Implant having multiple adjusting mechanisms

Information

  • Patent Grant
  • 11197759
  • Patent Number
    11,197,759
  • Date Filed
    Monday, July 22, 2019
    4 years ago
  • Date Issued
    Tuesday, December 14, 2021
    2 years ago
Abstract
An implant structure, comprises a body portion, a first adjusting mechanism, and a second adjusting mechanism. The body portion is configured to be secured around an annulus of a native valve of a heart of a patient. The first adjusting mechanism is coupled to a first portion of the body portion, and comprises a first ring that surrounds the first portion and is moveable with respect to the body portion. The second adjusting mechanism is coupled to a second portion of the body portion, and comprises a second ring that surrounds the second portion and is moveable with respect to the body portion. A first elongate tool is configured to remodel tissue of the heart by actuating the first adjusting mechanism. A second elongate tool is configured to remodel tissue of the heart by actuating the second adjusting mechanism.
Description
FIELD OF THE INVENTION

The present invention relates in general to valve repair. More specifically, the present invention relates to repair of a mitral valve of a patient.


BACKGROUND

Mitral regurgitation (MR), mitral insufficiency or mitral incompetence is a disorder of the heart in which the mitral, valve does not close properly when the heart pumps out blood. It is the abnormal leaking of blood from the left ventricle, through the mitral valve, and into the left atrium, when the left ventricle contracts, i.e. there is regurgitation of blood back into the left atrium. MR is the most common form of valvular heart disease.


In functional mitral valve regurgitation (FMR), otherwise known as Secondary mitral regurgitation is characterized as the abnormal function of anatomically normal valve, i.e., the papillary muscles, chordae, and valve leaflets are otherwise normal. Regurgitation, the result of incomplete closure of normal leaflets occurs in a quarter of patients after myocardial infarction and up to 50% of those with heart failure.


FMR can be either due to ischemia and any cause of dilated left ventricle including, annular enlargement secondary to left ventricular dilatation, or papillary muscle displacement due to left ventricular remodeling, which results in tethering and excess tenting of the mitral valve leaflets.


Severe FMR is indicative of poor hemodynamics and typically a bad prognosis for the patient.


SUMMARY OF THE INVENTION

In some applications of the present invention, apparatus is provided comprising an implant structure comprising an adjustable annuloplasty ring structure coupled to at least first and second adjusting mechanisms, each comprising a respective rotatable structure. At least a portion of the annuloplasty ring structure comprises a flexible, longitudinally-compressible segment (e.g., coiled structures, stent-like struts, and/or a braided mesh). The annuloplasty structure is shaped to define a flexible, tubular body portion that is shaped so as to define a lumen thereof that houses at least one flexible longitudinal contracting member. The at least one flexible longitudinal contracting member is coupled to the first adjusting mechanism at a first portion of the flexible longitudinal contracting member. A second portion of the flexible longitudinal contracting member is coupled to a portion of the tubular body portion. The first adjusting mechanism is configured to adjust a perimeter of the annuloplasty ring structure by adjusting a degree of tension of the flexible member housed within the lumen, of the annuloplasty structure. For example, the first adjusting mechanism is configured to contract the ring structure in response to rotation in a first rotational direction of the rotational structure of the first adjusting mechanism. The first adjusting mechanism is typically aligned with the tubular body portion.


Typically, the annuloplasty structure is configured to be implanted along a native annulus of an atrioventricular valve of a patient.


For some applications of the present invention, the second adjusting mechanism is coupled to an outer surface of the tubular body portion. The second adjusting mechanism is coupled to a first portion of a flexible longitudinal tension member. The flexible longitudinal tension member is configured to pass from the annuloplasty ring structure on the annulus of the valve of and into a ventricle. A second portion of the flexible longitudinal tension member is coupled to a tissue-engaging element configured to engage cardiac tissue in a vicinity of the ventricle (e.g., a portion of papillary muscle tissue, a portion of tissue of an inner wall of the ventricle, or a portion of tissue of an outer wall of the ventricle). For some applications, the tissue-engaging element comprises a sharp portion for penetrating the cardiac tissue. For some applications, the tissue-engaging element comprises a planar element abutting against tissue of the patient. Typically, the second portion of the flexible longitudinal tension member is configured to be coupled to a papillary muscle of the patient. The second adjusting mechanism is configured to adjust a degree of tension of the flexible longitudinal tension member in a manner sufficient to (a) adjust a position of the papillary muscle, (b) adjust a degree of distension of the ventricular wall, and/or (c) have the flexible longitudinal tension member function as an artificial chordae tendineae. For applications in which the position of the papillary muscle is adjusted such positioning typically provides therapy to the patient.


For some applications of the present invention, an annuloplasty ring structure comprises two or more adjusting mechanisms configured to shape the annuloplasty ring structure into a desired shape. For example, the two or more adjusting mechanisms function, upon actuation thereof, to form the adjustable ring into a saddle shape. Alternatively or additionally, the two or more adjusting mechanisms function, upon actuation thereof, to draw together opposing portions of the ring.


Typically, the annuloplasty ring structures described herein, the adjusting mechanisms, and the flexible longitudinal members are advanced and implanted in an open-heart procedure. For some applications, devices described herein may be implanted using a minimally-invasive or percutaneous transcatheter procedure.


Methods for delivery and use of the invention are also described.


There is therefore provided, in accordance with an application of the present invention, apparatus for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the apparatus including:

    • an annuloplasty structure, shaped to define a perimeter, and configured to be disposed at the annulus of the native valve of the patient;
    • a first adjusting mechanism, coupled to the annuloplasty structure, and configured to adjust the perimeter of the annuloplasty structure;
    • at least one longitudinal flexible member, having a first end portion, and a second end portion that is configured to be coupled to tissue of the ventricle of the heart of the patient; and
    • at least a second adjusting mechanism:
      • coupled to the annuloplasty structure such that the second adjusting mechanism is slidable around at least part of the perimeter of the annuloplasty structure,
      • coupled to the first end portion of the at least one longitudinal flexible member, and
      • configured to adjust a distance between the second adjusting mechanism and the second end portion of the at least one longitudinal flexible member.


In an application:

    • the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient,
    • the at least second adjusting mechanism is configured to be coupled to a location along the annulus, in a vicinity of a fibrous trigone adjacent to the mitral valve.


In an application, the apparatus further includes a plurality of sutures, each suture of the plurality of sutures being configured to be fastened to a respective location along a circumference of an annulus of a mitral valve of the patient, the plurality of sutures being configured to facilitate advancement of the annuloplasty structure toward the annulus.


In an application, the annuloplasty structure includes a coiled structure having a lumen.


In an application, the annuloplasty structure includes a partial annuloplasty ring.


In an application, the annuloplasty structure includes a full annuloplasty ring.


In an application, the annuloplasty structure is coated with polytetrafluoroethylene.


In an application, the annuloplasty structure has a first end and a second end, and a longitudinal axis therebetween, and the second adjusting mechanism is movable along the longitudinal axis of the annuloplasty structure.


In on application, the annuloplasty structure includes a body portion that defines a lumen therethrough, and the annuloplasty structure further includes a flexible longitudinal contracting member, having a first end portion, a second end portion, and a middle portion between the first and second end portions, at least one of the end portions being coupled to the first adjusting mechanism, and the middle portion being disposed within the lumen of the body portion.


In an application, the first adjusting mechanism is configured to reversibly adjust the perimeter of the annuloplasty structure, and the second adjusting mechanism is configured to reversibly adjust the distance.


In an application, the second adjusting mechanism is configured to adjust the distance between the second adjusting mechanism and the second end portion of the at least one longitudinal flexible member, independently of the adjusting of the perimeter of the annuloplasty structure by the first adjusting mechanism.


In an application:

    • the at least one longitudinal flexible member includes a first longitudinal flexible member and a second longitudinal flexible member, the first and second longitudinal members each having a first end portion and a second end portion, the second portion of the first longitudinal flexible member being configured to be coupled to a first portion of the tissue, and the second portion of the second longitudinal flexible member being configured to be coupled to a second portion of the tissue,
    • the second adjusting mechanism is coupled to the first end portion of the first longitudinal flexible member, and is configured to adjust, a distance between the second adjusting mechanism and the second end portion of the first longitudinal flexible member,
    • the apparatus further includes a third adjusting mechanism, coupled to the annuloplasty structure and to the first end portion of the second longitudinal flexible member, and is configured to adjust a distance between the third adjusting mechanism and the second end portion of the second longitudinal flexible member.


In an application:

    • at least one selected from the group consisting of the first portion of the tissue and the second portion of the tissue, includes tissue of a papillary muscle of the patient, and
    • at least one selected from the group consisting of the second adjusting mechanism and the third adjusting mechanism, is configured to adjust a distance between the papillary muscle and the annuloplasty structure.


In an application, the third adjusting mechanism is configured to adjust the distance between the third adjusting mechanism and the second end portion of the second longitudinal flexible member, independently of the adjustment, by the second adjusting mechanism, of the distance between the second adjusting mechanism and the second end portion of the first longitudinal flexible member.


In an application, the first adjusting mechanism includes a first rotatable adjusting mechanism, and the second adjusting mechanism includes a second rotatable adjusting mechanism.


In an application, the first rotatable adjusting mechanism and the second rotatable adjusting mechanism are both rotatable bidirectionally.


In an application, the second rotatable adjusting mechanism includes a spool, and the spool is configured to pull the tissue toward the annuloplasty structure, via the longitudinal flexible member, responsively to rotation of the spool.


In an application, the apparatus further includes a rotation tool, configured to rotate the first rotatable adjusting mechanism.


In an application, the rotation tool includes an elongate rotation tool, configured to extend from outside the patient, to the first rotatable adjusting mechanism.


In an application, the rotation tool is configured to facilitate adjustment of the first adjusting mechanism while the heart of the patient is beating.


In an application, the rotation tool includes a first rotation tool, and the apparatus further includes a second rotation tool, configured to rotate the second rotatable adjusting mechanism.


In an application, at least the first adjusting mechanism includes a locking mechanism:

    • having an unlocked state in which the first adjusting mechanism is adjustable, having
    • having a locked state in which the locking mechanism inhibits adjustment of the first adjusting mechanism, and
    • configured to be intracorporeally moved from the locked state to the unlocked state.


In an application, the first rotation tool is configured to intracorporeally move the first rotatable adjusting mechanism into the unlocked configuration thereof.


In an application, the tissue includes papillary muscle tissue of the patient, and apparatus is configured to relocate the papillary muscle tissue, by pulling the papillary muscle tissue toward the annuloplasty structure.


In an application:

    • the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient, and
    • the longitudinal flexible member is configured to relocate the papillary muscle tissue, in response to the pulling by the adjusting mechanism.


In an application, the longitudinal flexible member is configured to perform a therapy by relocating the patient's papillary muscle tissue.


In an application, the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient, and the apparatus is configured to be transcatheterally advanced toward the annulus.


In an application, the apparatus is configured to be transluminally advanced toward the annulus.


In an application, the second end portion of the longitudinal flexible member includes a tissue-coupling element.


In an application, the tissue-coupling element includes an anchor having at least one sharp portion.


There is further provided, in accordance with an application of the present invention, apparatus for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the apparatus including:

    • an annuloplasty structure, shaped to define a perimeter, and configured to be disposed at the annulus of the native valve of the patient;
    • a first adjusting mechanism, coupled to the annuloplasty structure, and configured to reversibly adjust the perimeter of the annuloplasty structure;
    • at least one longitudinal flexible member, having a first end portion, and a second end portion that is configured to be coupled to tissue of the ventricle of the heart or the patient; and
    • at least a second adjusting mechanism, coupled to the annuloplasty structure and to the first end portion of the at least one longitudinal flexible member, and configured to reversibly adjust a distance between the second adjusting mechanism and the second end portion of the at least one longitudinal flexible member.


In an application, the annuloplasty structure has a first end and a second end, and a longitudinal axis therebetween, and the second adjusting mechanism is movable along the longitudinal axis of the annuloplasty structure.


In an application, the annuloplasty structure includes a body portion that defines a lumen therethrough, and the annuloplasty structure further includes a flexible longitudinal contracting member, having a first end portion, a second end portion, and a middle portion between the first and second end portions, at least one of the end portions being coupled to the first, adjusting mechanism, and the middle portion being disposed within the lumen of the body portion.

    • In an application, the first adjusting mechanism is movably coupled to the annuloplasty structure.


In an application, the annuloplasty structure includes a partial annuloplasty ring.


In an application, the annuloplasty structure includes a full annuloplasty ring.


In an application, the annuloplasty structure is coated with polytetrafluoroethylene.


In an application:

    • the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient,
    • the at least second adjusting mechanism is configured to be coupled to a location along the annulus, in a vicinity of a fibrous trigone adjacent to the mitral valve.


In an application, the apparatus further includes a plurality of sutures, each suture of the plurality of sutures being configured to be fastened to a respective location along a circumference of an annulus of a mitral valve of the patient, the plurality of sutures being configured to facilitate advancement of the annuloplasty structure toward the annulus.


In an application, the annuloplasty structure includes a coiled structure having a lumen.


In an application, the second adjusting mechanism is configured to reversibly adjust the distance between the second adjusting mechanism and the second end portion of the at least one longitudinal flexible member, independently of the reversible adjusting of the perimeter of the annuloplasty structure by the first adjusting mechanism.


