner thru-holes being disposed between the outer thru-holes. The first and third filament loops can be disposed in each of the outer thru-holes and the second and fourth filament loops can be disposed in each of the inner thru-holes. Alternatively, the first, second, third, and fourth filament loops each can be disposed in each of the inner thru-holes.


At least one of the at least two tensioning limbs can be configured to adjust a circumference of at least one of the first, second, third, and fourth filament loops when tension is applied to the limb(s). Further, the first collapsible opening can have a central location such that the second collapsible opening is located on one side of the first collapsible opening and the third collapsible opening is located on a second, approximately opposite side of the first collapsible opening. Moreover, the first, second, third, and fourth filament loops of the recited embodiments can hold a combined average maximum load of at least about 765 N.


In a further exemplary embodiment a surgical implant includes a body having a plurality of thru-holes formed therein and a suture filament extending through the body. The suture filament is configured to form an overhand knot located on a top side of the body with the knot having a first collapsible opening, a second collapsible opening, and a third collapsible opening. A first coil is formed by extending a first suture limb from the overhand knot, through a through hole of the plurality of thru-holes formed in the body to a bottom side of the body, then through another through hole formed in the body, and then through the first collapsible opening of the overhand knot. A second coil is similarly formed by extending a second suture limb from the overhand knot, through a through hole of the plurality of thru-holes formed in the body to the bottom side of the body, then through another through hole formed in the body, and then through one of the first, second, and third collapsible openings of the overhand knot. A third coil is formed by extending the first suture limb, which has already passed through the first collapsible opening, through a through hole of the plurality of thru-holes formed in the body to the bottom side of the body, then through another through hole formed in the body, and then through the second collapsible opening of the overhand knot. A portion of the first suture limb that extends through the second collapsible opening forms a first tensioning limb. A fourth coil is likewise formed by extending the second suture limb, which has already passed through one of the first, second, and third collapsible openings, through a through hole of the plurality of thru-holes formed in the body to the bottom side of the body, then through another through hole formed in the body, and then through either the third opening of the overhand knot if the second suture limb did not previously extend through the third opening, or one of the first and second collapsible openings of the overhand knot if the second suture limb did extend through the third opening. A portion of the second suture limb that extends through either the third collapsible opening, or one of the first and second collapsible openings, forms a second tensioning limb. The first, second, and third collapsible openings are collapsed around, and thus engaged with, the respective first and second suture limbs extending through the respective openings to form the overhand knot.


In some embodiments the plurality of thru-holes can include two outer thru-holes and two inner thru-holes, with each outer thru-hole being located adjacent to respective opposed terminal ends of the body and the inner thru-holes being disposed between the outer thru-holes. The first and third coils can be disposed in each of the outer thru-holes and the second and fourth coils can be disposed in each of the inner thru-holes. Alternatively, the first, second, third, and fourth coils each can be disposed in each of the inner thru-holes.


At least one of the first and second tensioning limbs can be configured to adjust a circumference of at least one of the respective first and third coils and second and fourth coils when tension is applied to the limb(s). Further, the first collapsible opening can have a central location such that the second collapsible opening is located on one side of the first collapsible opening and the third collapsible opening is located on a second, approximately opposite side of the first collapsible opening. Moreover, the first, second, third, and fourth coils of the recited embodiments can hold a combined average maximum load of at least about 765 N.


In another exemplary method of configuring a surgical implant, the method can include manipulating a filament to form a knot having a first collapsible opening, a second collapsible opening, and a third collapsible opening, the filament having first and second limbs extending from the knot. The filament is coupled to the implant body by passing the first and second limbs from a first side of an implant body to a second side of the implant body, and then from the second side to the first side of the implant body. Back on the first side, the first limb is passed through the first collapsible opening, and the second limb is passed through one of the first, second, and third collapsible openings. The first and second limbs are again passed from the first side to the second side of the implant body, and from the second side to the first side. The first limb is then passed through one of the second and third collapsible openings, while the second limb is passed through a different collapsible opening of the first, second, and third collapsible openings from which it was passed previously. More specifically, the different collapsible opening is the collapsible opening through which neither the first limb nor the second limb has been passed if neither the first limb nor the second limb has been passed through one of the first, second, and third collapsible openings during the three previously recited passes by the first and second limbs through the first, second, and third collapsible openings. The method further includes collapsing the first, second, and third collapsible openings to engage the first and second limbs passed through the openings with a portion of the filament that forms each of the collapsible openings.


In some embodiments the first collapsible opening can have a central location such that the second collapsible opening is located on one side of the first collapsible opening and the third collapsible opening is located on a second, approximately opposite side of the first collapsible opening. The method can further include applying tension to a portion of at least one of the first and second limbs extending from the knot after the first, second, and third openings are collapsed to adjust a circumference of at least one of the respective first, second, third, and fourth coils.


The method can be such that a first time the first limb is passed from the first side of the implant body to the second side of the implant body, the first limb can be passed through one opening of a plurality of openings formed in the implant body, and a first time the first limb is passed from the second side of the implant body to the first side of the implant body, the first limb can be passed through another opening of the plurality of openings formed in the implant body, thereby forming a first coil. Further, a first time the second limb is passed from the first side of the implant body to the second side of the implant body, the second limb can be passed through one opening of the plurality of openings formed in the implant body, and a first time the second limb is passed from the second side of the implant body to the first side of the implant body, the second limb can be passed through another opening of the plurality of openings formed in the implant body, thereby forming a second coil. In such embodiments, a second time the first limb is passed from the first side of the implant body to the second side of the implant body, the first limb can be passed through one opening of the plurality of openings formed in the implant body, and a second time the first limb is passed from the second side of the implant body to the first side of the implant body, the first limb can be passed through another opening of the plurality of openings formed in the implant body, thereby forming a third coil. A second time the second limb is passed from the first side of the implant body to the second side of the implant body, the second limb can be passed through one opening of the plurality of openings formed in the implant body, and a second time the second limb is passed from the second side of the implant body to the first side of the implant body, the second limb can be passed through another opening of the plurality of openings formed in the implant body, thereby forming a fourth coil.


The plurality of openings formed in the implant body can include two outer openings and two inner openings, with each outer opening being located adjacent to respective opposed terminal ends of the implant body and the inner openings being disposed between the outer openings. A portion of the first and second limbs that respectively form the first and second coils can be disposed in each of the inner thru-holes and a portion of the first and second limbs that respectively form the third and fourth coils can be disposed in each of the outer thru-holes. Alternatively, the plurality of openings can include two openings, and a portion of the first and second limbs that respectively form the first and third coils and the second and fourth coils can be disposed in each of the two openings.


In some embodiments, a first time the first limb is passed from the first side of the implant body to the second side of the implant body, the first limb can be passed around a first lateral side of the implant body, and a first time the first limb is passed from the second side of the implant body to the first side of the implant body, the first limb can be passed around a second lateral side of the implant body that is opposed to the first lateral side, thereby forming a first coil. Likewise, a first time the second limb is passed from the first side of the implant body to the second side of the implant body, the second limb can be passed around one of the first and second lateral sides of the implant body, and a first time the second limb is passed from the second side of the implant body to the first side of the implant body, the second limb can be passed around the other of the first and second lateral sides of the implant body, thereby forming a second coil. In such embodiments, a second time the first limb is passed from the first side of the implant body to the second side of the implant body, the first limb can be passed around one of the first and second lateral sides of the implant body, and a second time the first limb is passed from the second side of the implant body to the first side of the implant body, the first limb can be passed around the other of the first and second lateral sides of the implant body, thereby forming a third coil. Likewise, in such embodiments, a second time the second limb is passed from the first side of the implant body to the second side of the implant body, the second limb can be passed around one of the first and second lateral sides of the implant body, and a second time the second limb is passed from the second side of the implant body to the first side of the implant body, the second limb can be passed around the other of the first and second lateral sides of the implant body, thereby forming a fourth coil.


Unless otherwise specified, the steps of the methods provided for in the present disclosure can be performed in any order.





BRIEF DESCRIPTION OF DRAWINGS

This invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:



FIG. 1A is a schematic view of components of one exemplary embodiment of a surgical implant, including a cortical button and a suture filament having a Lark's Head knot formed therein;



FIG. 1B is a perspective side view of one exemplary embodiment of a surgical implant formed using the cortical button and suture filament of FIG. 1A;



FIG. 2A is a top perspective view of the cortical button of FIG. 1A;



FIG. 2B is an end elevational view of the cortical button of FIG. 2A;



FIG. 2C is a side elevational view of the cortical button of FIG. 2A;



FIGS. 3A-3E are sequential views illustrating one exemplary embodiment for forming the Lark's Head knot of FIG. 1A;



FIG. 4 is a schematic side cross-sectional view of one exemplary embodiment of a surgical implant;



FIG. 5 is a schematic side cross-sectional view of another exemplary embodiment of a surgical implant;



FIGS. 6A-6B are sequential views of yet another exemplary embodiment of a surgical implant, the implant having grafts associated therewith, illustrating selective movement of the grafts;



FIGS. 7A-7E are sequential views illustrating one exemplary embodiment of coupling a suture to a cortical button to form a surgical implant;



FIG. 8A-D are sequential views illustrating one exemplary embodiment of coupling a suture to an implant;



FIG. 9A is a schematic side cross-sectional view of another exemplary embodiment of a surgical implant;



FIG. 9B is a side perspective view of the surgical implant of FIG. 9A with a knot of the implant in a collapsed configuration;



FIG. 10 is a schematic side cross-sectional view of another exemplary embodiment of a surgical implant;



FIGS. 11A-11H are sequential views illustrating another exemplary embodiment of coupling a suture to a cortical button to form a surgical implant, and associating a graft therewith;



FIG. 12 is a side perspective view of another exemplary embodiment of a surgical implant;



FIG. 13 is a side perspective view of one exemplary embodiment of a surgical implant associated with a shuttle filament;



FIG. 14A is a schematic side cross-sectional view of another exemplary embodiment of a surgical implant associated with a shuttle filament;



FIG. 14B is a top view of a body of the surgical implant of FIG. 14A;



FIG. 15A is a schematic side cross-sectional view of still another exemplary embodiment of a surgical implant associated with a shuttle filament;



FIG. 15B is a top view of a body of the surgical implant of FIG. 15A;



FIG. 16A is a schematic view of a portion of one exemplary embodiment for implanting a graft in a bone tunnel using a surgical implant having a shuttle filament associated therewith;



FIG. 16B is a schematic view of the surgical implant of FIG. 15A for use in the exemplary embodiment for implanting a graft in a bone tunnel of FIGS. 16A and 16D-H;



FIG. 16C is a schematic view of the surgical implant of FIG. 14A for use in the exemplary embodiment for implanting a graft in a bone tunnel of FIGS. 16A and 16D-H;



FIGS. 16D-G are schematic, sequential views illustrating the remainder of the exemplary embodiment for implanting a graft in a bone tunnel of FIG. 16A; and



FIG. 16H is a schematic view of a portion of another exemplary embodiment for implanting a graft in a bone tunnel using a surgical implant having two, independently collapsible coils.





DETAILED DESCRIPTION

Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention. Further, in the present disclosure, like-numbered components of the embodiments generally have similar features. Additionally, to the extent that linear or circular dimensions are used in the description of the disclosed systems, devices, and methods, such dimensions are not intended to limit the types of shapes that can be used in conjunction with such systems, devices, and methods. A person skilled in the art will recognize that an equivalent to such linear and circular dimensions can easily be determined for any geometric shape. Sizes and shapes of the systems and devices, and the components thereof, can depend at least on the anatomy of the subject in which the systems and devices will be used, the size and shape of components with which the systems and devices will be used, and the methods and procedures in which the systems and devices will be used.