In an application:

    • the at least one longitudinal flexible member includes a first longitudinal flexible member and a second longitudinal flexible member, the first and second longitudinal members each having a first end portion and a second end portion, the second portion of the first longitudinal flexible member being configured to be coupled to a first portion of the tissue, and the second portion of the second longitudinal flexible member being configured to be coupled to a second portion of the tissue,
    • the second adjusting mechanism is coupled to the first end portion of the first longitudinal flexible member, and is configured to reversibly adjust a distance between the second adjusting mechanism and the second end portion of the first longitudinal flexible member,
    • the apparatus further includes a third adjusting mechanism, coupled to the annuloplasty structure and to the first end portion of the second longitudinal flexible member, and is configured to reversibly adjust a distance between the third adjusting mechanism and the second end portion of the second longitudinal flexible member.


In an application:

    • at least one selected from the group consisting of the first portion of the tissue and the second portion of the tissue, includes tissue of a papillary muscle of the patient, and
    • at least one selected from the group consisting of the second adjusting mechanism and the third adjusting mechanism, is configured to reversibly adjust a distance between the papillary muscle and the annuloplasty structure.


In an application, the third adjusting mechanism is configured to reversibly adjust the distance between the third adjusting mechanism and the second end portion of the second longitudinal flexible member, independently of the reversible adjustment, by the second adjusting mechanism, of the distance between the second adjusting mechanism and the second end portion of the first longitudinal flexible member.


In an application, the first adjusting mechanism includes a first rotatable adjusting mechanism, and the second adjusting mechanism includes a second rotatable adjusting mechanism.


In an application, the first rotatable adjusting mechanism and the second rotatable adjusting mechanism are both rotatable bidirectionally.


In an application, the second rotatable adjusting mechanism includes a spool, and the spool is configured to pull the tissue toward the annuloplasty structure, via the longitudinal flexible member, responsively to rotation of the spool.


In an application, the apparatus further includes a rotation tool, configured to rotate the first rotatable adjusting mechanism.


In an application, the rotation tool includes an elongate rotation tool, configured to extend from outside the patient, to the first rotatable adjusting mechanism.


In an application, the rotation tool is configured to facilitate reversible adjustment of the first adjusting mechanism while the heart of the patient is beating.


In an application, the rotation tool includes a first rotation tool, and the apparatus further includes a second rotation tool, configured to rotate the second rotatable adjusting mechanism.


In an application, at least the first adjusting mechanism includes a locking mechanism:

    • having an unlocked state in which the first adjusting mechanism is adjustable, having
    • having a locked state in which the locking mechanism inhibits adjustment of the first adjusting mechanism, and
    • configured to be intracorporeally moved from the locked state to the unlocked state.


In an application, the first rotation tool is configured to intracorporeally move the first rotatable adjusting mechanism into the unlocked configuration thereof.


In an application, the tissue includes papillary muscle tissue of the patient, and apparatus is configured to relocate the papillary muscle tissue, by pulling the papillary muscle tissue toward the annuloplasty structure.


In an application:

    • the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient, and
    • the longitudinal flexible member is configured to relocate the papillary muscle tissue, in response to the pulling by the adjusting mechanism.


In an application, the longitudinal flexible member is configured to perform a therapy by relocating the patient's papillary muscle tissue.


In an application, the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient, and the apparatus is configured to be transcatheterally advanced toward the annulus.


In an application, the apparatus is configured to be transluminally advanced toward the annulus.


In an application, the second end portion of the longitudinal flexible member includes a tissue-coupling element.


In an application, the tissue-coupling element includes an anchor having at least one sharp portion.


There is further provided, in accordance with an application of the present invention, a method for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the method including:

    • adjusting a dimension of the annulus by rotating a first adjusting mechanism of apparatus that has been implanted in the heart of the patient;
    • adjusting a first distance between a first portion of tissue of the ventricle of the patient and the annulus by rotating a second adjusting mechanism of the apparatus; and
    • subsequently to the adjusting of the first distance, adjusting a second distance between a second portion of tissue of the ventricle of the patent and the annulus by rotating a third adjusting mechanism of the apparatus.


In an application, the annuloplasty structure has a first end and a second end, and a longitudinal axis therebetween, and sliding the second adjusting mechanism includes sliding the second adjusting mechanism along the longitudinal axis of the annuloplasty structure.


In an application:

    • the annuloplasty structure includes a body portion that defines a lumen therethrough, and a flexible longitudinal contracting member, having a first end portion, a second end portion, and a middle portion between the first and second end portions, at least one of the end portions being coupled to the first adjusting mechanism, and the middle portion being disposed within the lumen of the body portion, and
    • adjusting the perimeter of the annuloplasty structure includes adjusting a length of the flexible longitudinal contracting member between the first end portion of the flexible longitudinal contracting member and the second end portion of the flexible longitudinal contracting member.


In an application, coupling the annuloplasty structure to the annulus includes coupling the annuloplasty structure to an annulus of a mitral valve of the patient such that the at least second adjusting mechanism is disposed in a vicinity of a fibrous trigone adjacent to the mitral valve.


In an application, the method further includes receiving information indicative of blood flow of the patent, subsequently to the adjusting of the first distance, and prior to the adjusting of the second distance.


In an application, the method further includes receiving information indicative of blood flow in the heart of the patient, subsequently to the adjusting of the dimension of the annulus, and prior to the adjusting of the first distance.


In an application, at least one of: (1) the adjusting of the dimension of the annulus, (2) the adjusting of the first distance, and (3) the adjusting of the second distance, include adjusting while the heart is beating.


In an application, adjusting the first adjusting mechanism includes adjusting the first adjusting mechanism while the heart of the patient is beating.


In an application, adjusting the at least second adjusting mechanism includes adjusting the at least second adjusting mechanism while the heart of the patient is beating.


In an application, coupling the second end portion to the first portion of the tissue of the ventricle includes coupling the second end portion to tissue of a papillary muscle of the patient.


In an application, the method further includes adjusting a dimension of the annulus by adjusting the first adjusting mechanism.


In an application, the method further includes adjusting a distance between the annulus and the tissue, by adjusting the second adjusting mechanism.


In an application, the method further includes adjusting a dimension of the annulus by adjusting the first adjusting mechanism, and adjusting a distance between the annulus and the tissue independently of the adjustment of the dimension of the annulus, by adjusting the second adjusting mechanism independently of the adjustment of the first adjusting mechanism.


In an application, coupling the second end portion to the tissue includes rotating an anchor coupled to the second end portion.


In an application, at least one selected from the group consisting of adjusting the first adjusting mechanism and adjusting the second adjusting mechanism, includes rotating a rotatable adjusting mechanism.


In an application, at least, one action selected from the group consisting of adjusting the first adjusting mechanism and adjusting the second adjusting mechanism, includes reversibly adjusting.


In an application, coupling the annuloplasty structure to the annulus includes coupling a partial annuloplasty ring to the annulus.


In an application, coupling the annuloplasty structure to the annulus includes coupling a full annuloplasty ring to the annulus.


In an application, at least one action selected from the group consisting of adjusting the first adjusting mechanism and adjusting the second adjusting mechanism, includes adjusting using a rotation tool.


In an application, using the rotation tool includes using an elongate rotation tool that extends from outside the patient, to the apparatus.


In an application, the method further includes, prior to adjusting, performing at least one action selected from the group consisting of unlocking the first adjustment mechanism using the rotation tool, and unlocking the second adjustment mechanism using the rotation tool.


In an application, the method further includes transcatheterally advancing the annuloplasty structure to the native valve.


In an application, transcatheterally advancing the annuloplasty structure to the native valve includes transluminally advancing the annuloplasty structure to the native valve.


In an application, the annuloplasty structure is coupled to a third adjusting mechanism that is coupled to a first end portion of a second longitudinal flexible member, and the method further includes coupling a second end portion of the second longitudinal member to a second portion of the tissue of the ventricle.


In an application, the method further includes adjusting a distance between the annuloplasty structure and the second portion of the tissue by adjusting the third adjusting mechanism.


There is further provided, in accordance with an application of the present invention, a method for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the method including:

    • while the heart is beating, using apparatus that has been implanted in the heart:
      • reducing a dimension of the annulus,
      • reducing a distance between the annulus and at least a first portion of tissue of the ventricle of the patient, and
      • subsequently, increasing at least one selected from the list consisting of: the dimension, and the distance; and
    • receiving information indicative of blood flow of the patient, the reducing and the increasing of the dimension and the distance being at least in part responsive to the receiving of the information.


In an application:

    • reducing the dimension includes rotating a first adjusting mechanism of the apparatus in a first rotational direction, and increasing the dimension includes rotating the first adjusting mechanism in a second, opposing rotational direction, and
    • reducing the distance includes rotating at least a second adjusting mechanism of the apparatus in a first rotational direction, and increasing the distance includes rotating the second adjusting mechanism in a second, opposing rotational direction.


There is further provided, in accordance with an application of the present invention, a method for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the method including:

    • coupling, to the annulus, an annuloplasty structure, shaped to define a perimeter, and coupled to:
      • a first adjusting mechanism, configured to adjust the perimeter of the annuloplasty structure, and
      • at least a second adjusting mechanism, configured to be slidable around at least part of the perimeter of the annuloplasty structure, and coupled to a first end portion of at least one longitudinal flexible member;
    • coupling, to at least a first portion of tissue of the ventricle of the heart, a second end portion of the at least one longitudinal flexible member; and
    • sliding the second adjusting mechanism around at least part of the at least part of the perimeter of the annuloplasty structure.


In an application, the annuloplasty structure has a first end and a second end, and a longitudinal axis therebetween, and sliding the second adjusting mechanism includes sliding the second adjusting mechanism along the longitudinal axis of the annuloplasty structure.


In an application:

    • the annuloplasty structure includes a body portion that defines a lumen therethrough, and a flexible longitudinal contracting member, having a first end portion, a second end portion, and a middle portion between the first and second end portions, at least one of the end portions being coupled to the first adjusting mechanism, and the middle portion being disposed within the lumen of the body portion, and
    • adjusting the perimeter of the annuloplasty structure includes adjusting a length of the flexible longitudinal contracting member between the first end portion of the flexible longitudinal contracting member and the second end portion of the flexible longitudinal contracting member.


In an application, coupling the annuloplasty structure to the annulus includes coupling the annuloplasty structure to an annulus of a mitral valve of the patient such that the at least second adjusting mechanism is disposed in a vicinity of a fibrous trigone adjacent to the mitral valve.


In an application, coupling the annuloplasty structure to the annulus includes coupling a partial annuloplasty ring to the annulus.


In an application, coupling the annuloplasty structure to the annulus includes coupling a full annuloplasty ring to the annulus.


In an application, adjusting the first adjusting mechanism includes adjusting the first adjusting mechanism while the heart of the patient is beating.


In an application, adjusting the at least second adjusting mechanism includes adjusting the at least second adjusting mechanism while the heart of the patient is beating.


In an application, coupling the second end portion to the first portion of the tissue of the ventricle includes coupling the second end portion to tissue of a papillary muscle of the patient.


In an application, the method further includes adjusting a dimension of the annulus by adjusting the first adjusting mechanism.


In an application, the method further includes adjusting a distance between the annulus and the tissue, by adjusting the second adjusting mechanism.


In an application, the method further includes adjusting a dimension of the annulus by adjusting the first adjusting mechanism, and adjusting a distance between the annulus and the tissue independently of the adjustment of the dimension of the annulus, by adjusting the second adjusting mechanism independently of the adjustment of the first adjusting mechanism.


In an application, coupling the second end portion to the tissue includes rotating an anchor coupled to the second end portion.


In an application, at least one selected from the group consisting of adjusting the first adjusting mechanism and adjusting the second adjusting mechanism, includes rotating a rotatable adjusting mechanism.


In an application, at least one action selected from the group consisting of adjusting the first adjusting mechanism and adjusting the second adjusting mechanism, includes reversibly adjusting.


In an application, at least one action selected from the group consisting of adjusting the first adjusting mechanism and adjusting the second adjusting mechanism, includes adjusting using a rotation tool.


In an application, using the rotation tool includes using an elongate rotation tool that extends from outside the patient, to the apparatus.


In an application, the method further includes, prior to adjusting, performing at least one action selected from the group consisting of unlocking the first adjustment mechanism using the rotation tool, and unlocking the second adjustment mechanism using the rotation tool.


In an application, the method further includes transcatheterally advancing the annuloplasty structure to the native valve.


In an application, transcatheterally advancing the annuloplasty structure to the native valve includes transluminally advancing the annuloplasty structure to the native valve.


In an application, the annuloplasty structure is coupled to a third adjusting mechanism that is coupled to a first end portion of a second longitudinal flexible member, and the method further includes coupling a second end portion of the second longitudinal member to a second portion of the tissue of the ventricle.


In an application, the method further includes adjusting a distance between the annuloplasty structure and the second portion of the tissue by adjusting the third adjusting mechanism.


There is further provided, in accordance with an application of the present invention, apparatus for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the apparatus including:

    • an annuloplasty structure, shaped to define a perimeter, and configured to be disposed at the annulus of the native valve of the patient;
    • a first adjusting mechanism, coupled to the annuloplasty structure, and configured to adjust the perimeter of the annuloplasty structure;
    • at least one longitudinal flexible member, having a first end portion, and a second end portion that is configured to be coupled to tissue of the ventricle of the heart of the patient; and
    • at least a second adjusting mechanism, coupled to the annuloplasty structure and to the first end portion of the at least one longitudinal flexible member, and configured to adjust a distance between the second adjusting mechanism and the second end portion of the at least one longitudinal flexible member,
    • the first and second adjusting mechanisms each including a respective locking mechanism, each locking mechanism:
      • having an unlocked state in which the respective adjusting mechanism is adjustable, having
      • having a locked state in which the locking mechanism inhibits adjustment of the respective adjusting mechanism, and
      • configured to be intracorporeally moved from the locked state to the unlocked state.


In an application, the annuloplasty structure includes a partial annuloplasty ring.