The figures provided herein are not necessarily to scale. Further, to the extent arrows are used to describe a direction a component can be tensioned or pulled, these arrows are illustrative and in no way limit the direction the respective component can be tensioned or pulled. A person skilled in the art will recognize other ways and directions for creating the desired tension or movement. Likewise, while in some embodiments movement of one component is described with respect to another, a person skilled in the art will recognize that other movements are possible. By way of non-limiting example, in embodiments in which a sliding knot is used to help define a collapsible loop, a person skilled in the art will recognize that different knot configurations can change whether moving the knot in one direction will cause a size of an opening defined by the knot will increase or decrease. Additionally, a number of terms may be used throughout the disclosure interchangeably but will be understood by a person skilled in the art. By way of non-limiting example, the terms “suture” and “filament” may be used interchangeably.


The present disclosure generally relates to a surgical implant for use in surgical procedures such as ACL repairs. The implant can include a body having thru-holes formed therein and a suture filament associated therewith. An exemplary embodiment of a body 10 and a suture filament 50 illustrated separately is shown in FIG. 1A, while an exemplary embodiment of the two components coupled together to form an implant 100 is shown in FIG. 1B. The suture filament 50 can form a self-locking knot 52, illustrated as including a Lark's Head knot in FIG. 1A, and first and second tails 54, 55 extending therefrom can be passed through thru-holes 24 formed in the body 10 to associate the two components. As described below, the self-locking knot 52 is actually a Lark's Head knot modified to make it self-locking.


While the particulars of the formation of the construct illustrated in FIG. 1B are discussed in greater detail below, as shown the self-locking knot 52 can be formed on a first, top side 10a of the body 10 and a plurality of coils 60 formed from the first and second tails 54, 55 extending from the self-locking knot 52 can be disposed on a second, bottom side 10b of the body 10. First and second terminal ends 54t, 55t of the first and second tails 54, 55 can be passed through a collapsible opening 56 (FIGS. 4 and 5) of the self-locking knot 52 before the knot 52 is collapsed, with the second terminal end 55t passing through the collapsible opening 56 from a first side 56a of the opening 56, and the first terminal end 54t passing through the collapsible opening 56 from a second, opposite side 56b of the opening 56. As shown, the terminal ends 54t, 55t can extend proximally from the self-locking knot 52, and the collapsible opening 56 can be configured to collapse and move toward the body 10 when tension is applied to at least one of the terminal ends 54t, 55t. Applying tension to the terminal ends 54t, 55t can also selectively adjust a circumference of one or more of the coils 60 without adjusting a circumference of all of the coils 60. Optionally, a sleeve 58 can be associated with one or both of the tail portions extending between the self-locking knot 52 and the first and second terminal ends 54t, 55t. The sleeve 58 can help prevent the tails 54, 55 from being cut too close to the knot 52 after a desired implant location is achieved.


A body 10 for use as a part of a surgical implant to fixate a ligament graft in bone is illustrated in FIGS. 2A-2C. The body 10 can have a somewhat rectangular, elongate shape with curved leading and trailing terminal ends 16, 18. A plurality of thru-holes 24 can extend from a first, top surface 20 and through a second, bottom surface 22. In the illustrated embodiment there are two outer thru-holes 24a, 24d disposed, respectively, adjacent to leading and trailing terminal ends 16, 18, and two inner thru-holes 24b, 24c disposed between the two outer holes 24a, 24d. As shown, the outer and inner thru-holes 24a, 24d and 24b, 24c have diameters that are substantially the same, and a space separating adjacent thru-holes 24 is substantially the same for each adjacent pair. A width W of the body 10 is defined by the distance between the two elongate sidewalls 12, 14, as shown in FIG. 2B, a length L of the body 10 is defined by the distance between central portions 16c, 18c of the end walls of the leading and trailing terminal ends 16, 18, as shown in FIG. 2C, and a thickness T of the body 10 is defined by the distance between the top and bottom surfaces 20, 22, as shown in FIGS. 2B and 2C. The body 10 can generally be referred to as a cortical button, among other known terms.


A person skilled in the art will recognize that the body 10 described herein is merely one example of a body that can be used in conjunction with the teachings provided herein. A body configured to be associated with a suture filament of the type described herein can have a variety of different shapes, sizes, and features, and can be made of a variety of different materials, depending, at least in part, on the other components with which it is used, such as the suture filament and the ligament graft, and the type of procedure in which it is used. Thus, while in the present embodiment the body 10 is somewhat rectangular having curved ends, in other embodiments the body can be substantially tubular, among other shapes.


In one exemplary embodiment of the substantially rectangular button, the length L of the body is in the range of about 5 millimeters to about 30 millimeters, the width W is in the range of about 1 millimeter to about 10 millimeters, and the thickness T is in the range of about 0.25 millimeters to about 3 millimeters. In one exemplary embodiment, the length L can be about 12 millimeters, the width W can be about 4 millimeters, and the thickness T can be about 1.5 millimeters. Diameters of the thru-holes 24 can be in the range of about 0.5 millimeters to about 5 millimeters, and in one exemplary embodiment each can be about 2 millimeters. Although in the illustrated embodiment each of the thru-holes 24a, 24b, 24c, 24d has a substantially similar diameter, in other embodiments some of the thru-holes can have different diameters. Additionally, any number of thru-holes can be formed in the body 10, including as few as two.


In exemplary embodiments the body 10 can be made from a stainless steel or titanium, but any number of polymers, metals, or other biocompatible materials in general can be used to form the body. Some non-limiting examples of biocompatible materials suitable for forming the body include a polyether ether ketone (PEEK), bioabsorbable elastomers, copolymers such as polylactic acid-polyglycolic acid (PLA-PGA), and bioabsorbable polymers such as polylactic acid. The implant can also be formed of absorbable and non-absorbable materials. Other exemplary embodiments of a body or cortical button that can be used in conjunction with the teachings herein are described at least in U.S. Pat. No. 5,306,301 of Graf et al., the content of which is incorporated by reference herein in its entirety.


Steps for configuring the suture filament 50 for use as a part of the surgical implant 100 to fixate a ligament graft in bone are illustrated in FIGS. 3A-3E. As shown in FIG. 3A, the filament can be folded substantially in half at an approximate midpoint 50m of the filament 50, forming a first filament limb 54 and a second filament limb 55 having first and second terminal ends 54t and 55t, respectively. A central portion 50c of the filament 50, which includes the midpoint 50m, can be folded toward the first and second limbs 54, 55, as shown in FIG. 3B, and be brought proximate to the first and second limbs 54, 55. This results in the formation of a first secondary loop 57 and a second secondary loop 59, as shown in FIG. 3C. A size of the secondary loops 57, 59, and a length of the limbs 54, 55 extending therefrom, can be adjusted as desired.


As shown in FIG. 3D, a portion 54p, 55p of the first and second limbs 54, 55 that are part of the secondary loops 57, 59 can be grasped and pulled upward (as shown, “out of the page”). This results in the configuration illustrated in FIG. 3E, a filament having a Lark Head's knot 52 formed therein with first and second filament limbs 54, 55 having terminal ends 54t, 55t extending therefrom. The Lark's Head knot 52 defines a collapsible opening 56, a size of which can be decreased by applying a force in an approximate direction A to one or both of the limbs 54, 55 extending from the knot 52, or by applying a force in an approximate direction B to the opening 56. Likewise, a size of the opening 56 can be increased by grasping near the midpoint 50m of the filament 50 to hold the portion where the fold is formed approximately stationary and then applying either a force in the approximate direction B to both of the limbs 54, 55 extending from the knot 52, or a force in the approximate direction B to the opening 56. As described in greater detail below, the Lark's Head knot can be modified to form a self-locking knot.


A person skilled in the art will recognize other ways by which a Lark's Head knot can be formed. Similarly, a person skilled in the art will be familiar with other types of knots that can be formed in suture filaments, and will understand ways in which other knots can be adapted for use in a manner as the Lark's Head knot is used in the present disclosure. The present disclosure is not limited to use only with a Lark's Head knot.


The suture filament 50 can be an elongate filament, and a variety of different types of suture filaments can be used, including but not limited to a cannulated filament, a braided filament, and a mono filament. The type, size, and strength of the filament can depend, at least in part, on the other materials of the implant, including the material(s) of the cortical button and the ligament graft, the tissue, bone, and related tunnels through which it will be passed, and the type of procedure in which it is used. In one exemplary embodiment the filament is a #0 filament (about 26 gauge to about 27 gauge), such as an Orthocord™ filament that is commercially available from DePuy Mitek, LLC., 325 Paramount Drive, Raynham, Mass. 02767, or an Ethibond™ filament that is commercially available from Ethicon, Inc., Route 22 West, Somerville, N.J. 08876. The thickness of the filament should provide strength in the connection but at the same time minimize the trauma caused to tissue through which it passes. In some embodiments the filament can have a size in the range of about a #5 filament (about 20 gauge to about 21 gauge) to about a #3-0 filament (about 29 gauge to about 32 gauge). Orthocord™ suture is approximately fifty-five to sixty-five percent PDS™ polydioxanone, which is bioabsorbable, and the remaining thirty-five to forty-five percent ultra high molecular weight polyethylene, while Ethibond™ suture is primarily high strength polyester. The amount and type of bioabsorbable material, if any, utilized in the filaments of the present disclosure is primarily a matter of surgeon preference for the particular surgical procedure to be performed. In some exemplary embodiments, a length of the filament can be in the range of about 0.2 meters to about 5 meters, and in one embodiment it has a length of about 1.5 meters.



FIG. 4 illustrates one exemplary embodiment of the suture filament 50 being associated with the body 10 to form a surgical implant 100′. As shown, the Lark's Head knot 52 is disposed on a first, top side 10a of the body 10, and the limbs 54, 55 extending therefrom are used to associate the filament 50 with the body 10. The limbs 54, 55 can be selectively passed through one of the thru-holes 24 to a bottom side 10b of the body 10, and then through another of the thru-holes 24 back to the top side 10a. In the illustrated embodiment, the first limb 54 passes through the second thru-hole 24b to reach the bottom side 10b and then through the third thru-hole 24c to reach the top side 10a, while the second limb 55 passes through the third thru-hole 24c to reach the bottom side 10b and then through the second thru-hole 24b to reach the top side 10a, forming a coil or loop 60a of the first limb 54 and a coil or loop 60b of the second limb 55. The terminal ends 54t, 55t of the limbs 54, 55 can then be passed through the opening 56 defined by the Lark's Head knot 52. As shown, the terminal end 54t can be passed from the second side 56b of the opening 56, as shown a right side, through the opening 56, and to a first side 56a of the opening 56, as shown a left side, while the terminal end 55t can be passed from the first side 56a, through the opening 56, and to the second, opposite side 56b. The limbs 54, 55 can continue to be pulled through the opening 56 until a desired coil size for each of the first and second limbs 54, 55 is achieved. In alternative embodiments, one or both of the limbs 54, 55 can be passed through the opening 56 multiple times before using the limbs 54, 55 to adjust the coils 60 to the desired size.


Once the terminal ends 54t, 55t have been passed through the opening 56 and the desired coil size has been achieved, the opening 56 can be collapsed. One way that the opening 56 can be collapsed is by applying a force to the terminal ends 54t, 55t in an approximate direction C as shown, while also applying a counterforce to the coils 60 to approximately maintain the circumference of the coils. Without the counterforce, the force in the approximate direction C would typically decrease the circumference of the coils 60 before collapsing the opening 56. Because the terminal ends 54t, 55t are passed through opposing sides 56a, 56b of the opening 56, and compression of the Lark's Head knot 52 against a top surface 20 of the body 10 creates resistance against loosening, the resulting collapsed knot is self-locking, meaning the Lark's Head knot 52 is a sliding knot that locks itself without the aid of additional half-hitches or other techniques known to help secure a location of a knot with respect to the body 10.


After the opening 56 is collapsed, a circumference of the coils 60 can again be decreased by applying force to the terminal ends 54t, 55t in the approximate direction C with the first terminal end 54t generally controlling the size of the coil 60a and the second terminal end 55t generally controlling the size of the coil 60b. Because the collapsible opening 56 is self-locking, it can be more difficult to increase a circumference of the coils 60a, 60b after the opening 56 is collapsed. However, a person skilled in the art will understand how portions of the filament 50 that form the collapsible knot 52 can be manipulated to allow for increases in the circumference of the coils 60a, 60b.


In other embodiments, more than one coil can be formed by the first or second filament limbs. One exemplary embodiment of such an implant 100″ is shown in FIG. 5. Similar to the implant 100′, the Lark's Head knot 52 is disposed on the top side 10a of the body 10, and the limbs 54, 55 extending therefrom are selectively passed through multiple thru-holes 24 of the body 10 to associate the filament 50 with the body 10. In the illustrated embodiment, the first limb 54 passes distally through the second hole 24b to the bottom side 10b of the body 10, and through the third thru-hole 24c back to the top side 10a twice to form a first coil 60a and a second coil 60c before it is then passed through the opening 56 defined by the Lark's Head knot 52 from the second side 56b of the opening 56 to the first side 56a. Similarly, the second limb 55 passes distally through the third hole 24c to the bottom side 10b, and through the second thru-hole 24b back to the top side 10a twice to form a first coil 60b and a second coil 60d before it is then passed through the opening 56 from the first side 56a to the second side 56b. The opening 56 can be collapsed, and a circumference of the first and second coils 60a, 60c can be adjusted by the terminal end 54t and the first and second coils 60b, 60d can be adjusted by the terminal end 55t in manners similar to those described above with respect to the device 100′. The inclusion of a second coil formed from the limbs 54, 55 increases the strength of the implant 100″ due to a pulley effect, allowing the implant 100″ to be more stable when it is implanted in bone and to more stably hold a ligament graft attached to one or more of the coils 60.


Any number of coils can be formed from the first and second limbs 54, 55, and the number of coils formed in the first limb 54 does not have to be the same number of coils formed in the second limb 55. In some exemplary embodiments, three or four coils can be formed in one or both of the limbs. Further, the limbs used to form the coils can be passed through any number of thru-holes formed in the body 10. The first limb 54 does not need to pass through the same thru-holes through which the second limb 55 passes. Accordingly, by way of non-limiting example, a coil of the first limb 54 can be formed by passing the limb through the first thru-hole 24a and then back through the fourth thru-hole 24d and a coil of the second limb 55 can be formed by passing the limb through the third thru-hole 24c and then back through the second thru-hole 24b. By way of further non-limiting example, a coil of the first limb 54 can be formed by passing the limb through the second thru-hole 24b and then back through the fourth thru-hole 24d and a coil of the second limb 55 can be formed by passing the limb through the third thru-hole 24c and then back through the second-thru hole 24b.


Likewise, when multiple coils are formed in one limb, that limb does not have to be passed through the same thru-holes to form each coil. Accordingly, by way of non-limiting example, a first coil of the first limb 54 can be formed by passing the limb through the second thru-hole 24b and then back through the third thru-hole 24c and a second coil of the first limb 54 can be formed by passing the limb through the first thru-hole 24a and then back through the fourth thru-hole 24d. By way of further non-limiting example, a first coil of the second limb 55 can be formed by passing the limb through the fourth thru-hole 24d and then back through the first thru-hole 24a and a second coil of the second limb 55 can be formed by passing the limb through the fourth thru-hole 24d and then back through the second thru-hole 24b. In yet one further non-limiting example, a coil of the first limb 54 can be passed through the second thru-hole 24b and then back through the second thru-hole 24b and a coil of the second limb 55 can be passed through the third thru-hole 34c and then back through the third thru-hole 24c, with the first limb 54 and the second limb 55 intersecting at least once on the bottom side 10b so that the limbs 54, 55 remain on the bottom side 10b when they are passed back through the same thru-hole they came to reach the bottom side 10b in the first place. A person skilled in the art will recognize a number of configurations between the filament and thru-holes that can be used to form one or more coils in the filament limbs before disposing terminal ends of the limbs through a collapsible opening of a knot to create a self-locking knot.


A variety of tests were performed to assess the strength and integrity of an implant having a self-locking knot and four coils like some of the embodiments provided for herein. In particular, the tests were performed on the implant 100 shown in FIG. 2, with the filament being a braided #2 ultra high molecular weight polyethylene suture with a loop circumference of approximately 40 millimeters. Three separate cycle tests of varying length were performed. Generally, a cyclical load was applied to the implant 100 a plurality of times, with the load cycling between about 50 Newtons and about 250 Newtons. After a certain number of cycles were performed, the distance a graft migrated from its original position was measured. After 10 cycles a displacement of the implant 100 was about 1.0 mm, after 750 cycles a displacement of the implant was about 1.4 millimeters, and after 1000 cycles a displacement of the implant was about 1.4 millimeters. Further details about testing protocols of this nature can be found in an article written by Kamelger et al., entitled “Suspensory Fixation of Grafts in Anterior Cruciate Ligament Reconstruction: A Biomechanical Comparison of 3 Implants,” published in Arthroscopy, Jul. 25, 2009, pp. 767-776, and in an article written by Petre et al., entitled “Femoral Cortical Suspension Devices for Soft Tissue Anterior Cruciate Ligament Reconstruction,” published in The American Journal of Sports Medicine, February 2013, pp. 416-422, the content of each which is incorporated by reference herein in its entirety. A person skilled in the art will recognize that the test results are dependent at least on the type and size of the filament of the implant.


Another test determined an ultimate failure load of the implant 100. The ultimate failure load measures the load at which the implant 100 fails. The ultimate failure load tested for the implant 100 was about 1322 Newtons. During the ultimate failure load test, the displacement at 450 Newtons was also measured, with displacement being about 2.0 millimeters. Still another test performed on the implant was a regression stiffness test, which plots the displacement of the implant in comparison to the load and a slope of the initial line is measured. The implant 100 demonstrated a regression stiffness of about 775 Newtons per millimeter. Again, a person skilled in the art will recognize that these test results are dependent at least on the type and size of the filament of the implant.



FIGS. 6A and 6B illustrate the ability to selectively control some coils 60a′, 60c′ of an implant 100′″ using one limb 54′ and other coils 60b′, 60d′ of the implant 100′″ using the other limb 55′. As shown, the implant 100′″ includes a single filament 50′ associated with a body 10′ having a plurality of thru-holes 24′ formed therein. The configuration between the filament 50′ and the body 10′ is similar to the implants 100, 100″ described above with respect to FIGS. 2 and 5. As shown, a self-locking knot 52′ is formed on a top side 10a′ of the body 10′ and four coils 60′ are formed from first and second limbs 54′, 55′ extending from the self-locking knot 52′, the four coils 60′ being substantially disposed on a bottom side 10b′ of the body 10′. Terminal ends 54t′, 55t′ of the first and second limbs 54′, 55′ pass through an opening 56′ of the self-locking knot 52′ before the knot is collapsed, and can be used to adjust a circumference of the coils 60′. In the illustrated embodiment, the first limb 54′ is differentiated from the second limb 55′ by including markings on the first limb 54′. These visual indicators allow a surgeon to easily know which coils are controlled by which limbs, and can be added to the filament before or after the filament is associated with the body 10′.


In the illustrated embodiment, a first ligament graft 102′ is coupled to first and second coils 60a′, 60c′ of the first limb 54′ by wrapping the graft 102′ through each of the first and second coils 60a′, 60c′, and a second ligament graft 104′ is coupled to first and second coils 60b′, 60d′ of the second limb 55′ by wrapping the graft 104′ through each of the first and second coils 60b′, 60d′. As shown in FIGS. 6A and 6B, applying a force to the first limb 54′ in an approximate direction D decreases the circumference of the first and second coils 60a′, 60c′, thereby drawing the first ligament graft 102′ closer to the body 10′. More particularly, as tension is created by the force, the circumference of the diameter of the second coil 60c′ decreases and advances the first graft 102′. As the distance between distal ends of the second coil 60c′ and the first coil 60a′ increases, the weight of the graft 102′ helps create a counterforce that maintains the circumference of the second coil diameter while the circumference of the first coil 60a′ decreases to catch-up to the second coil 60c′ and the graft 102′. A person skilled in the art will understand how the application of various forces and tensions to the first and second limbs 54′, 55′, the first and second coils 60a′, 60c′ and 60b′, 60d′, and the first and second grafts 102′, 104′ associated therewith can be manipulated to selectively adjust locations of the grafts 102′, 104′ with respect to the body 10′.


As a result of this configuration, one ligament graft can be pulled closer the body 10′ than another ligament graft. Such graft configurations can be useful to surgeons. By way of non-limiting example, if during the course of a tissue repair the surgeon accidentally amputated one of the hamstring tendons during harvesting or graft preparation, the coils associated with one of the terminal ends can be adjusted so that the longer tendon is pulled deeper into the femoral tunnel with the shorter tendon being more proximal of the longer tendon, thus leaving more graft for the tibial tunnel. By way of further non-limiting example, grafts can be independently tensioned such that they are tightest at different angles of knee flexion, which can provide superior biomechanics due to the repair being more anatomic. Other configurations that can permit selective, independent tightening of the coils formed in the suture filament can also be used while maintaining the spirit of the present disclosure. For example, two separate knot or finger-trap mechanisms can be disposed through the same thru-holes in the button to permit selective, independent control of the coils.


Four non-limiting alternative embodiments for associating a suture filament 150, 250, 950, 950′ with a cortical button 110, 210, 910, 910′ to form an implant 200, 300, 900, 900′ are illustrated in FIGS. 7A-7E, FIGS. 11A-11H, FIGS. 9A-9B, and FIG. 10 respectively. Further, FIGS. 8A-D illustrate an embodiment for associating a suture filament 850 with an implant 870. Starting first with FIGS. 7A-7E, the cortical button 110 includes four thru-holes 124 disposed therein and the suture filament 150 is a braided suture. After forming a pretzel-shaped knot 152 using techniques known to those skilled in the art, first and second terminal ends 154t, 155t of the filament 150 can be passed through the two interior thru-holes 124 of the body 110, as illustrated in FIG. 7A, to form two loops or coils 160a, 160b for receiving a ligament graft. In this embodiment, both the first and second limbs 154, 155 pass through the same interior thru-hole 124 to pass from a top side 110a to a bottom side 110b of the body 110. Likewise, both limbs 154, 155 pass through the same interior thru-hole 124 to pass from the bottom side 110b back to the top side 110a.


As shown in FIG. 7B, the terminal ends 154t, 155t can be passed through openings of the pretzel-shaped knot 152. Other suitable sliding knots can be used in lieu of a pretzel-shaped knot. Subsequently, a force can be applied to the terminal ends 154t, 155t in an approximate direction E to collapse and advance the knot 152 towards a top surface 120 of the body 110, as shown in FIG. 7C. The pretzel knot 152 is not generally self-locking. Accordingly, as shown in FIG. 7D, one or more half-hitches 161 can be formed in the terminal ends 154t, 155t to secure and lock a location of the collapsed pretzel knot 152 with respect to the body 110. A graft 202 can then be disposed within openings of the coils 160a, 160b formed by the first and second limbs 154, 155, as shown in FIG. 7E.