In an application, the annuloplasty structure includes a full annuloplasty ring.


In an application, the annuloplasty structure is coated with polytetrafluoroethylene.


In an application:

    • the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient,
    • the at least second adjusting mechanism is configured to be coupled to a location along the annulus, in a vicinity of a fibrous trigone adjacent to the mitral valve.


In an application, the apparatus further includes a plurality of sutures, each suture of the plurality of sutures being configured to be fastened to a respective location along a circumference of an annulus of a mitral valve of the patient, the plurality of sutures being configured to facilitate advancement of the annuloplasty structure toward the annulus.


In an application, the annuloplasty structure includes a coiled structure having a lumen.


In an application, the annuloplasty structure has a first end and a second end, and a longitudinal axis therebetween, and the second adjusting mechanism is movable along the longitudinal axis of the annuloplasty structure.


In an application, the annuloplasty structure includes a body portion that defines a lumen therethrough, and the annuloplasty structure further includes a flexible longitudinal contracting member, having a first end portion, a second end portion, and a middle portion between the first and second end portions, at least one of the end portions being coupled to the first adjusting mechanism, and the middle portion being disposed within the lumen of the body portion.


In an application, the first adjusting mechanism is movably coupled to the annuloplasty structure.


In an application, the first adjusting mechanism is configured to reversibly adjust the perimeter of the annuloplasty structure, and the second adjusting mechanism is configured to reversibly adjust the distance.


In an application, the second adjusting mechanism is configured to adjust the distance between the second adjusting mechanism and the second end portion of the at least one longitudinal flexible member, independently of the adjusting of the perimeter of the annuloplasty structure by the first adjusting mechanism.


In an application:

    • the at least one longitudinal flexible member includes a first longitudinal flexible member and a second longitudinal flexible member, the first and second longitudinal members each having a first end portion and a second end portion, the second portion of the first longitudinal flexible member being configured to be coupled to a first portion of the tissue, and the second portion of the second longitudinal flexible member being configured to be coupled to a second portion of the tissue,
    • the second adjusting mechanism is coupled to the first end portion of the first longitudinal flexible member, and is configured to adjust a distance between, the second adjusting mechanism and the second end portion of the first longitudinal flexible member,
    • the apparatus further includes a third adjusting mechanism, coupled to the annuloplasty structure and to the first end portion of the second longitudinal flexible member, and is configured to adjust a distance between the third adjusting mechanism and the second end portion of the second longitudinal flexible member.


In an application:

    • at least one selected from the group consisting of the first portion of the tissue and the second portion of the tissue, includes tissue of a papillary muscle of the patient, and
    • at least one selected from the group consisting of the second adjusting mechanism and the third adjusting mechanism, is configured to adjust a distance between the papillary muscle and the annuloplasty structure.


In an application, the third adjusting mechanism is configured to adjust the distance between the third adjusting mechanism and the second end portion of the second longitudinal flexible member, independently of the adjustment, by the second adjusting mechanism, of the distance between the second adjusting mechanism and the second end portion of the first longitudinal flexible member.


In an application, the first adjusting mechanism includes a first rotatable adjusting mechanism, and the second adjusting mechanism includes a second rotatable adjusting mechanism.


In an application, the first rotatable adjusting mechanism and the second rotatable adjusting mechanism are both rotatable bidirectionally.


In an application, the second rotatable adjusting mechanism includes a spool, and the spool is configured to pull the tissue toward the annuloplasty structure, via the longitudinal flexible member, responsively to rotation of the spool.


In an application, the apparatus further includes a rotation tool, configured to rotate the first rotatable adjusting mechanism.


In an application, the rotation tool includes an elongate rotation tool, configured to extend from outside the patient, to the first rotatable adjusting mechanism.


In an application, the rotation tool is configured to facilitate adjustment of the first adjusting mechanism while the heart of the patient is beating.


In an application, the rotation tool includes a first rotation tool, and the apparatus further includes a second rotation tool, configured to rotate the second rotatable adjusting mechanism.


In an application, the first rotation tool is configured to intracorporeally move the first rotatable adjusting mechanism into the unlocked configuration thereof, and the second rotation tool is configured to intracorporeally move the second rotatable adjusting mechanism into the unlocked configuration thereof.


In an application, the tissue includes papillary muscle tissue of the patient, and apparatus is configured to relocate the papillary muscle tissue, by pulling the papillary muscle tissue toward the annuloplasty structure.


In an application:

    • the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient, and
    • the longitudinal flexible member is configured to relocate the papillary muscle tissue, in response to the pulling by the adjusting mechanism.


In an application, the longitudinal flexible member is configured to perform a therapy by relocating the patient's papillary muscle tissue.


In an application, the annuloplasty structure is configured to be implanted at an annulus of a mitral valve of the patient, and the apparatus is configured to be transcatheterally advanced toward the annulus.


In an application, the apparatus is configured to be transluminally advanced toward the annulus.


In an application, the second end portion of the longitudinal flexible member includes a tissue-coupling element.


In an application, the tissue-coupling element includes an anchor having at least one sharp portion.


There is further provided, in accordance with an application of the present invention, apparatus for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the apparatus including:

    • an annuloplasty structure, configured to be disposed at the annulus of the native valve of the patient, and shaped to define a perimeter;
    • a perimeter-adjusting mechanism, coupled to the annuloplasty structure, and configured to adjust the perimeter of the annuloplasty structure; and
    • at least two longitudinal flexible members, each longitudinal flexible member having a first end portion and a second end portion, the second end portion of each longitudinal flexible member being configured to be coupled to a respective portions of tissue of a ventricle of the heart of the patient; and
    • at least two length-adjusting mechanisms, each being coupled to the annuloplasty structure and to the first end portion of a respective longitudinal flexible member, and configured to adjust a distance between the length-adjusting mechanism and the second end portion of the respective longitudinal flexible member, independently of the adjustment of the perimeter of the annuloplasty structure by the first adjusting mechanism.


In an application:

    • the at least two length-adjusting mechanisms include a first length-adjusting mechanism and a second length-adjusting mechanism,
    • the at least two longitudinal flexible members include a first longitudinal flexible member and a second longitudinal flexible member,
    • the first length-adjusting mechanism is coupled to the first end portion of the first longitudinal flexible member, and is configured to adjust the distance between the first length-adjusting mechanism and the second end portion of the first longitudinal flexible member, and
    • the second length-adjusting mechanism is coupled to the first end portion of the second longitudinal flexible member, and is configured to adjust a distance between the second length-adjusting mechanism and the second end portion of the second longitudinal flexible member, independently of the adjustment, by the first length-adjusting member, of a distance between the first length-adjusting mechanism and the second end portion of the first longitudinal flexible member.


In an application, at least one of the length-adjusting mechanisms is movable around at least part of the perimeter of the annuloplasty structure.


In an application, the annuloplasty structure includes a body portion that defines a lumen therethrough, and the annuloplasty structure further includes a flexible longitudinal contracting member, having a first end portion, a second end portion, and a middle portion between the first and second end portions, at least one of the end portions being coupled to the first adjusting mechanism, and the middle portion being disposed within the lumen of the body portion.


There is further provided, in accordance with an application of the present invention, a method, including:

    • providing an annuloplasty structure, the annuloplasty structure including:
      • at least one adjusting mechanism couplable to the annuloplasty structure; and
      • at least one longitudinal flexible member; coupling the annuloplasty structure to an annulus of a mitral valve of a patient;
    • coupling the longitudinal flexible member to a portion of tissue; and
    • relocating the portion of tissue toward the annulus by pulling the tissue with the adjusting mechanism, via the longitudinal flexible member.


In an application, coupling the longitudinal flexible member to the portion of tissue includes coupling the longitudinal flexible member to papillary muscle tissue.


In an application, the annuloplasty structure includes two adjusting mechanisms, each adjusting mechanism configured to relocate respective portions of tissue, and coupling the annuloplasty structure to the annulus includes:

    • coupling a first one of the adjusting mechanisms to a first location along the annulus in a vicinity of a first fibrous trigone of the mitral valve; and
    • coupling a second one of the adjusting mechanisms to a second location along the annulus in a vicinity of a second fibrous trigone of the mitral valve.


In an application, the method further includes transcatheterally advancing the annuloplasty structure to the annulus.


In an application, coupling the annuloplasty structure to the annulus includes coupling the annuloplasty structure to the annulus during open heart surgery.


In an application, the method further includes:

    • rotating, in a first direction, a rotatable adjusting mechanism that is coupled to the annuloplasty structure, by pulling a contracting member that is coupled to the rotatable structure; and
    • responsively, drawing first and second portions of the annuloplasty structure toward each other.


The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of an annuloplasty structure coupled to at least first and second adjusting mechanisms, in accordance with some applications of the present invention;



FIGS. 2A-B are schematic illustrations of an adjustable annuloplasty structure coupled to adjusting mechanisms that are slidable with respect to the adjustable annuloplasty structure, in accordance with some applications of the present invention;



FIG. 3 is a schematic illustration of an adjusting mechanism, in accordance with some applications of the present invention;



FIG. 4 is a schematic illustration of another adjusting mechanism, in accordance with some applications of the present invention;



FIG. 5 is a schematic illustration of another annuloplasty structure coupled to at least first and second adjusting mechanisms, in accordance with some applications of the present invention;



FIGS. 6A-B, 7A-B, and 8A-B are schematic illustrations of placing the implant structure of FIG. 1 in a heart of a patient, in accordance with some applications of the present invention;



FIGS. 9A-B are schematic illustrations of an implant structure comprising a septo-lateral adjusting mechanism, in accordance with some applications of the present invention;



FIGS. 10A-B are schematic illustrations an implant structure comprising a plurality of adjusting mechanisms which shape the structure into a saddle-shaped ring, in accordance with some applications of the present invention; and



FIG. 11 is a schematic illustration of a system for providing information indicative of heart function of the patient, and for facilitating adjusting the adjusting mechanisms of an annuloplasty structure in response to the information, in accordance with some applications of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

Reference is now made to FIG. 1, which is a schematic illustration of a system 120 comprising an implant structure 122 which comprises an adjustable annuloplasty ring structure that is coupled to two or more flexible-longitudinal-tension-member-adjusting-mechanisms mechanisms 240 (e.g., flexible-longitudinal-tension-member-adjusting-mechanisms 240a and 240b), in accordance with some applications of the present invention. For some applications, as shown, the annuloplasty ring structure comprises a full annuloplasty ring. Adjusting mechanisms 240a and 240b typically comprise rotatable structures (e.g., spools, as described hereinbelow) which are coupled to respective first portions of flexible longitudinal tension members 60a and 60b. When system, 120 is implanted in the heart of the patient, implant structure 122 is configured to be implanted at an annulus of a native valve of a patient (e.g., an atrioventricular valve such as the mitral valve or the tricuspid valve). Tension members 60a and 60b are configured to extend toward the ventricle of the heart of the patient by passing between the leaflets of the valve or by passing through tissue of the annulus or commissures of the valve. Respective second end portions of tension members 60a and 60b are configured to be coupled to respective portions of cardiac tissue which are in the vicinity of the ventricle of the heart (e.g., portions of papillary muscle, portions of tissue at the base of the papillary muscle, portions of tissue in a vicinity of the apex, portions of tissue of an inner wall of the ventricle, and/or portions of tissue of an outer wall of the ventricle). Rotation of the rotatable structures of mechanisms 240a and 240b in a first rotational direction pulls tight the respective tension members 60a and 60b in order to draw the portions of cardiac tissue toward implant structure 122 (i.e., by reducing a distance between each mechanism 240 and the second end portion of the respective tension member 60). Rotation of the rotatable structures in a second, opposing, rotational direction loosens the respective tension members. For some applications of the present invention, system 120 functions to repair and/or effect remodeling of the portions of cardiac tissue, remodeling of the papillary muscles, and/or remodeling of a heart wall of the ventricle to treat distension. For some applications, tension members function as artificial chordae tendineae.


Flexible tension members 60a and 60b comprise a wire, a ribbon, a rope, or a band, comprising a flexible metal. Typically, flexible tension members 60a and 60b comprise a flexible and/or superelastic material, e.g., nitinol, polyester, stainless steel, or cobalt chrome. In some applications of the present invention, flexible tension members 60a and 60b each comprise a braided polyester suture (e.g., Ti-Cron (™)). In some applications of the present invention, flexible contracting members 60a and 60b are coated with polytetrafluoroethylene (PTFE). In some applications of the present invention, flexible tension member 60a and 60b each comprise a plurality of wires that are intertwined to form a rope structure.


Typically, but not necessarily, each of adjusting mechanisms 240a and 240b is coupled to a respective longitudinal guide member 86a and 86b. Distal end portions of each guide member 86a and 86b are coupled to respective portions of mechanisms 240a and 240b and facilitate guiding along members 86a and 86b of a rotational tool toward the rotatable structures of mechanisms 240a and 240b.


The annuloplasty structure of implant structure 122 is shaped to define a flexible, tubular body portion 24 that is shaped so as to define a lumen along a longitudinal axis of structure 122 that houses at least part of at least one flexible longitudinal contracting member 30 (e.g., a middle portion of member 30). At least a portion, e.g., the entirety, of body portion 24 comprises a compressible material (e.g., a coiled element 12), as shown by way of illustration and not limitation. For example, body portion 24 may comprise stent-like struts, or a braided mesh (independently of coiled portion 12). Typically, coiled element 12 is surrounded by a braided mesh 10.


Typically, body portion 24 comprises a flexible biocompatible material, e.g., nitinol, stainless steel, platinum iridium, titanium, expanded polytetrafluoroethylene (ePTFE), or cobalt chrome. In some applications of the present invention, body portion 24 is coated with PTFE (Polytetrafluoroethylene). In other applications of the present invention, body portion 24 comprises accordion-like compressible structures which facilitate proper cinching of the annulus when structure 122 is contracted. Body portion 24, when compressed, e.g., typically along a longitudinal axis of structure 122, enables portions of annuloplasty structure 122 to contract and independently conform to the configuration of the annulus of the mitral valve of a given subject. Thus, the compressible element of body portion 24 facilitates contraction of the annulus in response to contraction of structure 122.


The annuloplasty structure of implant structure 122 comprises a flexible-longitudinal-contracting-member-adjusting-mechanism 40 disposed within a housing 44 and coupled to contracting member 30 (as described hereinbelow with reference to FIG. 3). Adjusting mechanism 40 is configured to adjust a degree of tension of contracting member 30 in order to adjust a perimeter of implant structure 122. Adjusting mechanism 40 thereby acts as a perimeter-adjusting mechanism. Housing 44 of adjusting mechanism 40 is shaped so as to define first and second coupling members 31 and 35 (shown in FIG. 3). Body portion 24 has first and second ends 21 and 23 which are coupled to first and second coupling members 31 and 35, and thereby to adjusting mechanism 40, in order to create a full annuloplasty ring. Thus, adjusting mechanism 40 is aligned with body portion 24 along the longitudinal axis thereof.


Adjusting mechanisms 210a and 240b are coupled to an outer surface of body portion 24, as shown. Typically, mechanisms 240a and 240b are coupled via sutures or any other mechanical coupling, as described hereinbelow with reference to FIGS. 2A-B. Typically, for applications in which structure 122 is implanted on the annulus of a mitral valve, adjusting mechanism 240a is coupled to a portion of the annuloplasty structure in a vicinity thereof that is configured to be placed on or near a left fibrous trigone of the annulus of the mitral valve of the patient, and adjusting mechanism 240b is coupled to a portion of the annuloplasty structure in a vicinity thereof that is configured to be placed on or near a right fibrous trigone of the annulus of the mitral valve of the patient.


Flexible contracting member 30 comprises a wire, a ribbon, a rope, or a band, comprising a flexible metal. Flexible contracting member 30 is coupled at a first end portion thereof to flexible-longitudinal-contracting-member-adjusting-mechanism 40 which is coupled to a first end 21 of body portion 24. A second end portion of flexible contracting member 30 is coupled to a second end 23 of body portion 24. Typically, during a resting state of structure 122, flexible contracting member 30 (e.g., the middle portion thereof) is disposed in parallel with the longitudinal axis of structure 122. Flexible member 30, for some applications does not comprise a continuous band that runs through the entire lumen of the annuloplasty devices described herein, and flexible member 30 has at least one free end portion.


Typically, flexible contracting member 30 comprises a wire, a cable, or a rope, and taken together with the compressible element of body portion 24 and the braided mesh surrounding body portion 24, imparts flexibility to the entire annuloplasty structure.


Typically, flexible contracting member 30 comprises a flexible and/or superelastic material, e.g., nitinol, polyester, stainless steel, or cobalt chrome, and is configured to reside chronically within structure 122. In some applications of the present invention, flexible contracting member 30 comprises a braided polyester suture (e.g., Ti-Cron (™)). In some applications d the present, invention, flexible contracting member 30 is coated with polytetrafluoroethylene (PTFE). In some applications of the present invention, flexible contracting member 30 comprises a plurality of wires that are intertwined to form a rope structure.


Adjusting mechanism 40 comprises a housing 44 which houses a rotatable structure, or a spool 46. The rotatable structure is rotatable. In first and second opposing rotational directions with respect to housing 44 so as to expand and contract the annuloplasty structure, respectively. Spool 46 has a cylindrical body that is disposed perpendicularly with respect to the longitudinal axis of structure 122. As shown in FIG. 3, spool 46 is shaped to provide at least one hole 42 for coupling of the first end portion of flexible contracting member 30 thereto and, thereby, to adjusting mechanism 40. For some applications of the present invention, spool 46 is shaped to define one or more holes 42 configured for looping a portion of contracting member 30 therethrough, as described hereinbelow. In such an application: (a) a middle portion, which defines the first end portion, of contracting member 30 is coupled to spool 46 by being looped through one or more holes 47, (b) first and second portions that extend from the first end portion looped through spool 46 extend toward second end 23 of structure body portion 24, and (c) first and second free ends of contracting member 30 are coupled to second end 23 of body portion 24 and define a second end portion of contracting member 30.


It is to be noted that for some applications of the present invention, flexible contracting member 30 may be coupled at both its first and second end portions, e.g., first and second ends, to spool 46 of adjusting mechanism 40. In some applications of the present invention, a first end of flexible contracting member 30 is coupled to spool 46 while a second end of flexible contracting member 30 is coupled to the housing which houses spool 46. For some applications, contracting member 30 comprises a continuous band that is looped through a portion of spool 46.


As shown, the annuloplasty structure of implant structure 122 defines a substantially ring-shaped configuration, e.g., a “D”-shaped configuration, as shown, which conforms to the shape of the annulus of a mitral valve of the subject. For applications in which structure 122 is implanted at a tricuspid valve of the patient, the annuloplasty structure assumes a shape suitable to fit the tricuspid valve (e.g., a substantially oval shape).


Prior to contracting of structure 122, the compressible element of body portion 24 is relaxed and structure 122 defines a first perimeter thereof. Structure 122 provides portions 49 which are flexible and less longitudinally compressible, e.g., not longitudinally compressible, with respect to the compressible element of body portion 24. Portions 49 are configured to be disposed along the fibrous portion of the annulus that is between the fibrous trigones of the mitral valve of the heart when structure 122 is anchored, sutured, fastened or otherwise coupled to the annulus of the mitral valve. Portions 49 impart rigidity to structure 122 in the portion thereof that is disposed between the fibrous trigones such that structure 122 better mimics the conformation and functionality of the mitral valve. That is, during rotation of spool 46, and the concurrent contraction or expansion of structure 122, energy is not expended on contracting or expanding portions 49. As shown, coiled portion 12 of body portion 24 has a very small pitch compared to coiled portion 12 in the remaining portions of the annuloplasty structure. For some applications, portions 49 comprise a material that is arranged in a configuration in which portions 49 are more rigid.


Typically, both portions 49 have a combined length of 10-50 mm.


Thus, the annuloplasty structure of implant structure 122 defines a compressible portion and a non-compressible portion. Typically, a radius of curvature at a center of the compressible portion of body portion 24 is smaller than a radius of curvature at a center of less-compressible portions 49, when no external force is applied to the annuloplasty structure.


It is to be noted that the compressible element of body portion 24 and less-compressible portions 49 comprise flexible coiled elements by way of illustration and not limitation. For example, the compressible element of body portion 24 and less-compressible portions 49 may comprise stent-like struts, or a braided mesh. In either configuration, portions 49 are chronically longitudinally compressed in a resting state of structure 122.


It is to be noted that, structure 122 may be provided independently of less-compressible portions 49. In such applications of the present invention, the annuloplasty structure comprises a fully compressible ring, e.g., a continuous ring.


It is to be noted that housing 44 (and mechanism 40) may be disposed at any suitable location along structure 122, and not only in between portions 49 (e.g., in a portion of the annuloplasty structure designated for implantation at an anterior portion of the mitral valve). For example, housing 44 may be coupled to the section of body portion 24 that is compressible. In some applications of the present invention, housing 44 may be disposed in the middle of the section of body portion 24 that is compressible. In some applications of the present invention, housing 44 may be coupled to structure 122 at an interface between a first end of portion 49 and the section of body portion 24 that is compressible. In such applications of the present invention, portions 49 may be combined to form one substantially less-compressible portion having first and second ends that are in series with the compressible portion of body portion 24. For some applications, a plurality of housings and adjusting mechanisms 40 described herein may be coupled to the annuloplasty structure. Each adjusting mechanism 40 may be coupled to a respective contracting member 30 which controls a respective portion of the annuloplasty structure.


Typically, the annuloplasty structure of implant structure 122 is delivered to the annulus of the valve using an elongate tool 50 that is reversibly coupled to adjusting mechanism 40 of structure 122. Tool 50 comprises an elongate body portion 52 which houses a flexible rod that is coupled at a distal end thereof to a screwdriver head. The screwdriver head is configured to be disposed within the channel of spool 46. Typically, the rod functions as a screwdriver which applies force to the screwdriver head in order to rotate spool 46, and thereby facilitate contraction of structure 122.


For some applications, the screwdriver head comprises force applicator 88, as described hereinabove with reference to FIG. 3. For other applications, force applicator 88 is coupled to an elongate member that is removable from spool 46 by tool 50.


(In this context, in the specification and in the claims, “proximal” means closer to the orifice through which the implant structure is originally placed into the body of the patient, along the path of delivery of the implant structure, and “distal” means further from this orifice along the path of delivery of the implant structure.)


In some applications of the present invention, the annuloplasty structure is wrapped around an annuloplasty sizer 121. Once wrapped around sizer 121, the flexible member is contracted by tool 50 such that the annuloplasty structure hugs and is stabilized around sizer 121. Sizer is coupled to a shaft 123. (It is to be noted that, for clarity of illustration, tool 50, body portion 52, and shaft 123 are not shown in the enlarged portion of FIG. 1.) Tool 50, shaft 123, and sizer 121 help position implant structure 122 along the annulus and stabilize the structure as it is being contracted. Once the structure 122 is positioned at the annulus, structure is sutured, anchored, or otherwise coupled to the annulus. Following the coupling of structure 122 to the annulus, sizer 121 is decoupled from structure 122.


Subsequently, tool 50 facilitates the contraction and/or expansion of the annuloplasty structure of implant structure 122 in order to adjust a dimension of the valve annulus. The distal portion of tool 50 comprises a tool housing which surrounds a portion of housing 44 of mechanism 40, and stabilizes housing 44 during the advancement and contraction and/or expansion of structure 122.


Reference is now made to FIGS. 2A-B, which are schematic illustrations of a system 130, which is similar to system 120, as described hereinabove with reference to FIG. 1, with the exception that adjusting mechanisms 240a and 240b are coupled to body portion 24 of the annuloplasty structure of implant structure 122 by a slide-facilitating ring 241, in accordance with some applications of the present invention. Housing 248 of each adjusting mechanism 240 is coupled to ring 241, as shown in FIG. 2A. Ring 241 surrounds a portion of the outer surface of body portion 24 and enables mechanism 240 to slide along the outer surface of body portion 24 to any suitable position along the annuloplasty structure of implant structure 122 (as indicated by the arrow and the adjusting mechanism 240 shown in phantom in FIG. 2B).


It is to be noted that adjusting mechanisms 240 are shown in FIGS. 2A-B without guide members 86 (described hereinabove with reference to FIG. 1).


Reference is now made to FIG. 3, which is a schematic illustration showing a relationship among individual components of flexible-longitudinal-contracting-member-adjusting-mechanism 40, in accordance with some applications of the present invention. Adjusting mechanism 40 is shown as comprising spool housing 44 which defines an upper surface 45 and a recess 142 at a lower surface thereof. A spool 46 is configured to be disposed within housing 44 and defines an upper surface 150, a lower surface 180, and a cylindrical body portion disposed vertically between surfaces 150 and 180. The cylindrical body portion of spool 46 is shaped so as to define a channel which extends from a first opening at upper surface 150 to a second opening at lower surface 180.


Lower surface 180 of spool 46 is shaped to define one or more (e.g., a plurality, as shown) of recesses 182 which define structural barrier portions 188 of lower surface 160. It is to be noted that any suitable number of recesses 182 may be provided, e.g., between 1 and 10 recesses. For some applications, recesses 182 are provided circumferentially with respect to lower surface 180 of spool 46.


Typically, spool 46 comprises a locking mechanism 145. For some applications, locking mechanism 145 is coupled, e.g., welded, at least in part to a lower surface of spool housing 44. Typically, locking mechanism 145 defines a mechanical element having a planar surface that defines slits 58. The surface of locking mechanism 145 may also be curved, and not planar. Locking mechanism 145 is shaped to provide a protrusion 156 which projects out of a plane defined by the planar surface of the mechanical element. The slits define a depressible portion 120 of locking mechanism 145 that is disposed in communication with and extends toward protrusion 156.


In a resting state of locking mechanism 145 (i.e., a locked state of spool 46), protrusion 156 is disposed within a recess 182 of spool 46. Additionally, in the locked state of spool 46, protrusion 156 is disposed within recess 142 of housing 44.


Depressible portion 128 is aligned with the opening at lower surface 180 of spool 46 and is moveable in response to a force applied thereto by a distal force applicator 86. That is, distal force applicator 88 is configured to be disposed within the channel of spool 46. A distal end of applicator 88 is configured to push on depressible portion 128 in order to move depressible portion 128 downward so as to disengage protrusion 156 from within a recess 182 of spool and to unlock spool 46 from locking mechanism 145.


It is to be noted that the planar, mechanical element of locking mechanism 145 is shown by way of illustration and not limitation and that any suitable mechanical element having or lacking a planar surface but shaped to define at least one protrusion may be used together with locking mechanism 145.


A cap 1044 is provided that is shaped so as to define a planar surface and an annular wall having an upper surface 244 that is coupled to, e.g., welded to, the lower surface of spool housing 44. The annular wall of cap 1044 is shaped so as to define a recessed portion 1144 of cap 1044 that is in alignment with recess 142 of spool housing 44. Locking mechanism 14b is disposed between lower surface 180 of spool 46 and the planar surface of cap 1044.