Tests performed using an implant like the embodiment shown in FIG. 7E, the filament being a braided #5 ultra high molecular weight polyethylene suture with a loop circumference of approximately 40 millimeters, yielded a 10th cycle displacement of approximately 1.9 millimeters, a 750th cycle displacement of approximately 2.2 millimeters, and a 1000th cycle displacement of approximately 2.3 millimeters. The ultimate failure load was measured to be approximately 1521 Newtons. Displacement at a load of 800 Newtons was measured to be approximately 4.1 millimeters. Meanwhile, the regression stiffness was determined to be approximately 267 Newtons per millimeter. A person skilled in the art will recognize that the test results are dependent at least on the type and size of the filament of the implant.


While the present disclosure provides the formation of a variety of knots that can be used in conjunction with surgical implants, FIGS. 8A-D illustrate one exemplary embodiment of a knot formation that is particularly strong and has a particularly low profile. In the illustrated embodiment, a suture 850 is tied directly onto an implant having no holes formed therein because the illustrations are intended to focus on the knot formation. A person having ordinary skill in the art will understand how to incorporate the knot formation into a cortical button or other implants in view of the present disclosure.


As shown in FIG. 8A, suture 850 can be formed into a pretzel, or overhand, cinch knot 852 having suture limbs 854, 855 extending therefrom. The knot 852 can have three collapsible openings 852a, 852b, and 852c. In the illustrated embodiment of FIG. 8A, the first collapsible opening 852a is in a central location of the knot 852, and the second and third collapsible openings 852b, 852c are located on opposite sides from the first collapsible opening 852a.


An implant 870 can be placed over the suture limbs 854, 855 such that the suture limbs can be wrapped around the implant 870 from a top side 870a to a bottom side 870b of the implant 870, thereby creating first and second filament loops, or coils, 860a, 860b, respectively. The terminal ends (not visible) of the suture limbs 854, 855 are then passed through the first collapsible opening 852a from a front side of the knot 852 to a rearward side of the knot, as shown in FIG. 8B.


The suture limbs 854, 855 are next passed from the top side 870a of the implant 870 around the implant 870 to the bottom side 870b of the implant 870 and back up to the top side 870a of the implant 870 to create the third and fourth filament loops 860c, 860d, respectively, as shown in FIG. 8C. The terminal ends of the suture limbs 854, 855 are then passed through the second and third collapsible openings 852b, 852c, respectively.


The knot 852 can be cinched down using any technique known to those skilled in the art or otherwise provided for in any embodiment of the present disclosure. In the illustrated embodiment, to effectively illustrate the low profile of the knot when fully cinched, the loops 860a-860d are collapsed around the implant 870 as shown in FIG. 8D. Collapsing of the knot 852 and the loops 860a-860d can be achieved, for example, by maintaining tension on the limbs 854, 855 in the directions R, S, respectively, while applying tension to the loops 860a-860d in the opposite directions, R′, S′. The loops 860a-860d can be operated in a manner similar to loops of other configurations provided for herein, including but not limited to loops 60a-60d, 60a′-60d′, 160a and 160b, 260a and 260b, 360, 460a and 460b, 560a-560d, 660a-660d, 760a and 760b, and 760a′-760d′, and thus graft 870 can be inserted within an opening(s) 861a-861d defined by the loop(s) 860a-860d even if the loops 860a-860d are collapsed tightly around the implant 870 as shown in FIG. 8D. Likewise, while FIG. 8D illustrates the loops 860a-860d are collapsed around the implant 870, in other embodiments, one or more of the loops 860a-860d can not be fully collapsed, such as described with respect to the many implants provided for herein (e.g., by way of non-limiting examples, implants 100′, 200). Further, the knot configuration as illustrated by FIGS. 8A-8D can be used in the other configurations of implants provided for herein or otherwise known to those skilled in the art.


Further, in yet other embodiments, any multiple of loops can be created by passing the suture limbs 854, 855 around the implant 870 as many times as needed. Further still, the suture limbs can be passed through any of the collapsible openings 852a-852c in any order when creating the filament loops 860a, 860b, 860c, 860d. By way of non-limiting examples, two limbs can be passed through openings 852b or 852c instead of opening 852a, and/or the limbs can be passed through different openings during both passes instead of the same opening during one pass.



FIGS. 9A and 9B illustrate the knot formation of FIGS. 8A-8D being used with an implant 900 that includes a cortical button 910. The button 910 has at least two through holes 924b, 924c disposed therein and a suture filament 950 (e.g., a braided suture) associated with the button 910 to form the implant 900. Similar to the suture 850, the filament 950 can be formed into a pretzel shaped, or overhand, knot 952. The knot 952 can be disposed on a top side 910a of the button 910, and can have at least three collapsible openings 952a, 952b, and 952c. As shown, the first collapsible opening 952a can be located in a central location of the knot 952, and the second and third collapsible openings 952b, 952c can be located on opposite sides from the first collapsible opening 952a.


The knot 952 can have limbs 954, 955 extending therefrom that can be selectively passed through thru-holes 924a-d to associate the filament 950 with the button 910. In the illustrated embodiment of FIG. 9A, the first limb 954 passes distally through the third hole 924c to the bottom side 910b of the button 910, and through the second hole 924b back to the top side 910a to form a first filament loop, or coil, 960a. Similarly, the second limb 955 passes distally through the second hole 924b to the bottom side 910b of the button 910, and through the third hole 924c back to the top side 910a to form a second filament loop 960b.


When both the first and second limbs 954, 955 are on the top side 910a of the button 910, they can then be passed through a first opening 952a of the overhand knot 952. As shown, the first limb 954 is then passed distally through the fourth hole 924d to the bottom side 910b of the button 910, and then through the first hole 924a back to the top side 910a to form a third coil 960c. Likewise, the second limb 955 is passed distally through the first hole 924a to the bottom side 910b of the button 910, and through the fourth hole 924d back to the top side 910a to form a fourth coil 960d. The terminal end 954t of the first limb 954 can then be passed through the second collapsible opening 952b, and the terminal end 955t of the second limb 955 can be passed through the third collapsible opening 952c. As discussed above, the order and placement of the limbs 954, 955 through the openings 952a, 952b, and 952c, can be altered as desired without departing from the spirit of the present disclosure.


The knot 952 can be collapsed onto the suture limbs 954, 955 passing therethrough by application of a force FC on the filament loops 960a-960d, as shown in FIG. 9A, while maintaining tension on the first and second limbs 954, 955. A circumference of the first and third coils 960a, 960c can be adjusted by application of a pulling force FP on the terminal end 954t, and likewise, a circumference of the second and fourth coils 960b, 960d can be adjusted by application of the pulling force FP on the terminal end 955t in manners similar to those described above. The inclusion of a second coil formed from each of the limbs 954, 955 increases the strength of the implant 900 due to a pulley effect, allowing the implant 900 to be more stable when it is implanted in bone and to more stably hold a ligament graft 970 attached through the filament loops 960a-960d. Once the filament loops 960a-960d are collapsed to the desired lengths, the knot 952 is collapsed, the suture limbs 954, 955 can be tied with a half hitch knot proximate to the knot 952 to maintain a location of the knot 952 with respect to the button 910, and then the suture limbs 954, 955 can be cut to length. The four loops 960a-960d can maintain a combined average maximum loading of at least about 765 N once implanted, with the strength being supplied, at least in part, by the knot configuration.


One advantage of passing the suture limbs 954, 955 through each opening of the overhand knot 952 is that each collapsible opening 952a-952c of the knot 952 is able to engage more surface area of the portion of the suture limbs 954, 955 passing therethrough. This additional surface area contact between the collapsible openings 952a-952c and the suture limbs 954, 955 creates a more secure cinch. Additionally, another advantage of passing the suture limbs 954, 955 through each opening of the overhand knot 952 is a reduction in binding of the knot 952 as compared to the suture limbs being threaded through a single opening of the knot. Still further, by including at least the four filament loops 960a-960d, the load applied by the ligament implant 970 is better dispersed and therefore there is a reduction in cyclic displacement as compared to using only two filament loops. A further advantage is the resulting knot 952 can have a lower profile as compared to a knot where each limb is passed through a single opening of the knot.


Any number of filament loops can be formed from the first and second limbs 954, 955 to hold any number of ligament implants 970, and the number of filament loops formed with the first limb 954 does not have to be the same as the number of filament loops formed by the second limb 955. In some embodiments, three or four filament loops can be formed by one or both of the limbs 954, 955. Further, the limbs used to form the filament loops can be passed through any number of thru-holes formed in the button 910. The first limb 954 does not need to pass through the same collapsible opening through which the second limb 955 passes. Likewise, when multiple filament loops are formed with one limb, that limb does not have to be passed through the same thru-holes to form each coil. Moreover, the first limb 954 and the second limb 955 need not pass through the collapsible openings 952a-c in the order prescribed above. For example, the suture limbs 954, 955 can first pass through collapsible opening 952b, then separately through collapsible openings 952a and 952c. A person skilled in the art will recognize a number of configurations between the filament and thru-holes that can be used to form one or more coils in the filament limbs before disposing terminal ends of the limbs through the collapsible openings 952a-c of the knot 952 in any order.


One example of an alternate configuration is shown in the embodiment of FIG. 10. Similar to the implant 900, a suture 950′ can be formed into a pretzel shaped, or overhand, knot 952′ disposed on a top side 910a′ of the body 910′. The knot 952′ can have three collapsible openings 952a′, 952b′, and 952c′. The suture configuration of the implant 900′ is similar to that of the implant 900 of FIGS. 9A and 9B, however, instead of threading suture limbs through four of the openings in the cortical button, only two openings are used. In some embodiments, the body may only include two openings. As shown, limbs 954′, 955′ of the suture 950′ can extend from the knot 952′ and can be selectively passed through a first thru-hole 924b′ to a bottom side 910b′ then through a second hole 924c′ to associate the filament 950′ with the body 910′. In the illustrated embodiment of FIG. 10, the first limb 954′ passes distally through the second hole 924b′ to the bottom side 910b′ of the body 910′, and through the third hole 924c′ back to the top side 910a′ to form a first filament loop 960a′. Similarly, the second limb 955′ passes distally through the third hole 924c′ to the bottom side 910b′ of the body 910′, and through the third hole 924c′ back to the top side 910a′ to form a second filament loop 960b′.


When both the first and second limbs 954′, 955′ are on the top side 910a′ of the button 910′, they can be passed through a first opening 952a′ of the overhand knot 952′. The first limb 954′ can then pass distally through the second hole 924b′ to the bottom side 910b′ of the body 910′, and through the third hole 924c′ back to the top side 910a′ to form a third filament loop 960c′. Likewise, the second limb 955′ can pass distally through the third hole 924c′ to the bottom side 910b′ of the body 910′, and through the second hole 924b′ back to the top side 910a′ to form a fourth filament loop 960d′. The terminal end 954t′ of the first limb 954′ can then be passed through the second collapsible opening 952b′, and the terminal end 955t′ of the second limb 955′ can be passed through the third collapsible opening 952c′. The knot 950′ can be collapsed onto the suture limbs 952′, 954′ passing therethrough by application of a force Fc' on the filament loops 960a′-960d′, while maintaining tension on the first and second limbs 954′, 955′. A circumference of the first and second coils 960a′, 960c′ can be adjusted by the terminal end 954t′ and the third and fourth coils 960b′, 960d′ can be adjusted by the terminal end 955t′ in manners similar to those described above. Further, any number of loops and any configurations with respect to the body 910 can be used. Still further, any combination of passing the limbs 954′, 955′ through the openings 952a′, 952b′, 952c′, as described above, can be used for this described embodiment without departing from the spirit of this disclosure.