In an unlocked state of adjusting mechanism 40, protrusion 156 of locking mechanism 145 is disposed within recessed portion 1144 of cap 1044. In the unlocked state, force applicator 88 extends through spool 46 and pushes against depressible portion 128 of locking mechanism 145. The depressible portion is thus pressed downward, freeing protrusion 156 from within a recess 182 defined by structural barrier portions 188 of the lower portion of spool 46. Additionally, protrusion 156 is freed from within the recessed portion of spool housing 44. As a result, contracting mechanism 40 is unlocked, and spool 46 may be rotated with respect to spool housing 44.


Cap 1044 functions to restrict distal pushing of depressible portion 128 beyond a desired distance so as to inhibit deformation of locking mechanism 145. For applications in which adjusting mechanism 40 is implanted in heart tissue, cap 1044 also provides an interface between adjusting mechanism 40 and the heart tissue. This prevents interference of heart tissue on adjusting mechanism 40 during the locking and unlocking thereof. Additionally, cap 1044 prevents damage to heart tissue by depressible portion 128 as it is pushed downward.


Spool 46 is shaped so as to define a driving interface 48. A rotation tool (not shown) is configured to slide engage spool 46 at interface 48. The rotation tool is configured to rotate spool 46 by applying rotational force to spool 46 at interface 48. For some applications, a friction-reducing ring (not shown in FIG. 3, but shown in FIG. 4) is disposed between upper surface 150 of spool 46 and the inner surface of upper surface 45 of spool housing 44.


For some applications the rotation tool used to rotate spool 46 may be shaped to provide distal force applicator 88 configured to unlock spool 46 from locking mechanism 145. When unlocked, spool 46 may be bidirectionally rotated.


Following rotation of spool 46 such that contraction member 30 is contracted sufficiently to adjust the perimeter of the annuloplasty structure to a desired dimension so as to contract the annulus of the valve, spool 46 is then locked in place so as to restrict rotation of spool 46. Force applicator 88 is removed from within the channel of spool 46, and thereby, depressible portion 128 returns to its resting state. As depressible portion 128 returns to its resting state, protrusion 156 is introduced within one of the plurality of recesses 182 of lower surface 180 of spool 46 and within recess 142 of housing 44, and thereby restricts rotation of spool 46.


Reference is now made to FIG. 4, which is a schematic illustration showing a relationship among individual components of flexible-longitudinal-tension-member-adjusting-mechanism 240, in accordance with some applications of the present invention. Adjusting mechanism 240 is shown as comprising spool housing 248 which defines an upper surface 160 and a lower surface 176 defining a recessed portion (as described with regard to recess 142 with reference to FIG. 3). A spool 246 is configured to be disposed within housing 248 and defines an upper surface 178, a lower surface 180, and a cylindrical body portion disposed vertically between surfaces 178 and 180. The cylindrical body portion of spool 246 is shaped so as to define a channel which extends from a first opening at upper surface 178 to a second opening at lower surface 180.


Lower surface 180 of spool 246 is shaped to define one or more (e.g., a plurality, as shown) of recesses 182 which define structural barrier portions 188 of lower surface 180. It is to be noted that any suitable number of recesses 182 may be provided, e.g., between 1 and 10 recesses. For some applications, recesses 182 are provided circumferentially with respect to lower surface 180 of spool 246.


Typically, spool 246 comprises a locking mechanism 145. For some applications, locking mechanism 145 is coupled, e.g., welded, at least in part to a lower surface of spool housing 248. Typically, locking mechanism 145 defines a mechanical element having a planar surface that defines silts 58. The surface of locking mechanism 145 may also be curved, and not planar. Locking mechanism 145 is shaped to provide a protrusion 156 which projects out of a plane defined by the planar surface of the mechanical element. The slits define a depressible portion 126 of locking mechanism 145 that is disposed in communication with find extends toward protrusion 156.


In a resting state of locking mechanism 145 (i.e., a locked state of spool 246), protrusion 156 is disposed within a recess 182 of spool 246. Additionally, in the locked state of spool 246, protrusion 156 is disposed within the recess of housing 248.


Depressible portion 128 is aligned with the opening at lower surface 180 of spool 246 and is moveable in response to a force applied thereto by a distal force applicator 88 that extends in a distal direction from a distal portion of longitudinal guide member 86. That is, distal force applicator 88 is configured to be disposed within the channel of spool 246. A distal end of applicator 88 is configured to push on depressible portion 128 in order to move depressible portion 128 downward so as to disengage protrusion 156 from within a recess 182 of spool and to unlock spool 246 from locking mechanism 145.


It is to be noted that the planar, mechanical element of locking mechanism 145 is shown by way of illustration and not limitation and that any suitable mechanical element having or lacking a planar surface but shaped to define at least one protrusion may be used together with locking mechanism 145.


A cap 1044 is provided that is shaped so as to define a planar surface and an annular wall having an upper surface 244 that is coupled to, e.g., welded to, lower surface 176 of spool housing 248. The annular wall of cap 1044 is shaped so as to define a recessed portion 1144 of cap 1044 that is in alignment with the recessed portion of spool housing 240. Locking mechanism 145 is disposed between lower surface 100 of spool 246 and the planar surface of cap 1044.


In an unlocked state of adjusting mechanism 240, protrusion 156 of locking mechanism 145 is disposed within recessed portion 1144 of cap 1044. In the unlocked state, force applicator 68 extends through spool 246 and pushes against depressible portion 126 of locking mechanism 145. The depressible portion is thus pressed downward, freeing protrusion 156 from within a recess 182 defined by structural barrier portions 188 of the lower portion of spool 246. Additionally, protrusion 156 is freed from within the recessed portion of spool housing 248. As a result, contracting mechanism 240 is unlocked, and spool 246 may be rotated with respect to spool housing 240.


Cap 1044 functions to restrict distal pushing of depressible portion 128 beyond a desired distance so as to inhibit deformation of locking mechanism 145. For applications in which adjusting mechanism 240 is implanted in heart tissue, cap 1044 also provides an interface between adjusting mechanism 240 and the heart tissue. This prevents interference of heart tissue on adjusting mechanism 240 during the locking and unlocking thereof. Additionally, cap 1044 prevents damage to heart tissue by depressible portion 128 as it is pushed downward.


Spool 246 is shaped so as to define a rotation-facilitating head 170. A rotation tool (not shown) is configured to slide distally along guide member 86 to engage head 170 of spool 246. The rotation tool is configured to rotate spool 246 by applying rotational force to head 170. A friction-reducing ring 172 is disposed between upper surface 178 of spool 246 and the inner surface of upper surface 160 of spool housing 248.


For some applications, as described herein, guide member 86 is not coupled to spool 246. For such applications the rotation tool used to rotate spool 246 may be shaped to provide a distal force applicator (similar to distal force applicator 88) configured to unlock spool 246 from locking mechanism 145. In the unlocked state, spool 246 may be bidirectionally rotated.


Following rotation of spool 246 such that tension member 60 is pulled sufficiently to adjust the degree of tension of member 60 so as treat tissue of the ventricle as described herein, spool 246 is then locked in place so as to restrict rotation of spool 246. Force applicator 88 is removed from within the channel of spool 246, and thereby, depressible portion 128 returns to its resting state. As depressible portion 128 returns to its resting state, protrusion 156 is introduced within one of the plurality of recesses 162 of lower surface 180 of spool 246 and within the recess of housing 248, and thereby restricts rotation of spool 246.


Spool 246 is shaped so as to provide a hole 242 or other coupling mechanism for coupling a first portion of flexible longitudinal tension member 60 to spool 246, and thereby to adjusting mechanism 240.



FIG. 5 is a schematic illustration of a system 220 comprising an implant structure 222 which comprises an adjustable annuloplasty ring structure that is coupled to two or more flexible-longitudinal-tension-member-adjusting-mechanisms 240a and 240b, as described hereinabove with reference to FIG. 1, in accordance with some applications of the present invention. For some applications, as shown, the annuloplasty ring structure comprises a partial annuloplasty ring. Adjusting mechanisms 240a and 240b typically comprise rotatable structures (e.g., spools, as described hereinbelow) which are coupled to respective first portions of flexible longitudinal tension members 60a and 60b. When system, 220 is implanted in the heart of the patient, implant structure 222 is configured to be implanted at an annulus of a native valve of a patient (e.g., an atrioventricular valve such as the mitral valve or the tricuspid valve). Tension members 60a and 60b are configured to extend toward the ventricle of the heart of the patient by passing between the leaflets of the valve or by passing through tissue of the annulus or commissures of the valve. Respective second end portions of tension members 60a and 60b are configured to be coupled to respective portions of cardiac tissue which are in the vicinity of the ventricle of the heart (e.g., portions of papillary muscle, portions of tissue at the base of the papillary muscle, portions of tissue in a vicinity of the apex, portions of tissue of an inner wall of the ventricle, and/or portions of tissue of an outer wall of the ventricle).


Rotation of the rotatable structures of mechanisms 240a and 240b in a first rotational direction pulls tight (e.g., shortens) the respective tension members 60a and 60b in order to draw the portions of cardiac tissue toward implant structure 222 (i.e., to reduce the distance between each mechanism 240 and the second end portion of the respective tension member 60). Mechanisms 240a and 240b thereby act as perimeter-adjusting mechanisms. For some applications of the present invention, system 220 functions to repair and/or effect remodeling of the portions of cardiac tissue, remodeling of the papillary muscles, and/or remodeling of a heart wall of the ventricle to treat distension. For some applications, tension members function as artificial chordae tendineae.


Flexible-longitudinal-tension-member-adjusting-mechanisms 240a and 240b, tension members 60a and 60b, contracting member 30, and flexible-longitudinal-contracting-member-adjusting-mechanism 40 shown in FIG. 4 are identical to those described hereinabove with reference to FIG. 1. For some applications, adjusting mechanisms 240a and 240b are coupled to the outer surface of body portion 224 of structure 222 by rings 241, as described hereinabove with reference to FIGS. 2A-B. The annuloplasty structure of implant structure 221 comprises a body portion 224 which is similar to body portion 24 described hereinabove with reference to FIG. 1. It is to be noted that although body portion 224 is shown as comprising only coiled portion 12, body portion 224 may comprise a braided mesh or may be surrounded by a braided mesh, as described hereinabove with reference to FIG. 1.


Adjusting mechanism 40 is coupled to a first end 221 of body portion 224. Flexible contracting member 30 is coupled at a first end portion thereof to adjusting mechanism 40. A second end portion of flexible contracting member 30 is coupled to a second end 223 of body portion 224. Typically, during the resting state, flexible contracting member 30 is disposed in parallel with the longitudinal axis of structure 222. That is, flexible member 30, for some applications does not comprise a continuous band that runs through the entire lumen of the annuloplasty devices described herein, and flexible member 30 has at least one free end portion.


Typically, first end 221 of body portion 224 is welded to coupling member 31 of a housing 344 surrounding spool 46. Housing 344 is similar to housing 44 described herein, with the exception that coupling member 35 of housing 44 is replaced with a first suture fastener 41. First suture fastener 41 is shaped to define a hole 43 for passage therethrough of a suture to suture structure 222 to tissue of the patient. Second end 223 of body portion 224 comprises a second suture fastener 37 that is shaped to define a hole 47 for passage therethrough of a suture.


Reference is now made to FIGS. 1-3 and 5. As shown in FIG. 3, spool 46 is shaped so as to provide one or more holes 42a and 42b or other coupling mechanism for coupling a first portion of flexible longitudinal contracting member 30 to spool 46, and thereby to adjusting mechanism 40. In response to a rotational force applied to spool 46 in a first rotational direction, successive portions of flexible contracting member 30 are wrapped around spool 46 in order to tighten contracting member 30. That is, during rotation of spool 46 in the first direction, successive portions of member 30 contact spool 46. As flexible contracting member 30 is wrapped around spool 46, the second end portion of member 30 is pulled toward adjusting mechanism 40. Pulling the second end of flexible contracting member 30 toward mechanism 40 pulls the respective second ends 23 of structures 122 and 222 toward the respective first ends 21 of structures 122 and 222. Responsively, the compressible element of body portion 24 is longitudinally compressed, thereby contracting structures 122 and 222.


It is to be noted that the contraction of structures 322 and 222 is reversible. That is, rotating spool 46 in a second rotational direction that opposes the first rotational direction used to contract the annuloplasty structure, unwinds a portion of flexible contracting member 30 from around spool 46. Unwinding the portion of flexible contracting member 30 from around spool 46 thus feeds the portion of flexible contracting member 30 back into the lumen of body portion 24 of respective structures 122 and 222, thereby slackening the remaining portion of flexible contracting member 30 that is disposed within the lumen of body portion 24. Responsively, the annuloplasty structure gradually relaxes and expands (i.e., with respect to its contracted state prior to the unwinding) as the compressible element of body portion 24 gradually expands.


Reference is now made to FIGS. 6A-B, which are schematic illustrations of a system 300 for repairing a mitral valve 14 and papillary muscles 2a and 2b of a heart 4 of the patient using implant structure 122, as described hereinabove with reference to FIG. 1, in accordance with some applications of the present invention. Implant structure 122 is positioned along the annulus of valve 14 and is coupled thereto using sutures, anchors, and/or any other suitable tissue-coupling element. As shown, implant 122 is positioned along the annulus in a manner in which portions 49 and mechanism 40 are disposed along the annulus at an anterior section 1 of valve 14, adjusting mechanism 240a is implanted in a vicinity of a left fibrous trigone 8 of valve 14, and adjusting mechanism 240b is implanted in a vicinity of a right fibrous trigone 5 of valve 14. Following the coupling of structure 122 to the annulus of valve 14, tension members 60a and 60b are pulled down into a ventricle 6 of heart 4 by the operating physician (e.g., using his/her hands or using a tool). For some applications, members 60a and 60b pass through an opening created in the annulus of valve 14 (e.g., by puncturing a needle therethrough). Alternatively, members 60a and 60b pass between the leaflets of valve 14. Further alternatively, members 60a and 60b pass through respective commissures of valve 14.