The embodiment illustrated in FIGS. 11A-11H also include a cortical button 210 having at least three thru-holes 224a, 224b, 224c disposed therein and a suture filament 250 that is a braided suture associated with the button 210 to form an implant 300. As shown in FIG. 11A, a terminal end 254t of a first limb 254 is passed from a top side 210a to a bottom side 210b of the body 210 through one of the thru-holes 224a and a terminal end 255t of a second limb 255 is passed from the top side 210a to the bottom side 210b through another thru-hole 224b. The two terminal ends 254t, 255t are then both passed back to the top side 210a through the third thru-hole 224c, as shown in FIG. 11B. The resulting configuration is a first loop 263 formed on the top side 210a from a central portion 250c of the filament 250 at an approximate midpoint 250m of the filament 250, and first and second coils 260a, 260b primarily located below the bottom side 210b.


As shown in FIG. 11C, the terminal ends 254t, 255t can be formed into a sliding knot 252 such as a Buntline Hitch knot using techniques known to those skilled in the art. Other suitable sliding knots can be used in lieu of the Buntline Hitch knot. A force can then be applied in an approximate direction F to the terminal ends to tighten the Buntline Hitch knot, and as shown in FIG. 11D, the stationary terminal end, as shown the terminal end 254t, can be cut so that it is substantially shorter than the sliding terminal end extending proximally from the tightened sliding knot 252, as shown the terminal end 255t. The third thru-hole 224c can be sized such that the Buntline Hitch knot is too big to pass through it. Thus, a force in an approximate direction G can be applied to the longer sliding terminal end 255t to advance the knot 252 toward the body 210, and to collapse the first loop 263 against the top surface 220 of the body 210, as shown in FIG. 11E.


Optionally, a secondary loop 280 can be added to the first and second coils 260a, 260b, as shown in FIG. 11F. As shown, the secondary loop 280 is a closed, fixed loop having an approximately fixed circumference. The secondary loop 280 can be formed using any number of techniques known to those skilled in the art, but in the illustrated embodiment the secondary loop is disposed around the first and second coils 260a, 260b and tied together to form the closed, fixed loop. As shown in FIG. 11G, a ligament graft 302 can be disposed around the secondary loop 280. While in other embodiments the ligament graft was only disposed around the loop once, FIG. 11G illustrates that ligament grafts 302 can be disposed around a filament in any of the embodiments described herein multiple times. A force in an approximate direction H can then be applied to the long remaining terminal end 255t to decrease the circumference of the first and second coils 260a, 260b and advance the ligament graft 302 closer to the body 210, as shown in FIG. 11H.


In the embodiment illustrated in FIGS. 11A-11H, the ligament graft is not attached directly to coils 260a, 260b formed by the filament 250, but instead is coupled to the secondary loop 280. Such a secondary loop can be used in any of the embodiments described or derivable from disclosures made herein. In some embodiments the secondary loop can help minimize accidental graft damage due to wear with the main suture filament when the circumferences of the coils of the main filament are adjusted.


In some embodiments, including but not limited to those implants having a self-locking knot, a sleeve or spacer can be disposed over a portion of the first and second limbs on the top side of the body, adjacent to the top surface. The optional sleeve can assist in preventing a surgeon from cutting terminal ends of the limbs extending proximally from the knot too close to the body. The integrity of the knot, and thus the strength of the implant, can be compromised when the terminal ends of the limbs are cut too close to the body. The sleeve can generally have elastic properties such that it bunches as compressive forces are applied, and a surgeon can then cut the terminal ends at a location proximal of the sleeve.


As shown in FIG. 12, in one exemplary embodiment of an implant 400 formed by a body 310 and a suture filament 350 forming both a self-locking knot 352 on a top side 310a of the body 310 and a plurality of coils 360 substantially disposed on a bottom side 310b of the body 310, sleeve 358 is a single suture filament having a plurality of bores formed therein to thread first and second limbs 354, 355 through the sleeve 358. The sleeve 358 can be disposed around a portion of the first limb 354 on the top side 310a, wrap around a bottom surface 322 of the body 310, and then wrap back around to the top side 310a so it can be disposed around a portion of the second limb 355. Wrapping the sleeve 358 around the bottom surface 322 can help minimize proximal movement of the sleeve 358, toward the terminal ends 354t, 355t when the limbs 354, 355 are tightened. The first terminal end 354t passes into the sleeve 358 at a first bore 358a and out of the sleeve at a second bore 358b, while the second terminal end 355t passes into the sleeve 358 at a third bore 358c and out of the sleeve at a fourth bore 358d. As shown, free ends 358e, 358f of the sleeve 358 can extend proximally from the second and fourth bores 358b, 358d.


In other embodiments, the free ends 358e, 358f can be eliminated, or the sleeve can be configured such that the free ends extend distally. The implant 100 of FIG. 1B is an example of an embodiment that does not include free ends. Rather, the first and second terminal ends pass into/out of the sleeve 58 at terminal ends 58t1, 58t2 of the sleeve rather than at first and fourth bores. In still other embodiments, separate sleeves can be disposed on each of the first and second limbs. In such embodiments, the only bores formed in the sleeves may be those formed at the respective terminal ends, and thus the first and second terminal ends of the filament can pass into and out of the sleeves through the terminal ends of the sleeves. In still further embodiments, the first and second terminal ends can extend through the same sleeve, or alternatively, free ends of the sleeve can be connected together to form a continuous loop. In addition to or in lieu of other sleeve configurations, other components configured to assist in allowing a surgeon to know where to cut the terminal ends after they are no longer needed can also be incorporated into the implants described herein without departing from the spirit of the disclosure.


The sleeve can be made from a wide variety of biocompatible flexible materials, including a flexible polymer, or it can be another filament. In one embodiment the sleeve is made of a polymeric material. In another embodiment, the sleeve is a flexible filament, such as a braided suture, for example Ethibond™ #5 filament. If the sleeve is formed from a high-strength suture such as Orthocord™ #2 filament, the braid can be relaxed by reducing the pick density. For example, Orthocord™ #2 filament, which is typically braided at sixty picks per 2.54 centimeters can be braided at approximately thirty to forty picks per 2.54 centimeters, more preferably at about 36 picks per 2.54 centimeters. If the sleeve material is formed about a core, preferably that core is removed to facilitate insertion of the filament limbs, which may themselves be formed of typical suture such as Orthocord™ #0 suture or #2 suture braided at sixty picks per 2.54 centimeters.


A length and diameter of the sleeve can depend, at least in part, on the size and configuration of the components of the construct with which it is used and the surgical procedure in which it is used. In embodiments in which the sleeve is a filament, a size of the sleeve can be in the range of about a #7 filament (about 18 gauge) to about a #2-0 filament (about 28 gauge), and in one embodiment the size can be about a #5 filament (about 20 gauge to about 21 gauge). In addition, the sleeve can be thickened by folding it upon itself coaxially, (i.e., sleeve in a sleeve). A person having skill in the art will recognize comparable diameters that can be used in instances in which the sleeve is made of a polymeric or other non-filament material. In embodiments in which a single sleeve is disposed over portions of both the first and second terminal ends, a length of the sleeve can be in the range of about 1 centimeter to about 12 centimeters, and in one embodiment the length can be about 5.5 centimeters. In embodiments in which separate sleeves are disposed over portions of the first and second terminal ends, a length of each sleeve can be in the range of about 0.5 centimeters to about 6 centimeters, and in one embodiment each has a length of about 2.5 centimeters. The axially compressible nature of the sleeves can be such that a length of the portion of the sleeve disposed on one of the limbs can compress fully to a length that is in the range of about one-half to about one-eighth the original length of that portion of the sleeve, and in one exemplary embodiment it can compress to a length that is about one-fifth the original length of that portion of the sleeve. Thus, if the length of the sleeve disposed around the first limb is approximately 3 centimeters, when fully compressed the sleeve can have a length that is approximately 0.6 centimeters.


In some embodiments, a second suture filament can be associated with the body of the implant to help guide or shuttle the filament during a surgical procedure. As shown in FIG. 13, an embodiment of an implant 500 includes a body 410 having two thru-holes 424 formed therein and a first surgical filament 450 coupled thereto. In the illustrated embodiment, rather than having a knot formed on a top side 410a of the body 410, limbs 454, 455 of the first surgical filament 450 are intertwined around a mid-portion 450m of the filament 450 on the top side 410a, thereby forming an intertwining configuration 452. The first and second limbs 454, 455 can also extend distally from the intertwining configuration 452. More particularly, the limbs 454, 455 can extend through the thru-holes 424 a plurality of times to form a plurality of coils 460a, 460b substantially disposed on a bottom side 410b of the body 410. The friction resulting from the intertwining configuration 452 can be sufficient to assist in retaining sizes and positions of the coils 460a, 460b, and to minimize any slipping associated therewith.


A second suture filament or shuttle filament 490 can be disposed longitudinally through the body as shown, for instance in a longitudinal bore 425 formed therethrough. The filament can extend substantially along a central, longitudinal axis L of the body 410, and thus can extend through the thru-holes 424 formed in the body 410, resulting in a leading end 490a and a trailing end 490b. A knot 492 or other protrusion larger than a diameter of the longitudinal bore 425 can be formed in or otherwise located on the trailing end 490b and can assist the leading end 490a and the trailing end 490b in serving as a guide or shuttle for the implant 500, as described in greater detail below with respect to FIGS. 16A-16H. By using a single suture disposed through the longitudinal bore 425 to serve as a shuttle, the number of sutures used in the system can be reduced, thereby simplifying the procedure without diminishing the tactile feedback available to the surgeon once the body 410 has flipped on the femoral cortex.


Although the illustrated bore 425 extends through the body 410 and through each of the thru-holes 424, a person skilled in the art will recognize other configurations that can be formed without departing from the spirit of the present disclosure, such as having the thru-holes 424 situated off-center of the body 410 so they are not intersected by the bore 425, or the bore 425 having a path that does not necessarily extend through each thru-hole 424 or all the way through the body 424. Additionally, in some embodiments the longitudinal bore 425 can be formed with an invagination (not shown) on a trailing end 418 of the body 410 such that it has a diameter that is approximately larger than the diameter of the bore 425 and approximately smaller than the diameter of the knot 492. As a result, the knot 492 can be partially fit inside the body 410 and remain engaged with the body 410 even after the body has been flipped onto the femoral cortex. Once the body 410 is rotated through a specific angle, the knot 492 can disengage with the invagination and the filament 490 can easily be removed from the patient. A person having skill in the art will recognize that the size and depth of the invagination can control, at least in part, the release angle.


A person skilled in the art will recognize that one or more additional filaments, like the second filament 490, can be associated with a variety of implant configurations, including configurations described herein or derivable therefrom. Two further non-limiting examples of implants having second suture filaments for shuttling are illustrated in FIGS. 11A and 11B and 12A and 12B.


The implant 600 of FIGS. 14A and 14B includes a body 510 having two thru-holes 524 formed therein and a first surgical filament 550 coupled thereto. The surgical filament 550 is similar to the surgical filament 50 of FIG. 5 in that limbs 554, 555 of the filament 550 are used to form a self-locking knot 552 disposed on a top side 510a of the body 510 and four coils 560a, 560b, 560c, and 560d that pass through the thru-holes 524 and are substantially disposed on a bottom side 510b of the body 510. First and second terminal ends 554t, 555t of the limbs 554, 555 can extend proximally from the self-locking knot 552 and can be used at least to adjust sizes of the coils 560a, 560b, 560c, and 560d in manners consistent with descriptions contained herein. A second suture filament or shuttle filament 590 can be disposed longitudinally through a longitudinal bore 525 formed in the body 510 along a central, longitudinal axis M, and thus can extend through the thru-holes 524 formed in the body 510. Similar to the implant 500 of FIG. 13, a knot 592 larger than a diameter of the longitudinal bore 525 can be formed in a trailing end 590b of the second filament 590 and can assist a leading end 590a and the trailing end 590b in serving as a guide or shuttle for the implant 600.