Respective tissue-coupling elements 302a and 302b are coupled to respective distal portions of members 60a and 60b, respectively. Elements 302a and 302b comprise helical tissue anchors by way of illustration and not limitation. That is, elements 302a and 302b may comprise any suitable tissue-engaging structure. As shown, elements 302a and 302b are configured to be coupled to tissue of respective papillary muscles 2a and 2b.


Following the coupling of structure 122 to the annulus of valve 14 and/or the coupling of tissue-engaging elements 302a and 302b, the spool of adjusting mechanism 40 is rotated in order to adjust a dimension of the annuloplasty structure of implant structure 122 and thereby to adjust a dimension of the annulus and relative positioning of the leaflets of valve 14. For example, in response to rotation of the spool of mechanism 40 in a first rotational direction thereof, the annuloplasty structure is contracted in order to contract the annulus and to draw together the leaflets of valve 14.


Following the coupling of tissue-engaging elements 302a and 302b, the spools of adjusting mechanisms 240a and 240b are rotated in order to adjust a degree of tension of tension members 60a and 60b. For example, in response to rotation of the spools of mechanisms 240a and 240b in a first rotational direction thereof, tension members 60a and 60b are pulled tight in order to pull on papillary muscles 2a and 2b.


For such applications, members 60a and 60b function to relocate and/or alter a geometry and/or spatial configuration of papillary muscles 60a and 60b. For some applications, members 60a and 60b function as artificial chordae tendineae.


For some applications, members 60a and 60b function to repair a distension of the heart wall surrounding ventricle 6.


It is to be noted that implant structure 122 and tension members 60a and 60b may be implanted using an open-heart or minimally-invasive procedure.


For some applications, whether the implant structure and tension members are implanted using an open-heart or a minimally-invasive procedure, adjustment (e.g., rotation) of mechanisms 40, 240a, and 240b is performed off-pump (e.g., while the heart is beating), using a tool to facilitate the rotation of the adjusting mechanisms (e.g., elongate tool 50, force applicator 88, or similar). For example, following an open-heart procedure, heart tissue may be closed so as to provide only a small channel through which the tool extends, such that the heart can beat without leaking. Adjustment (e.g., rotation) of the adjusting mechanisms off-pump facilitates adjustment of the valve annulus and ventricle, while monitoring heart function and/or blood flow using imaging techniques, e.g., such that the physician may adjust until optimal heart function and/or blood flow is attained. For example, the physician may advance the tool (e.g., facilitated by imaging, such as fluoroscopy and/or ultrasound), and then sequentially, and/or repeatedly adjust (e.g., rotate) mechanism 40, mechanism 240a, and mechanism 240b (e.g., facilitated by imaging, such as Doppler ultrasound, in real-time and/or between adjustments). The order in which the adjusting mechanisms are adjusted may be decided by the physician, such as in response to the blood flow monitoring.


Reference is now made to FIGS. 7A-B, which are schematic illustrations of a system 320 for repairing a mitral valve 14 and portions of tissue of ventricle 6 of a heart 4 of the patient, as described hereinabove with reference to FIGS. 6A-B, with the exception that tissue-engaging elements 302a and 302b are coupled to respective portions of tissue along an inner wall of ventricle 6, in accordance with some applications of the present invention. As shown, tissue-engaging element 302a is coupled to a portion 16 of tissue in a vicinity of an apex 17 of heart 4, and tissue-engaging element 302b is coupled to a portion 18 of tissue at a base of the papillary muscle.


For some applications, members 60a and 60b function to relocate and/or alter a geometry and/or spatial configuration of papillary muscles 60a and 60b. For other applications, members 60a and 60b function to repair a distension of the heart wall surrounding ventricle 6. For yet other applications, members 60a and 60b function as artificial chordae tendineae.


Reference is now made to FIGS. 8A-B, which are schematic illustrations of a system 340 for repairing a mitral valve 14 and portions of tissue of ventricle 6 of a heart 4 of the patient, as described hereinabove with reference to FIGS. 6A-B and 7A-B, with the exception that respective second portions of tension members 60a and 60b are configured to extend trans-myocardially to an external surface 19 of heart 4, in accordance with some applications of the present invention.


A respective tissue-engaging element is coupled to the second portion of each tension member 60a and 60b. Each tissue-engaging element comprises a respective tissue-abutting pad 342a and 342b configured to rest against respective portions of surface 19 of heart 4.


For such applications, members 60a and 60b function to repair a distension of the heart wall surrounding ventricle 6. For some applications, members 60a and 60b function to relocate and/or alter a geometry and/or spatial configuration of papillary muscles 60a and 60b.


Reference is now made to FIGS. 9A-B, which are schematic illustrations of an implant structure 400 comprising an annuloplasty ring structure as described hereinabove with reference to FIG. 1, with the exception that structure 400 comprises a proximity-adjusting-mechanism 420, in accordance with some applications of the present invention. Structure 400 defines an anterior-configured portion 402 configured for placement adjacent the anterior leaflet of the mitral valve. Additionally, structure 400 defines a posterior-configured portion 404 configured for placement adjacent the posterior leaflet of the mitral valve. For some applications, portion 402 is flexible and less longitudinally compressible than portion 404. For example, portion 402 may comprise portions 49 described hereinabove with reference to FIG. 1.


As described hereinabove, adjusting mechanism 40 is configured to adjust a dimension of structure 400 by contracting and expanding a contracting member disposed within the lumen of body portion 24.


As shown, flexible-longitudinal-contracting-member-adjusting-mechanism 40 is aligned with body portion 24 along the longitudinal axis thereof, as described hereinabove with reference to FIG. 1. Proximity-adjusting-mechanism 420 comprises any rotatable adjusting mechanism described herein (e.g., as described hereinabove with reference to FIGS. 3 and 4). Mechanism 420 comprises a housing 426 configured to surround a portion of the outer surface of body portion 74, typically surrounding a portion of body portion 74 that opposes adjusting mechanism 40. The rotatable structure of proximity-adjusting mechanism 420 is coupled to a first portion of a flexible elongate member 422. A second portion 424 of elongate member 422 is coupled to housing 44 (e.g., typically at an external surface thereof).


Typically, the rotatable structure of adjusting mechanism 420 comprises a spool. In response to rotation of the rotatable structure of adjusting mechanism 420 in a first rotational direction, successive portions of elongate member 422 are wound around the spool and pull tight the portion of elongate member 422 disposed between adjusting mechanisms 40 and 420. In response, a portion of posterior-configured portion 404 is pulled in the direction as indicated by the arrow in FIG. 9B. Thus, adjusting mechanism 420 is configured to adjust a septo-lateral dimension of structure 400 and of the annulus of the mitral valve when structure 400 is implanted at the annulus of the mitral valve in order to adjust the distance between the leaflets of the valve and to adjust opposing portions of the annulus of the mitral valve.


It is to be noted that the rotation of the rotational structure of adjusting mechanism 420 is reversible, and that following rotation of the rotatable structure in order to pull structure 400 into the configuration shown in FIG. 9B, the rotatable structure may be rotated in a second rotational direction that opposes the first rotational direction in order for structure 400 to assume the configuration shown in FIG. 9A.


It is to be noted that mechanisms 40 and 420 may be positioned at any suitable location along body portion 24 of structure 400.


As shown, the annuloplasty structure of implant structure 400 defines a substantially ring-shaped configuration, e.g., a “D”-shaped configuration, as shown, which conforms to the shape of the annulus of a mitral valve of the subject. For applications in which structure 400 is implanted at a tricuspid valve of the patient, the annuloplasty structure assumes a shape suitable to fit the tricuspid valve (e.g., a substantially oval shape).


It is to be noted that structure 400 is shown independently of flexible-longitudinal-tension-member-adjusting-mechanisms 240 and tension members 60 by way of illustration and not limitation. For some applications, structure 400 is coupled to one or more mechanisms 240.


Reference is now made to FIGS. 10A-B, which are schematic illustrations of an implant structure 500 comprising an annuloplasty ring structure configured to transition between a substantially planar configuration (FIG. 10A) and a saddle-shaped configuration (FIG. 10B) in response to rotation of two or more (e.g., three, as shown) flexible-longitudinal-contracting-member-adjusting-mechanisms 40. As shown, structure 500 comprises three adjusting mechanisms 40a, 40b, and 40c that are aligned with the body portion of structure 500 along a longitudinal axis thereof, as described hereinabove with reference to FIG. 1. Adjusting mechanisms 40a, 40b, and 40c are described hereinabove with reference to FIGS. 1 and 3. It is to be noted, however, that the adjusting mechanisms may comprise adjusting mechanisms 240, as described hereinabove with reference to FIGS. 1 and 4.


Structure 500 defines an anterior-configured portion 502, a posterior-configured portion 508, and first and second commissural portions 504 and 506, respectively. Typically, one or more flexible longitudinal contracting members (e.g., contracting member 30, as described herein) is disposed within the lumen of the body portion of structure 500. For some applications the number of contracting members disposed within the lumen of structure 500 corresponds to the number of adjusting mechanisms 40 coupled to structure 500.


In response to rotation of the rotatable structures of adjusting mechanisms 40a, 40b, and 40c in first rotational directions, the one or more contracting members are pulled tight (e.g., in response to winding successive portions of the one or more contracting members around the respective rotational structures of adjusting mechanisms 40a, 40b, and 40c). Responsively, anterior-configured portion 502 and posterior-configured portion 508 are pulled upward, and first and second commissural portions 504 and 506 are pulled downward, in the direction as indicated by the arrows, such that structure 500 assumes a saddle-shape (as shown in FIG. 10B).


It is to be noted that the rotation of the rotational structure of adjusting mechanisms 40a, 40b, and 40c is reversible, and that following rotation of the rotatable structure in order to pull structure 500 into the configuration shown in FIG. 10B, the rotatable structure may be rotated in a second rotational direction that opposes the first rotational direction in order for structure 500 to assume the configuration shown in FIG. 10A.


As shown, the annuloplasty structure of implant structure 500 defines a substantially ring-shaped configuration, e.g., a “D”-shaped configuration, as shown, which conforms to the shape of the annulus of a mitral valve of the subject. For applications in which structure 500 is implanted at a tricuspid valve of the patient, the annuloplasty structure assumes a shape suitable to fit the tricuspid valve (e.g., a substantially oval shape).


It is to be noted that structure 500 is shown independently of flexible-longitudinal-tension-member-adjusting-mechanisms 240 and tension members 60 by way of illustration and not limitation. For some applications, structure 500 is coupled to one or more mechanisms 240.


It is to be noted that mechanisms 40 may be positioned at any suitable location along body portion 24 of structure 500. It is to be further noted that any suitable number of mechanisms 40 may be coupled to structure 500.


Reference is made to FIG. 11. Following implantation of the implant structures described herein, the implant structures may be adjusted while the patient is not on a cardiopulmonary bypass pump (i.e., “off pump”, e.g., while the heart of the patient is beating) (e.g., as described hereinabove with reference to FIGS. 6A-B). Adjustment (e.g., rotation) of the adjusting mechanisms oil-pump facilitates adjustment while monitoring heart and/or valve function, and/or blood flow using imaging techniques, such as fluoroscopy and ultrasound (e.g., Doppler ultrasound), such that an operating physician 520 may adjust until optimal heart function and/or blood flow is attained. For example, and as shown in FIG. 11, two or more elongate rotation tools 522 (e.g., elongate rotation tools 522a, 522b, and 522c), configured to adjust rotate spool 46 and/or spool 246, may extend from outside of the body of the patient 524, to respective adjusting mechanisms of the implant structure, such that operating physician 520 can adjust the adjusting mechanisms of the annuloplasty structure while monitoring a display 526 that displays information indicative of the heart and/or valve function and/or the blood flow.


The order in which the adjusting mechanisms are adjusted may be decided by the physician, such as in response to the blood flow monitoring. For example, the operating physician may adjust adjusting mechanism 40, then observe display 526, then adjust one or more adjusting mechanisms 240. Alternatively, the physician may adjust one or more adjusting mechanisms 240 first, and subsequently adjust adjusting mechanism 40. It will be understood by those familiar with the art, that any order of adjustment is possible, and similarly, that display 526 may be monitored simultaneously with the adjustments, and/or between adjustments. It is to be noted that the scope of the invention includes other feedback systems, such as audio and/or tactile feedback, in addition to, or instead of, display 526.


Reference is now made to FIGS. 1, 2B, 5, 6A-B, 7A-B, 8A-B, and 9A-B. It is to be noted that the annuloplasty structures described herein may be shaped so as to define a saddle-shaped ring.


Reference is now made to FIGS. 1, 2B, 5, 6A-B, 7A-B, 8A-B, 9A-B, and 10A-B. It is to be noted that for any implant structure described herein, adjusting mechanism 240 may be used in place of adjusting mechanism 40, and adjusting mechanism 40 may be used in place of adjusting mechanism 240, mutatis mutandis. As described hereinabove, adjusting mechanisms 40 and 240 are rotatable in first and second opposing rotational directions (i.e., are bidirectionally rotatable), and are thereby configured to reversibly (1) tighten and loosen (e.g., shorten and lengthen) flexible contracting member 30, and thereby reversibly expand and contract the annuloplasty structure, and (2) tighten and loosen tension member 60, and thereby reversibly reshape tissue of the ventricle. It is to be further noted that adjusting mechanisms 240 described herein may be provided together with or independently of guide members 86.