The implant 700 of FIGS. 15A and 15B includes a body 610 having four thru-holes 624 formed therein and a first surgical filament 650 coupled thereto. As shown, the four thru-holes 624 include two inner thru-holes 624b and 624c that can be used to receive the filament 650 and two outer thru-holes 624a and 624d that can be used to receive shuttle filaments. As shown, the outer thru-holes 624a, 624d can be disposed closer to leading and trailing ends 616 and 618, respectively, than to the inner thru-holes 624b and 624c, and thus the four thru-holes 624 are not approximately equally spaced apart with respect to each other. As also shown, diameters of the two inner holes 624b and 624c are larger than diameters of the two outer holes 624a and 624d. The surgical filament 650 is similar to the surgical filament 50 of FIG. 5 in that first and second limbs 654, 655 of the filament 650 are used to form a self-locking knot 652 disposed on a top side 610a of the body 610 and four coils 660a, 660b, 660c, and 660d that pass through the thru-holes 624b, 624c and are substantially disposed on a bottom side 610b of the body 610. First and second terminal ends 654t, 655t of the limbs 654, 655 can extend proximally from the self-locking knot 652 and can be used at least to adjust sizes of the coils 660a, 660b, 660c, and 660d in manners consistent with descriptions contained herein. As shown, a second, leading suture filament or leading shuttle filament 690 can be disposed through the outer thru-hole 624d and around the leading end 616, and a third, trailing shuttle filament 691 can be disposed through the outer thru-hole 624a and around the trailing end 618. As described below with respect to aspects of FIGS. 16A-16H, the shuttle filaments 690 and 691 can serve as a guide or shuttle for the implant 700 to assist in passing the implant 700 through a bone tunnel.


Similar to other filaments of the present disclosure, a shuttle filament can be an elongate filament of a variety of types, including but not limited to a cannulated filament, a braided filament, and a mono filament. The type, size, and strength of the filament can depend, at least in part, on the other materials of the implant, such as the cortical button, and the type of procedure in which it is used. In one exemplary embodiment the second suture filament is formed from a #5 filament (about 20 gauge to about 21 gauge). In some embodiments the filament can have a size in the range of about a #2-0 filament (about 28 gauge) and about a #5 filament (about 20 gauge to about 21 gauge). A length of the filament can be in the range of about 0.1 meters to about 1.5 meters, and in one embodiment the length is about 1 meter.


Different exemplary features associated with performing an ACL repair using a surgical implant like those described herein are illustrated in FIGS. 16A-16H. The implant 800 illustrated in FIGS. 16A and 16D-G generally includes thru-holes 724 (not shown) formed therein and a first surgical filament 750 coupled thereto. As shown, first and second limbs 754, 755 (FIGS. 16F and 16G) of the first surgical filament 750 can be used to form a self-locking knot 752 disposed on a top side 710a of the body 710 and a plurality of coils—as shown two coils 760a, 760b, but any number of coils can be formed in accordance with the teachings herein—that pass through the thru-holes 724 and are substantially disposed on a bottom side 710b of the body. Extending proximally from the knot can be first and second terminal ends 754t, 755t of the limbs 754, 755, which can be used at least to adjust sizes of the coils 760a, 760b in manners consistent with descriptions contained herein. One or more additional filaments can be associated with the leading and/or trailing ends 716, 718 of the body 710. As shown, a second filament 790 is associated with the leading end 716, and a third filament 791 is associated with the trailing end 716. A graft 802 can be associated with the coils 760a, 760b using techniques known to those skilled in the art.


A surgeon can begin the procedure by preparing the knee 1000 and soft tissue tendon grafts using techniques known by those skilled in the art. As shown in FIG. 16A, a bone tunnel 1002 can be formed in a femur 1001 and tibia 1003, with a femoral tunnel 1004 of the bone tunnel 1002 including a main channel 1005 and a passing channel 1007, the passing channel 1007 having a smaller diameter than the main channel 1005, and the femoral tunnel 1004 being in direct communication with a tibial tunnel 1006 disposed in the tibia 1003. The implant 800 can be introduced into the tibial tunnel 1006 by applying a force in an approximate direction J to the second and third suture filaments 790, 791, which both extend toward the femoral tunnel as shown. The terminal ends 754t, 755t can also extend toward the femoral tunnel, such that six strands of suture all extend out of the femoral tunnel 1004, proximal of the bone tunnel 1002.



FIGS. 16B and 16C illustrate example orientations for implants 700 and 600 of FIGS. 15A and 15B and FIGS. 14A and 14B, respectively, if they were to be inserted into the bone tunnel 1002 in a manner similar to the implant 800. As illustrated in FIG. 16B, all six terminal ends of the filaments 650, 690, and 691 associated with the body 610 can extend proximally when inserted through the bone tunnel 1002 (not shown). These terminal ends include the first and second terminal ends 654t, 655t of the first filament 650, first and second terminal ends 689t, 690t of the leading shuttle filament 690, and first and second terminal ends 691t, 692t of the trailing shuttle filament 692. Similarly, as illustrated in FIG. 16C, all four terminal ends of the filaments 550 and 590 associated with the body 510 can extend proximally through the bone tunnel 1002 (not shown). These terminal ends include the first and second terminal ends 554t, 555t of the first filament 550 and first and second terminal ends 589t, 590t of the shuttle filament 590. Grafts 702, 602 can be associated with coils 660, 550 of the implants 700, 600 using techniques known to those skilled in the art. Further, a person skilled in the art will recognize that as the implants 700, 600 are inserted into the bone tunnel, filaments and grafts located on the top and bottom sides 610a, 510a and 610b, 510b, respectively, can be flexible to allow the construct to be disposed in the tunnel, similar to the implant 800 of FIG. 16A.


Turning back to the implant 800, as shown in FIG. 16D, a force in the approximate direction J can be applied to terminal ends 790t, 791t of the second and third filaments 790, 791, as well as to the terminal ends 754t, 755t of the first and second limbs 754, 755, to advance each through the tibial tunnel 1006 and into the femoral tunnel 1004. A counterforce can be applied to the graft 802 so that the entire construct is not fully inserted into the bone tunnel 1002, as in exemplary embodiments the graft 802 can be used to help orient the cortical button 710 with respect to the bone tunnel 1002. Further, as the body 710 and coils 760a, 760b enter the bone tunnel 1002, care can be taken to prevent the body 710 from becoming wrapped in the coils 760a, 760b. Once the implant 800 enters the bone tunnel 1002, scopes can be used to continue to monitor it. If the coils 760a, 760b undesirably wrap around the body 710, the surgeon can use instruments to unwrap the coils 760a, 760b from the body 710 and/or the surgeon can selectively apply tension to the second and third suture filaments 790, 791 and the graft 802 to manipulate the cortical button 710.


Continued application of the force in the approximate direction J can pull the body 710 through the passing channel 1007. As the body 710 passes through the passing channel 1007 and crests while passing out of the channel, i.e., when a substantial portion of the body is disposed outside of the channel, as shown in FIG. 16E, the surgeon can prepare to orient or manipulate the body so that it flips or changes orientation. Because tissue and ligaments can be located near the proximal end of the femoral tunnel 1004, typically when cortical buttons pass out of a femoral tunnel, the extra tissue can make it difficult to direct the button to a desired location. However, the second and third filaments 790, 791 can assist in manipulating the button 710 to a desired location in which the flat bottom surface 720 rests on the femoral cortex and faces the femoral tunnel 1004, as shown in FIG. 16F. This allows the coils 760a, 760b and graft 802 associated therewith to be disposed in the bone tunnel 1002 and the knot 752 to be located outside of but adjacent to the bone tunnel 1002.


A variety of techniques can be used to flip or reorient the button, but in the illustrated embodiment, shown in FIG. 16F, a force in an approximate direction K is applied to the graft 802, thus tensioning the graft and causing the button 710 to flip. In other embodiments, a surgeon can selectively apply tension to the graft 802 and the second and third filaments 790, 791 to flip the button 710 to its desired location. Once the surgeon has oriented the button 710 as desired, the surgeon can confirm its location as lying flat on the femoral cortex, directly adjacent to the femoral tunnel 1004, using a variety of techniques, including by using tactile feedback received from pulling the second and third filaments 790, 791 and the graft 802, and/or using visual aids.


Once the body 710 is disposed at its desired location, tension can be applied to the terminal ends 754t, 755t of the limbs 754, 755 to adjust the circumference of the coils 760a, 760b, thereby moving the graft 802 within the bone tunnel 1002 to a desired location. The circumferences of the coils 760a, 760b can be adjusted using a number of different techniques, including those described herein. In one exemplary embodiment, illustrated in FIG. 16G, the first and second terminal ends 754t, 755t can be selectively pulled in an approximate direction N to advance the graft 802 through the tunnel 1002.


Once the implant 800 and graft 802 are positioned in their desired locations, excess filaments can be removed, including portions of the terminal ends 754t, 755t and the second and third filaments 790, 791. In some embodiments the second and third filaments can be completely removed, while care can be taken to ensure that enough material remains with respect to the terminal ends 754t, 755t so as not to negatively impact the integrity of the knot 752. Then the remaining portions of the repair can be carried out, such as steps related to tibial fixation



FIG. 16H illustrates an embodiment of an ACL repair method in which a filament 750′ is used to form four coils 760a′, 760b′, 760c′, 760d′, two (760a′, 760c′) of which are associated with a first graft 802′ and two (760b′, 760d′) of which are associated with a second graft 804′. As shown in FIG. 16H, the cortical button 710′ is already oriented or flipped so that the top surface 720′ rests on the femoral cortex and faces the femoral tunnel 1004, for instance relying on techniques disclosed herein, and thus circumferences of the coils 760a′, 760b′, 760c′, 760d′ can be adjusted to selectively locate them within the bone tunnel 1002. These techniques include, for instance, those discussed above with respect to FIGS. 6A and 6B. In one exemplary embodiment, tension can be alternately applied in an approximate direction P to first and second terminal ends 754t′, 755t′ to advance the grafts 802′, 804′ in increments of approximately 1 centimeter. Alternatively, the grafts 802′, 804′ can be advanced by using a configuration in which the first and second terminal ends 754t′, 755t′ are tied together and held in one hand while tension in the approximate direction Q is applied to the grafts 802′, 804′ by another hand. The surgeon can then alternate between pronation and supination to tighten the filament limbs, and thereby the coils 760a′, 760b′, 760c′, 760d′, which in turn advances the grafts 802′, 804′ proximally through the bone tunnel 1002.


The grafts 802′, 804′ can be advanced to a desired location, for example up to the passing channel 1007 of the femoral tunnel 1004. When a graft 802′, 804′ reaches the passing channel 1007, typically the resistance to tightening of the coils 760a′, 760b′, 760c′, 760d′ noticeably increases. In some embodiments, such as that illustrated in FIG. 16H, one or more loops 760a′, 760c′ can have a smaller circumference than other loops 760b′, 760d′ so that one graft 802′ is more proximally located than the other graft 804′. As also illustrated in FIG. 16H, any shuttle filaments used in the method can be removed, and the terminal ends 754t′, 755t′ can be shortened as described herein.


A person skilled in the art will also recognize how other embodiments described herein or derivable therefrom can be easily adapted for use with the procedures described herein, and in some instances can provide additional benefits. By way of non-limiting example, for embodiments such as those illustrated in FIGS. 14A, 14B, and 16C in which a single filament is used for purposes of shuttling the body, removal of the filament after placement of the cortical button can be easier than if separate filaments are tied to respective leading and trailing ends of the button.


The ability to control two independently tensioned ligament grafts in a single tunnel using a single cortical button is an improvement over existing techniques for ACL repairs. In existing methods for performing ACL repairs, a cortical button having filament associated therewith can only control a single bundle of ligament graft. Thus, if independent movement of multiple ligaments is needed, each ligament is typically associated with its own cortical button. Some surgeons use a double-tunnel technique to implant two ligaments, thus fixing each graft bundle in separate tunnels. Double-tunnel techniques likewise require one button per bundle. Thus, the methods described and resulting from disclosures herein represent improved ACL repair techniques because they allow for two ligament bundles to be independently moved using a single button, and doing so in a single tunnel. This results in procedures that have a reduced risk of complications and is generally less complex than existing procedures. A person skilled in the art will recognize that the disclosures pertaining to independently controlling two filament loops can be broadly applied to a variety of implant designs and surgical procedures, and can even be applied to non-medical fields without departing from the spirit of the present disclosure.


One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. By way of non-limiting example, the exemplary ACL repair methods described herein with respect to FIGS. 16A-16H can be adapted for use with the other implant configurations described herein or derivable from the disclosures herein. All publications and references cited herein are expressly incorporated herein by reference in their entirety.