Reference is again made to FIGS. 1, 2B, 5, 6A-B, 7A-B, 8A-B, 9A-B, and 10A-B. It is to be noted that any suitable number of flexible-longitudinal-tension-member-adjusting-mechanisms 240 may be coupled to the annuloplasty structures of implant structures 122, 222, 400 and 500. For some applications, only one flexible-longitudinal-tension-member-adjusting-mechanism 240 is coupled to the annuloplasty structures of implant structures 122, 222, 400, and 500. It is to be further noted that any suitable number of flexible longitudinal tension members 60 may be coupled to each flexible-longitudinal-tension-member-adjusting-mechanism 240.


Reference is now made to FIGS. 1, 2B, 5, 6A-B, 7A-B, 6A-B, 9A-B, and 10A-B. It is to be noted that although systems 300, 320, and 340 show implant structure 122, it is to be noted that the scope of the present invention includes the implantation of implant structure 222, as described hereinabove with reference to FIG. 5, implant structure 400, as described hereinabove with reference to FIGS. 9A-B, or implant structure 500, as described hereinabove with reference to FIGS. 10A-B. Additionally, it is to be noted that adjusting mechanisms 240a and 240b are shown as being disposed in the vicinities of respective fibrous trigones 8 and 10 by way of illustration and not limitation, and that mechanisms 240a and 240b may be positioned at anywhere along the body portion of the annuloplasty structure of implant structure 122. For example, mechanisms 240a and 240b may be sutured to the body portion prior to delivery of structure 122. Alternatively, mechanisms 240a and 240b are coupled to respective rings 241 (as described hereinabove with reference to FIGS. 2A-B), and mechanisms 240a and 240b are slid to desired locations along the body portion of the annuloplasty structure. It is to be further noted that housing 44 (and mechanism 40) may be disposed at any suitable location along structure 122, and not only in the portion of structure 122 configured to be disposed at the anterior section 7 of valve 14.


It is to be noted that systems 120, 220, 300, 320, 340, and structures 400 and 500 for repairing a dilated annul us of the subject may be used to repair any cardiac valve of the subject, e.g., the mitral valve, the tricuspid valve, the aortic valve, and the pulmonary valve. It is to be still further noted that systems described herein for treatment of valves may be used to treat other annular muscles within the body of the patient. For example, the systems described herein may be used in order to treat a sphincter muscle within a stomach of the subject.


Typically, the annuloplasty ring structures described herein, the adjusting mechanisms, and the flexible longitudinal members are advanced and implanted in an open-heart, procedure. For some applications, devices described herein may be implanted using a minimally-invasive or percutaneous transcatheter procedure.


Additionally, the scope of the present invention includes applications described in one or more of the following:

    • U.S. patent application Ser. No. 12/435,291 to Maisano et al., entitled, “Adjustable repair chords and spool mechanism therefor,” filed on May 4, 2009, which published as U.S. Patent Application Publication 2010/0161041;
    • U.S. patent application Ser. No. 12/437,103 to Zipory et al., entitled, “Annuloplasty ring with intra-ring anchoring,” filed on May 7, 2009, which published as U.S. Patent Application Publication 2010/0206767;
    • U.S. patent application Ser. No. 12/548,991 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed on Aug. 27, 2009, which published as U.S. Patent Application Publication 2010/0161042;
    • PCT Patent Application PCT/IL2009/001,209 to Cabiri et al., entitled, “Adjustable annuloplasty devices and mechanisms therefor,” filed on Dec. 22, 2009, which published as PCT Publication WO 10/073,246;
    • PCT Patent Application PCT/IL2010/000,357 to Maisano et al., entitled, “Implantation of repair chords in the heart,” filed on May 4, 2010, which published as WO 10/128,502; and/or
    • PCT Patent Application PCT/IL2010/000,358 to Zipory et al., entitled, “Deployment techniques for annuloplasty ring and over-wire rotation tool,” filed on May 4, 2010, which published as WO 10/128,503.


All of these applications are incorporated herein by reference. Techniques described herein can be practiced in combination with techniques described in one or more of these applications.


It will be appreciated by persons skilled in the art that the present, invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. Apparatus for use with a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the apparatus comprising: an implant structure, comprising: a body portion, configured to be secured around the valve annulus;a first adjusting mechanism, coupled to a first portion of the body portion, and comprising a first ring that surrounds the first portion and is moveable with respect to the body portion; anda second adjusting mechanism, coupled to a second portion of the body portion, and comprising a second ring that surrounds the second portion, and is moveable with respect to the body portion;a first elongate tool, configured to remodel tissue of the heart by actuating the first adjusting mechanism; anda second elongate tool, configured to remodel tissue of the heart by actuating the second adjusting mechanism.
  • 2. The apparatus according to claim 1, wherein the first tool and the second tool are transluminally advanceable to the implant structure after the body portion has been secured around the annulus.
  • 3. The apparatus according to claim 1, further comprising: a first longitudinal guide member, a distal end thereof coupled to the first adjusting mechanism, the first tool being advanceable along the first guide member to the first adjustment mechanism; anda second longitudinal guide member, a distal end thereof coupled to the second adjustment mechanism, the second tool being advanceable along the second guide member to the second adjustment mechanism.
  • 4. The apparatus according to claim 1, wherein: the first tool is configured to actuate the first adjusting mechanism by applying a rotational force to the first adjusting mechanism, andthe second tool is configured to actuate the second adjusting mechanism by applying a rotational force to the second adjusting mechanism.
  • 5. The apparatus according to claim 1, wherein the implant structure is configured to be implanted via an open-heart procedure.
  • 6. The apparatus according to claim 1, wherein the implant structure is configured to be transluminally advanced toward the annulus.
  • 7. The apparatus according to claim 1, wherein the tool is configured to actuate the first adjusting mechanism and the second adjusting mechanism while the heart is beating.
  • 8. The apparatus according to claim 1, wherein each of the adjusting mechanisms comprises a locking mechanism: having an unlocked state in which the adjusting mechanism is adjustable,having a locked state in which the locking mechanism inhibits adjustment of the adjusting mechanism, andconfigured to be intracorporeally moved between the locked state and the unlocked state.
  • 9. The apparatus according to claim 1, wherein the implant structure comprises a partial annuloplasty ring.
  • 10. The apparatus according to claim 1, wherein the implant structure comprises a full annuloplasty ring.
  • 11. The apparatus according to claim 1, wherein the first adjusting mechanism and the second adjusting mechanism are both rotatable bidirectionally.
  • 12. A method for use at a native valve of a heart of a patient, the native valve having a valve annulus, and the heart having a ventricle, the method comprising: securing, around the valve annulus, a body portion of an implant structure, the implant structure including: a first adjusting mechanism that includes a ring that (i) surrounds a first portion of the body portion, and (ii) is moveable with respect to the body portion, anda second adjusting mechanism that includes a ring that (i) surrounds a second portion of the body portion, and (ii) is moveable with respect to the body portion; andremodeling tissue of the heart by: using a first elongate tool to intracorporeally actuate the first adjusting mechanism, andusing a second elongate tool to intracorporeally actuate the second adjusting mechanism.
  • 13. The method according to claim 12, further comprising transluminally advancing the first tool and the second tool to the implant structure after the body portion has been secured around the annulus.
  • 14. The method according to claim 12, further comprising: transluminally advancing the first tool along a first guide member to the first adjustment mechanism while a distal end of the first guide member is coupled to the first adjustment mechanism; andtransluminally advancing the second tool along a second guide member to the second adjustment mechanism while a distal end of the second guide member is coupled to the second adjustment mechanism.
  • 15. The method according to claim 12, wherein: using the first elongate tool to actuate the first adjusting mechanism comprises using the first elongate tool to apply a rotational force to the first adjustment mechanism, andusing the second elongate tool to actuate the second adjusting mechanism comprises using the second elongate tool to apply a rotational force to the second adjustment mechanism.
  • 16. The method according to claim 12, wherein securing the body portion around the annulus comprises securing the body portion around the annulus via an open-heart procedure.
  • 17. The method according to claim 12, securing the body portion around the annulus comprises securing the body portion around the annulus a transluminal procedure.
  • 18. The method according to claim 12, wherein: using the first elongate tool to actuate the first adjusting mechanism comprises using the first elongate tool to actuate the first adjusting mechanism while the heart is beating, andusing the second elongate tool to actuate the second adjusting mechanism comprises using the second elongate tool to actuate the second adjusting mechanism while the heart is beating.
  • 19. The method according to claim 12, wherein each of the adjusting mechanisms includes a locking mechanism, and wherein the method further comprises: using the first tool to intracorporeally transitioning the locking mechanism of the first adjustment mechanism between a locked state and an unlocked state; andusing the second tool to intracorporeally transitioning the locking mechanism of the second adjustment mechanism between a locked state and an unlocked state.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is a Continuation of U.S. patent application Ser. No. 15/717,440 to Miller et al., filed. Sep. 27, 2017 which published as US 2018/0014934 and which is a Continuation of U.S. patent application Ser. No. 14/990,172 to Miller et al., filed Jan. 7, 2016, which published as US 2016/0113767 (now U.S. Pat. No. 9,775,709), and which is a Continuation of U.S. patent application Ser. No. 14/486,226 to Miller et al., filed Sep. 15, 2014, and entitled “Implant having multiple rotational assemblies,” which published as US 2015/0012087 (now U.S. Pat. No. 9,265,608), and which is a Continuation of U.S. patent application Ser. No. 13/666,262 to Miller et al, filed Nov. 1, 2012, and entitled “Implant having multiple rotational assemblies,” which published as US 2013/0116780 (now U.S. Pat. No. 8,858,623), and which claims priority from U.S. Provisional Application 61/555,570, filed on Nov. 4, 2011, which is incorporated herein by reference.