Claims
  • 1. A surgical implant, comprising: a body having a plurality of thru-holes formed therein; anda filament having: an overhand knot located on a top side of the body, the overhand knot having a first collapsible opening, a second collapsible opening, and a third collapsible opening;first, second, third, and fourth filament loops extending from the overhand knot towards the body, each filament loop passing through two thru-holes of the plurality of thru-holes, and each filament loop having a distal end disposed on a bottom side of the body; andat least two tensioning limbs extending from the overhand knot, in a direction opposite to a direction that the filament loops extend from the overhand knot,wherein a portion of filament of the first filament loop disposed on the top side of the body extends through the first collapsible opening, a portion of filament of the second filament loop disposed on the top side of the body extends through the second collapsible opening, a portion of filament of the third filament loop disposed on the top side of the body extends through the first collapsible opening, and a portion of filament of the fourth filament loop disposed on the top side of the body extends through the third collapsible opening, with the first, second, and third collapsible openings being collapsible around, and thus engageable with, the respective filament portion extending therethrough to form the overhand knot.
  • 2. The surgical implant of claim 1, wherein the plurality of thru-holes comprises two outer thru-holes and two inner thru-holes, each outer thru-hole being located adjacent to respective opposed terminal ends of the body and the inner thru-holes being disposed between the outer thru-holes, and wherein the first and third filament loops are disposed in each of the outer thru-holes and the second and fourth filament loops are disposed in each of the inner thru-holes.
  • 3. The surgical implant of claim 1, wherein the plurality of thru-holes comprises two outer thru-holes and two inner thru-holes, each outer thru-hole being located adjacent to respective opposed terminal ends of the body and the inner thru-holes being disposed between the outer thru-holes, and wherein the first, second, third, and fourth filament loops are each disposed in each of the inner thru-holes.
  • 4. The surgical implant of claim 1, wherein at least one of the at least two tensioning limbs is configured to adjust a circumference of at least one of the first, second, third, and fourth filament loops when tension is applied thereto.
  • 5. The surgical implant of claim 1, wherein the first collapsible opening has a central location such that the second collapsible opening is located on one side of the first collapsible opening and the third collapsible opening is located on a second, approximately opposite side of the first collapsible opening.
  • 6. The surgical implant of claim 1, wherein the first, second, third, and fourth filament loops are configured to hold a combined average maximum load of at least about 765 N.
  • 7. A surgical implant, comprising: a body having a plurality of thru-holes formed therein; anda suture filament extending through the body and configured to form: an overhand knot having a first collapsible opening, a second collapsible opening, and a third collapsible opening, the overhand knot being located on a top side of the body;a first coil formed as a result of a first suture limb extending from the overhand knot extending through a through hole of the plurality of thru-holes formed in the body to a bottom side of the body, then through another through hole of the plurality of thru-holes formed in the body, and then through the first collapsible opening of the overhand knot;a second coil formed as a result of a second suture limb extending from the overhand knot extending through a through hole of the plurality of thru-holes formed in the body to the bottom side of the body, then through another through hole of the plurality of thru-holes formed in the body, and then through one of the first, second, and third collapsible openings of the overhand knot;a third coil formed as a result of the first suture limb extending from passing through the first collapsible opening through a through hole of the plurality of thru-holes formed in the body to the bottom side of the body, then through another through hole of the plurality of thru-holes formed in the body, and then through the second collapsible opening of the overhand knot, with a portion of the first suture limb extending through the second collapsible opening forming a first tensioning limb; anda fourth coil formed as a result of the second suture limb extending from passing through one of the first, second, and third collapsible openings through a through hole of the plurality of thru-holes formed in the body to the bottom side of the body, then through another through hole of the plurality of thru-holes formed in the body, and then through either the third opening of the overhand knot if the second suture limb did not previously extend through the third opening, or one of the first and second collapsible openings of the overhand knot if the second suture limb did extend through the third opening, with a portion of the second suture limb extending through either the third opening of the overhand knot if the second suture limb did not previously extend through the third opening, or one of the first and second collapsible openings of the overhand knot if the second suture limb did extend through the third opening, forming a second tensioning limb;wherein the first, second, and third collapsible openings are collapsed around, and thus engaged with, the respective first and second suture limbs extending therethrough to form the overhand knot.
  • 8. The surgical implant of claim 7, wherein the plurality of thru-holes comprises two outer thru-holes and two inner thru-holes, each outer thru-hole being located adjacent to respective opposed terminal ends of the body and the inner thru-holes being disposed between the outer thru-holes, and wherein the first and third coils are disposed in each of the outer thru-holes and the second and fourth coils are disposed in each of the inner thru-holes.
  • 9. The surgical implant of claim 7, wherein the plurality of thru-holes comprises two outer thru-holes and two inner thru-holes, each outer thru-hole being located adjacent to respective opposed terminal ends of the body and the inner thru-holes being disposed between the outer thru-holes, and wherein the first, second, third, and fourth coils are each disposed in each of the inner thru-holes.
  • 10. The surgical implant of claim 7, wherein at least one of the first and second tensioning limbs is configured to adjust a circumference of at least one of the respective first and third coils and second and fourth coils when tension is applied thereto.
  • 11. The surgical implant of claim 7, wherein the first collapsible opening has a central location such that the second collapsible opening is located on one side of the first collapsible opening and the third collapsible opening is located on a second, approximately opposite side of the first collapsible opening.
  • 12. The surgical implant of claim 7, wherein the first, second, third, and fourth coils are configured to hold a combined average maximum load of at least about 765 N.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of and claims priority to U.S. patent application Ser. No. 14/986,584, filed on Dec. 31, 2015, and entitled “Implant Having Adjustable Filament Coils,” which is a continuation-in-part of and claims priority to U.S. patent Ser. No. 13/793,514, filed on Mar. 11, 2013, and entitled “Implant Having Adjustable Filament Coils,” and which issued as U.S. Pat. No. 9,974,643 on May 22, 2018, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (292)
Number Name Date Kind
1426537 Bauer Aug 1922 A
2151664 Erwin Mar 1939 A
2600395 Domoj et al. Jun 1952 A
4093292 Marcet et al. Jun 1978 A
4105349 Kupperman et al. Aug 1978 A
4133604 Fuller Jan 1979 A
4186921 Fox Feb 1980 A
4233917 Carnaby Nov 1980 A
4255836 Dunahoo Mar 1981 A
4257309 Dunahoo Mar 1981 A
4319428 Fox Mar 1982 A
4469101 Coleman et al. Sep 1984 A
4510934 Batra Apr 1985 A
4527564 Eguchi et al. Jul 1985 A
4582165 Latini Apr 1986 A
4604821 Moser Aug 1986 A
4705040 Mueller et al. Nov 1987 A
4723634 Fisk Feb 1988 A
4750492 Jacobs Jun 1988 A
4773910 Chen et al. Sep 1988 A
4781191 Thompson Nov 1988 A
4823794 Pierce Apr 1989 A
4890363 Cross Jan 1990 A
4910834 Minkler Mar 1990 A
4946377 Kovach Aug 1990 A
4962929 Melton, Jr. Oct 1990 A
4971075 Lee Nov 1990 A
4997433 Goble et al. Mar 1991 A
5062344 Gerker Nov 1991 A
5074291 Carter Dec 1991 A
5083875 Cedrone Jan 1992 A
5139520 Rosenberg Aug 1992 A
5168605 Bartlett Dec 1992 A
5178629 Kammerer Jan 1993 A
5217092 Potter Jun 1993 A
5219359 McQuilkin et al. Jun 1993 A
5269783 Sander Dec 1993 A
5306290 Martins et al. Apr 1994 A
5306301 Graf et al. Apr 1994 A
5374268 Sander Dec 1994 A
5374269 Rosenberg Dec 1994 A
5451203 Lamb Sep 1995 A
5505735 Li Apr 1996 A
5531759 Kensey et al. Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5573286 Rogozinski Nov 1996 A
5575819 Amis Nov 1996 A
5628756 Barker May 1997 A
5645588 Graf et al. Jul 1997 A
5649541 Stuckey Jul 1997 A
5667528 Colligan Sep 1997 A
5693060 Martin Dec 1997 A
5707373 Sevrain et al. Jan 1998 A
5769894 Ferragamo Jun 1998 A
5778904 Elsner Jul 1998 A
5921986 Bonutti Jul 1999 A
5928267 Bonutti et al. Jul 1999 A
5964764 West, Jr. et al. Oct 1999 A
5984926 Jones Nov 1999 A
5989252 Fumex Nov 1999 A
5997051 Kissner et al. Dec 1999 A
6013083 Bennett Jan 2000 A
6030007 Bassily et al. Feb 2000 A
6045551 Bonutti Apr 2000 A
6056752 Roger May 2000 A
6086591 Bojarski Jul 2000 A
6099568 Simonian Aug 2000 A
6110207 Eichhorn et al. Aug 2000 A
6117160 Bonutti Sep 2000 A
6143029 Rippstein Nov 2000 A
6193754 Seedhom Feb 2001 B1
6203572 Johnson et al. Mar 2001 B1
6206886 Bennett Mar 2001 B1
6238395 Bonutti May 2001 B1
6258091 Sevrain et al. Jul 2001 B1
6293961 Schwartz et al. Sep 2001 B2
6296659 Foerster Oct 2001 B1
6306159 Schwartz Oct 2001 B1
6319271 Schwartz et al. Nov 2001 B1
6342060 Adams Jan 2002 B1
6352603 Bryant Mar 2002 B1
6418576 Starkweather Jul 2002 B1
6440134 Zaccherotti et al. Aug 2002 B1
6453974 Lai et al. Sep 2002 B1
6503267 Bonutti et al. Jan 2003 B2
6517578 Hein Feb 2003 B2
6527795 Lizardi Mar 2003 B1
6533802 Bojarski et al. Mar 2003 B2
6558389 Clark et al. May 2003 B2
6585121 Smeets et al. Jul 2003 B1
6589244 Sevrain et al. Jul 2003 B1
6592609 Bonutti Jul 2003 B1
6599319 Knudsen et al. Jul 2003 B2
6602290 Esnouf et al. Aug 2003 B2
6619703 Dirks et al. Sep 2003 B2
6638279 Bonutti Oct 2003 B2
6699286 Sklar Mar 2004 B2
6712849 Re Mar 2004 B2
6761722 Cole et al. Jul 2004 B2
6833005 Mantas et al. Dec 2004 B1
6902573 Strobel et al. Jun 2005 B2
6972027 Fallin et al. Dec 2005 B2
6997480 Legrand Feb 2006 B2
6997940 Bonutti Feb 2006 B2
7033380 Schwartz et al. Apr 2006 B2
7063724 Re et al. Jun 2006 B2
7076845 Tylaska et al. Jul 2006 B2
7097654 Freedland Aug 2006 B1
7150757 Fallin et al. Dec 2006 B2
7235091 Thornes Jun 2007 B2
7285124 Foerster Oct 2007 B2
7306417 Dorstewitz Dec 2007 B2
7390332 Selvitelli et al. Jun 2008 B2
7407512 Bojarski et al. Aug 2008 B2
7442210 Segal et al. Oct 2008 B2
7481825 Bonutti Jan 2009 B2
7488347 Goble et al. Feb 2009 B1
7500983 Kaiser et al. Mar 2009 B1
7500990 Whelan Mar 2009 B2
7520898 Re et al. Apr 2009 B2
7530990 Perriello et al. May 2009 B2
7566339 Fallin et al. Jul 2009 B2
7572275 Fallin et al. Aug 2009 B2
7594923 Fallin et al. Sep 2009 B2
7601165 Stone Oct 2009 B2
7632311 Seedhom et al. Dec 2009 B2
7641694 Goble et al. Jan 2010 B1
7645282 Huxel et al. Jan 2010 B2
7658751 Stone et al. Feb 2010 B2
7682374 Foerster et al. Mar 2010 B2
7686838 Wolf et al. Mar 2010 B2
7695503 Kaiser et al. Apr 2010 B1
7703372 Shakespeare Apr 2010 B1
7722644 Fallin et al. May 2010 B2
7749250 Stone et al. Jul 2010 B2
7776039 Bernstein et al. Aug 2010 B2
7806909 Fallin et al. Oct 2010 B2
7845669 Yeh et al. Dec 2010 B2
7846181 Schwartz et al. Dec 2010 B2
7857830 Stone et al. Dec 2010 B2
7875057 Cook et al. Jan 2011 B2
7875058 Holmes, Jr. Jan 2011 B2
7887551 Bojarski et al. Feb 2011 B2
7892238 DiPoto et al. Feb 2011 B2
7892256 Grafton et al. Feb 2011 B2
7901431 Shumas Mar 2011 B2
7905903 Stone et al. Mar 2011 B2
7959650 Kaiser et al. Jun 2011 B2
8012171 Schmieding Sep 2011 B2
8088130 Kaiser et al. Jan 2012 B2
8118836 Denham et al. Feb 2012 B2
8127652 Hennings et al. Mar 2012 B1
8128658 Kaiser et al. Mar 2012 B2
8136438 Shakespeare Mar 2012 B2
8137382 Denham et al. Mar 2012 B2
8147514 Bonutti Apr 2012 B2
8202298 Cook et al. Jun 2012 B2
8221455 Shumas et al. Jul 2012 B2
8231654 Kaiser et al. Jul 2012 B2
8231674 Albertorio et al. Jul 2012 B2
8257394 Saadat et al. Sep 2012 B2
8298271 Jacene et al. Oct 2012 B2
8366744 Bojarski et al. Feb 2013 B2
8388655 Fallin et al. Mar 2013 B2
8398678 Baker et al. Mar 2013 B2
8439976 Albertorio et al. May 2013 B2
8460379 Albertorio et al. Jun 2013 B2
8475534 Karnes et al. Jul 2013 B2
8512376 Thornes Aug 2013 B2
8523943 Hart Sep 2013 B2
8535313 Masson Sep 2013 B1
8591578 Albertorio et al. Nov 2013 B2
8617185 Bonutti et al. Dec 2013 B2
8628573 Roller et al. Jan 2014 B2
8753375 Albertorio Jun 2014 B2
8790370 Spenciner et al. Jul 2014 B2
8808329 Bonutti Aug 2014 B2
8814905 Sengun et al. Aug 2014 B2
8821544 Sengun et al. Sep 2014 B2
8821545 Sengun Sep 2014 B2
8876900 Guederian et al. Nov 2014 B2
8882816 Kartalian et al. Nov 2014 B2
8888815 Holmes, Jr. Nov 2014 B2
8961575 Choinski Feb 2015 B2
8998904 Zeetser et al. Apr 2015 B2
9005245 Thornes et al. Apr 2015 B2
9072510 Thornes et al. Jul 2015 B2
9974643 Sengun et al. May 2018 B2
10052094 Spenciner Aug 2018 B2
20020029066 Foerster Mar 2002 A1
20020173788 Bojarski et al. Nov 2002 A1
20030178852 McNicholas Sep 2003 A1
20040015171 Bojarski et al. Jan 2004 A1
20040153153 Elson et al. Aug 2004 A1
20050038427 Perriello et al. Feb 2005 A1
20050288710 Fallin et al. Dec 2005 A1
20060064126 Fallin et al. Mar 2006 A1
20060089646 Bonutti Apr 2006 A1
20060178680 Nelson et al. Aug 2006 A1
20060190042 Stone et al. Aug 2006 A1
20070149980 Seedhom et al. Jun 2007 A1
20070233241 Graf et al. Oct 2007 A1
20080027446 Stone et al. Jan 2008 A1
20080046009 Albertorio et al. Feb 2008 A1
20080188935 Saylor et al. Aug 2008 A1
20080287991 Fromm Nov 2008 A1
20090038206 Conte Feb 2009 A1
20090043318 Michel et al. Feb 2009 A1
20090082805 Kaiser et al. Mar 2009 A1
20090105754 Sethi Apr 2009 A1
20090234377 Mahlin et al. Sep 2009 A1
20090281568 Cendan et al. Nov 2009 A1
20090312776 Kaiser et al. Dec 2009 A1
20090312792 Fallin et al. Dec 2009 A1
20100069926 Goble et al. Mar 2010 A1
20100106194 Bonutti et al. Apr 2010 A1
20100125297 Guederian et al. May 2010 A1
20100249809 Singhatat et al. Sep 2010 A1
20100256677 Albertorio et al. Oct 2010 A1
20100268273 Albertorio et al. Oct 2010 A1
20100292733 Hendricksen et al. Nov 2010 A1
20100305585 Fallin et al. Dec 2010 A1
20100318126 Fallin et al. Dec 2010 A1
20100324676 Albertorio et al. Dec 2010 A1
20110022061 Orphanos et al. Jan 2011 A1
20110022083 DiMatteo et al. Jan 2011 A1
20110060375 Bonutti Mar 2011 A1
20110077667 Singhatat et al. Mar 2011 A1
20110087280 Albertorio Apr 2011 A1
20110098727 Kaiser et al. Apr 2011 A1
20110106151 McDevitt et al. May 2011 A1
20110118780 Holmes, Jr. May 2011 A1
20110144699 Fallin et al. Jun 2011 A1
20110152927 Deng et al. Jun 2011 A1
20110160749 Gordon et al. Jun 2011 A1
20110160856 Sinnott et al. Jun 2011 A1
20110190815 Saliman Aug 2011 A1
20110208240 Stone et al. Aug 2011 A1
20110218625 Berelsman et al. Sep 2011 A1
20110238111 Frank Sep 2011 A1
20110276137 Seedhom et al. Nov 2011 A1
20110301708 Stone et al. Dec 2011 A1
20120046693 Denham et al. Feb 2012 A1
20120046747 Justin et al. Feb 2012 A1
20120053630 Denham et al. Mar 2012 A1
20120059416 Justin et al. Mar 2012 A1
20120059468 Mattern et al. Mar 2012 A1
20120065731 Justin et al. Mar 2012 A1
20120065732 Roller et al. Mar 2012 A1
20120109129 Bernstein May 2012 A1
20120109194 Miller May 2012 A1
20120116452 Stone et al. May 2012 A1
20120123474 Zajac et al. May 2012 A1
20120123541 Albertorio et al. May 2012 A1
20120150203 Brady et al. Jun 2012 A1
20120150297 Denham et al. Jun 2012 A1
20120158051 Foerster Jun 2012 A1
20120158053 Paulos Jun 2012 A1
20120165867 Denham et al. Jun 2012 A1
20120165938 Denham et al. Jun 2012 A1
20120290002 Astorino Nov 2012 A1
20120290004 Lombardo et al. Nov 2012 A1
20120290006 Collins et al. Nov 2012 A1
20120296375 Thal Nov 2012 A1
20120303059 Saadat et al. Nov 2012 A1
20120310279 Sikora et al. Dec 2012 A1
20130023942 Wyman et al. Jan 2013 A1
20130035722 McDevitt et al. Feb 2013 A1
20130066371 Rogers et al. Mar 2013 A1
20130096612 Zajac et al. Apr 2013 A1
20130123810 Brown et al. May 2013 A1
20130123841 Lyon May 2013 A1
20130138150 Baker et al. May 2013 A1
20130165972 Sullivan Jun 2013 A1
20130165973 Fallin et al. Jun 2013 A1
20130172944 Fritzinger et al. Jul 2013 A1
20130197576 Catania et al. Aug 2013 A1
20130197577 Wolf et al. Aug 2013 A1
20130197578 Gregoire et al. Aug 2013 A1
20130197579 Foerster et al. Aug 2013 A1
20130197580 Perriello Aug 2013 A1
20130268000 Harner et al. Oct 2013 A1
20130268073 Albertorio et al. Oct 2013 A1
20130289620 McDevitt et al. Oct 2013 A1
20130317544 Ferguson et al. Nov 2013 A1
20140074239 Albertorio et al. Mar 2014 A1
20140081399 Roller et al. Mar 2014 A1
20140142627 Hendricksen et al. May 2014 A1
20140257346 Sengun et al. Sep 2014 A1
20140330312 Spenciner et al. Nov 2014 A1
20150073477 Holmes, Jr. Mar 2015 A1
20160157851 Spenciner Jun 2016 A1
Foreign Referenced Citations (13)
Number Date Country
2743294 Jul 1997 FR
92006648 Apr 1992 WO
96029029 Sep 1996 WO
98012991 Apr 1998 WO
980128992 Apr 1998 WO
99047079 Sep 1999 WO
02034166 May 2002 WO
2004062507 Jul 2004 WO
2005051242 Jun 2005 WO
2005051245 Jun 2005 WO
2009109778 Sep 2009 WO
2012047925 Apr 2012 WO
2012167138 Dec 2012 WO
Non-Patent Literature Citations (5)
Entry
Extended European Search Report for Application No. 14158607.3, dated Aug. 21, 2014 (6 pages).
Extended European Search Report for Application No. 17186602.3, dated Jan. 25, 2018 (7 pages).
Kamelger et al., Suspensory Fixation of Grafts in Anterior Cruciate; Ligament Reconstruction: A Biomechanical Comparison of 3 Implants. Arthroscopy, Jul. 25, 2009, pp. 767-776.
Petre et al., Femoral Cortical Suspension Devices for Soft Tissue Anterior Cruciate Ligament Reconstruction. The American Journal of Sports Medicine, Feb. 2013, pp. 416-422.
Indian Office Action for Application No. 617/DEL/2014, dated Sep. 21, 2020 (5 pages).
Related Publications (1)
Number Date Country
20180333154 A1 Nov 2018 US
Divisions (1)
Number Date Country
Parent 14986584 Dec 2015 US
Child 16051423 US
Continuation in Parts (1)
Number Date Country
Parent 13793514 Mar 2013 US
Child 14986584 US