US Referenced Citations (852)
Number Name Date Kind
3604488 Wishart et al. Sep 1971 A
3656185 Carpentier Apr 1972 A
3840018 Heifetz Oct 1974 A
3881366 Bradley et al. May 1975 A
3898701 La Russa Aug 1975 A
4042979 Angell Aug 1977 A
4118805 Reimels Oct 1978 A
4214349 Munch Jul 1980 A
4261342 Aranguren Duo Apr 1981 A
4290151 Massana Sep 1981 A
4434828 Trincia Mar 1984 A
4473928 Johnson Oct 1984 A
4602911 Ahmadi et al. Jul 1986 A
4625727 Leiboff Dec 1986 A
4712549 Peters et al. Dec 1987 A
4778468 Hunt et al. Oct 1988 A
4917698 Carpentier et al. Apr 1990 A
4935027 Yoon Jun 1990 A
4961738 Mackin Oct 1990 A
5042707 Taheri Aug 1991 A
5061277 Carpentier et al. Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5104407 Lam et al. Apr 1992 A
5108420 Marks Apr 1992 A
5201880 Wright et al. Apr 1993 A
5258008 Wilk Nov 1993 A
5300034 Behnke et al. Apr 1994 A
5306296 Wright et al. Apr 1994 A
5325845 Adair Jul 1994 A
5346498 Greelis et al. Sep 1994 A
5383852 Stevens-Wright Jan 1995 A
5449368 Kuzmak Sep 1995 A
5450860 O'Connor Sep 1995 A
5464404 Abela et al. Nov 1995 A
5474518 Farrer Velazquez Dec 1995 A
5477856 Lundquist Dec 1995 A
5593424 Northrup, III Jan 1997 A
5601572 Middleman et al. Feb 1997 A
5626609 Zvenyatsky et al. May 1997 A
5643317 Pavcnik et al. Jul 1997 A
5669919 Sanders et al. Sep 1997 A
5674279 Wright et al. Oct 1997 A
5676653 Taylor et al. Oct 1997 A
5683402 Cosgrove et al. Nov 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716397 Myers Feb 1998 A
5728116 Rosenman Mar 1998 A
5730150 Peppel et al. Mar 1998 A
5749371 Zadini et al. May 1998 A
5782844 Yoon et al. Jul 1998 A
5810882 Bolduc et al. Sep 1998 A
5824066 Gross Oct 1998 A
5830221 Stein et al. Nov 1998 A
5843120 Israel et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5876373 Giba et al. Mar 1999 A
5935098 Blaisdell et al. Aug 1999 A
5957953 DiPoto et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
6001127 Schoon et al. Dec 1999 A
6042554 Rosenman et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6074341 Anderson et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6074417 Peredo Jun 2000 A
6086582 Altman et al. Jul 2000 A
6102945 Campbell Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6132390 Cookston et al. Oct 2000 A
6143024 Campbell et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6165119 Schweich, Jr. et al. Dec 2000 A
6174332 Loch et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6187040 Wright Feb 2001 B1
6210347 Forsell Apr 2001 B1
6217610 Carpentier et al. Apr 2001 B1
6228032 Eaton et al. May 2001 B1
6231602 Carpentier et al. May 2001 B1
6251092 Qin et al. Jun 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6315784 Djurovic Nov 2001 B1
6319281 Patel Nov 2001 B1
6328746 Gambale Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6406420 McCarthy et al. Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6451054 Stevens Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6461336 Larre Oct 2002 B1
6461366 Seguin Oct 2002 B1
6470892 Forsell Oct 2002 B1
6503274 Howanec, Jr. et al. Jan 2003 B1
6524338 Gundry Feb 2003 B1
6527780 Wallace et al. Mar 2003 B1
6530952 Vesely Mar 2003 B2
6533772 Sherts et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6547801 Dargent et al. Apr 2003 B1
6554845 Fleenor et al. Apr 2003 B1
6564805 Garrison et al. May 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson et al. May 2003 B1
6579297 Bicek et al. Jun 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6613078 Barone Sep 2003 B1
6613079 Wolinsky et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6651671 Donlon et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6682558 Tu et al. Jan 2004 B2
6689125 Keith et al. Feb 2004 B1
6689164 Seguin Feb 2004 B1
6695866 Kuehn et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6702846 Mikus et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709385 Forsell Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6711444 Koblish Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719786 Ryan et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730121 Ortiz et al. May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764310 Ichihashi et al. Jul 2004 B1
6764510 Vidlund et al. Jul 2004 B2
6764810 Ma et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790231 Liddicoat et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802319 Stevens et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6855126 Flinchbaugh Feb 2005 B2
6858039 McCarthy Feb 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6893459 Macoviak May 2005 B1
6908478 Alferness et al. Jun 2005 B2
6908482 McCarthy et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6960217 Bolduc Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6964686 Gordon Nov 2005 B2
6976995 Mathis et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007798 Happonen et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077850 Kortenbach Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7101395 Tremulis et al. Sep 2006 B2
7101396 Artof et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7118595 Ryan et al. Oct 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7150737 Purdy et al. Dec 2006 B2
7159593 McCarthy et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7169187 Datta et al. Jan 2007 B2
7172625 Shu et al. Feb 2007 B2
7175660 Cartledge et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7220277 Arru et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7226477 Cox Jun 2007 B2
7226647 Kasperchik et al. Jun 2007 B2
7229452 Kayan Jun 2007 B2
7238191 Bachmann Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7297150 Cartledge et al. Nov 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316710 Cheng et al. Jan 2008 B1
7329279 Haug et al. Feb 2008 B2
7329280 Bolling et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7361190 Shaoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7377941 Rhee et al. May 2008 B2
7390329 Westra et al. Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452376 Lim et al. Nov 2008 B2
7455690 Cartledge et al. Nov 2008 B2
7485142 Milo Feb 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7527647 Spence May 2009 B2
7530995 Quijano et al. May 2009 B2
7549983 Roue et al. Jun 2009 B2
7559936 Levine Jul 2009 B2
7562660 Saadat Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehn et al. Aug 2009 B1
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608103 McCarthy Oct 2009 B2
7625403 Krivoruchko Dec 2009 B2
7632303 Stalker et al. Dec 2009 B1
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7655015 Goldfarb et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7682319 Martin et al. Mar 2010 B2
7682369 Seguin Mar 2010 B2
7686822 Shayani Mar 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7722666 Lafontaine May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7780726 Seguin Aug 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883475 Dupont et al. Feb 2011 B2
7883538 To et al. Feb 2011 B2
7892281 Seguin et al. Feb 2011 B2
7927370 Webler et al. Apr 2011 B2
7927371 Navia et al. Apr 2011 B2
7942927 Kaye et al. May 2011 B2
7947056 Griego et al. May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7955377 Melsheimer Jun 2011 B2
7981152 Webler et al. Jul 2011 B1
7992567 Hirotsuka et al. Aug 2011 B2
7993368 Gambale et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8034103 Burriesci et al. Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8075616 Solem et al. Dec 2011 B2
8100964 Spence Jan 2012 B2
8123801 Milo Feb 2012 B2
8142493 Spence et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8142496 Berreklouw Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187324 Webler et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216302 Wilson et al. Jul 2012 B2
8231671 Kim Jul 2012 B2
8262725 Subramanian Sep 2012 B2
8265758 Policker et al. Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292884 Levine et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8343213 Salahieh et al. Jan 2013 B2
8349002 Milo Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8419825 Burgler et al. Apr 2013 B2
8430926 Kirson Apr 2013 B2
8449573 Chu May 2013 B2
8449599 Chau et al. May 2013 B2
8454686 Alkhatib Jun 2013 B2
8460370 Zakay Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8475491 Milo Jul 2013 B2
8475525 Maisano et al. Jul 2013 B2
8480732 Subramanian Jul 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523940 Richardson et al. Sep 2013 B2
8551161 Dolan Oct 2013 B2
8585755 Chau et al. Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8628569 Benichou et al. Jan 2014 B2
8628571 Hacohen et al. Jan 2014 B1
8641727 Starksen et al. Feb 2014 B2
8652202 Alon et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8679174 Ottma et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8728097 Sugimoto et al. May 2014 B1
8728155 Montorfano et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8734699 Heideman et al. May 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8747463 Fogarty et al. Jun 2014 B2
8778021 Cartledge Jul 2014 B2
8784481 Alkhatib et al. Jul 2014 B2
8790367 Nguyen et al. Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795355 Alkhatib Aug 2014 B2
8795356 Quadri et al. Aug 2014 B2
8795357 Yohanan et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852261 White Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858623 Miller Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8889861 Skead et al. Nov 2014 B2
8894702 Quadri et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932343 Alkhatib et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8961602 Kovach et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9023100 Quadri et al. May 2015 B2
9072603 Tuval et al. Jul 2015 B2
9107749 Bobo et al. Aug 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9138316 Bielefeld Sep 2015 B2
9173646 Fabro Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9198756 Aklog et al. Dec 2015 B2
9226825 Starksen et al. Jan 2016 B2
9265608 Miller Feb 2016 B2
9326857 Cartledge et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9427316 Schweich, Jr. et al. Aug 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9561104 Miller et al. Feb 2017 B2
9579090 Simms et al. Feb 2017 B1
9693865 Gilmore et al. Jul 2017 B2
9730793 Reich et al. Aug 2017 B2
9775709 Miller Oct 2017 B2
9788941 Hacohen Oct 2017 B2
9801720 Gilmore et al. Oct 2017 B2
9907547 Gilmore et al. Mar 2018 B2
10363136 Miller Jul 2019 B2
10368852 Gerhardt et al. Aug 2019 B2
20010021874 Carpentier et al. Sep 2001 A1
20020022862 Grafton et al. Feb 2002 A1
20020082525 Oslund et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020103532 Langberg et al. Aug 2002 A1
20020120292 Morgan Aug 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020169358 Mortier et al. Nov 2002 A1
20020177904 Huxel et al. Nov 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20020188350 Arru et al. Dec 2002 A1
20020198586 Inoue Dec 2002 A1
20030050693 Quijano et al. Mar 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078653 Vesely et al. Apr 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030114901 Loeb et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030144657 Bowe et al. Jul 2003 A1
20030171760 Gambale Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030204193 Gabriel et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030229350 Kay Dec 2003 A1
20030229395 Cox Dec 2003 A1
20040010287 Bonutti Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040059413 Argento Mar 2004 A1
20040068273 Fariss et al. Apr 2004 A1
20040111095 Gordon et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040133374 Kattan Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040176788 Opolski Sep 2004 A1
20040181287 Gellman Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260344 Lyons et al. Dec 2004 A1
20040260393 Rahdert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050010787 Tarbouriech Jan 2005 A1
20050016560 Voughlohn Jan 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050075727 Wheatley Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050090834 Chiang et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050125002 Baran et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159728 Armour et al. Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050187568 Klenk et al. Aug 2005 A1
20050192596 Jugenheimer et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203606 VanCamp Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222665 Aranyi Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050267478 Corradi et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060004443 Liddicoat et al. Jan 2006 A1
20060020326 Bolduc et al. Jan 2006 A9
20060020327 Lashinski et al. Jan 2006 A1
20060020333 Lashinski et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025858 Alameddine Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060041319 Taylor et al. Feb 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074486 Liddicoat et al. Apr 2006 A1
20060085012 Dolan Apr 2006 A1
20060095009 Lampropoulos et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060122633 To et al. Jun 2006 A1
20060129166 Lavelle Jun 2006 A1
20060142694 Bednarek et al. Jun 2006 A1
20060149280 Harvie et al. Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161265 Levine et al. Jul 2006 A1
20060184240 Jimenez et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206203 Yang et al. Sep 2006 A1
20060241622 Zergiebel Oct 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060247763 Slater Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20070001627 Lin et al. Jan 2007 A1
20070010800 Weitzner et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070021781 Jervis et al. Jan 2007 A1
20070027533 Douk Feb 2007 A1
20070027536 Mihaljevic et al. Feb 2007 A1
20070032823 Tegg Feb 2007 A1
20070038221 Fine et al. Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070038296 Navia et al. Feb 2007 A1
20070039425 Wang Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083168 Whiting et al. Apr 2007 A1
20070083235 Jervis et al. Apr 2007 A1
20070100427 Perouse May 2007 A1
20070106328 Wardle et al. May 2007 A1
20070112359 Kimura et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118213 Loulmet May 2007 A1
20070118215 Moaddeb May 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070173931 Tremulis et al. Jul 2007 A1
20070198082 Kapadia et al. Aug 2007 A1
20070219558 Deutsch Sep 2007 A1
20070239208 Crawford Oct 2007 A1
20070255397 Ryan et al. Nov 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070270755 Von Oepen et al. Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070282375 Hindrichs et al. Dec 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070295172 Swartz Dec 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080027483 Cartledge et al. Jan 2008 A1
20080027555 Hawkins Jan 2008 A1
20080035160 Woodson et al. Feb 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080058595 Snoke et al. Mar 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065204 Macoviak et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080086203 Roberts Apr 2008 A1
20080091169 Heideman et al. Apr 2008 A1
20080091257 Andreas et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080103572 Gerber May 2008 A1
20080140116 Bonutti Jun 2008 A1
20080167713 Bolling Jul 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080177380 Starksen et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234729 Page et al. Sep 2008 A1
20080262480 Stahler et al. Oct 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080275300 Rothe et al. Nov 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080275551 Alfieri Nov 2008 A1
20080281353 Aranyi et al. Nov 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080287862 Weitzner et al. Nov 2008 A1
20080288044 Osborne Nov 2008 A1
20080288062 Andrieu et al. Nov 2008 A1
20080300537 Bowman Dec 2008 A1
20080300629 Surti Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20090024110 Heideman et al. Jan 2009 A1
20090028670 Garcia et al. Jan 2009 A1
20090043381 Macoviak et al. Feb 2009 A1
20090054723 Khairkhahan et al. Feb 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090062866 Jackson Mar 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090082797 Fung et al. Mar 2009 A1
20090088837 Gillinov et al. Apr 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090099650 Bolduc et al. Apr 2009 A1
20090105816 Olsen et al. Apr 2009 A1
20090125102 Cartledge et al. May 2009 A1
20090166913 Guo et al. Jul 2009 A1
20090171439 Nissl Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090177274 Scorsin et al. Jul 2009 A1
20090248148 Shaolian et al. Oct 2009 A1
20090254103 Deutsch Oct 2009 A1
20090264994 Saadat Oct 2009 A1
20090287231 Brooks et al. Nov 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100001038 Levin et al. Jan 2010 A1
20100010538 Juravic et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030014 Ferrazzi Feb 2010 A1
20100030328 Seguin et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100049213 Serina et al. Feb 2010 A1
20100063542 van der Burg et al. Mar 2010 A1
20100063550 Felix et al. Mar 2010 A1
20100076499 McNamara et al. Mar 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100106141 Osypka et al. Apr 2010 A1
20100114180 Rock et al. May 2010 A1
20100121349 Meier May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100130989 Bourque et al. May 2010 A1
20100130992 Machold et al. May 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100168845 Wright Jul 2010 A1
20100174358 Rabkin et al. Jul 2010 A1
20100179574 Longoria et al. Jul 2010 A1
20100217184 Koblish et al. Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234935 Bashiri et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100249915 Zhang Sep 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100262232 Annest Oct 2010 A1
20100262233 He Oct 2010 A1
20100286628 Gross Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100305475 Hinchliffe et al. Dec 2010 A1
20100324598 Anderson Dec 2010 A1
20110004210 Johnson et al. Jan 2011 A1
20110004298 Lee et al. Jan 2011 A1
20110009956 Cartledge et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110026208 Utsuro et al. Feb 2011 A1
20110029066 Gilad et al. Feb 2011 A1
20110035000 Nieminen et al. Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110071626 Wright et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087146 Ryan et al. Apr 2011 A1
20110093002 Rucker et al. Apr 2011 A1
20110118832 Punjabi May 2011 A1
20110137410 Hacohen Jun 2011 A1
20110144703 Krause et al. Jun 2011 A1
20110202130 Cartledge et al. Aug 2011 A1
20110208283 Rust Aug 2011 A1
20110230941 Markus Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110238088 Bolduc et al. Sep 2011 A1
20110257433 Walker Oct 2011 A1
20110257633 Cartledge et al. Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20110276062 Bolduc Nov 2011 A1
20110288435 Christy et al. Nov 2011 A1
20110301498 Maenhout et al. Dec 2011 A1
20120053628 Sojka et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120078355 Zipory et al. Mar 2012 A1
20120078359 Li et al. Mar 2012 A1
20120089022 House et al. Apr 2012 A1
20120089125 Scheibe et al. Apr 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120109155 Robinson et al. May 2012 A1
20120136436 Cabiri May 2012 A1
20120150290 Gabbay Jun 2012 A1
20120158021 Morrill Jun 2012 A1
20120158023 Mitelberg et al. Jun 2012 A1
20120179086 Shank et al. Jul 2012 A1
20120191182 Hauser et al. Jul 2012 A1
20120226349 Tuval et al. Sep 2012 A1
20120239142 Liu et al. Sep 2012 A1
20120245604 Tegzes Sep 2012 A1
20120271198 Whittaker et al. Oct 2012 A1
20120296349 Smith et al. Nov 2012 A1
20120296417 Hill et al. Nov 2012 A1
20120310330 Buchbinder et al. Dec 2012 A1
20120323313 Seguin Dec 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130053884 Roorda Feb 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130085529 Housman Apr 2013 A1
20130090724 Subramanian et al. Apr 2013 A1
20130096673 Hill et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130116780 Miller May 2013 A1
20130123910 Cartledge et al. May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190863 Call et al. Jul 2013 A1
20130204361 Adams et al. Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130231701 Voss et al. Sep 2013 A1
20130268069 Zakai et al. Oct 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130297013 Klima et al. Nov 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130331930 Rowe et al. Dec 2013 A1
20140067054 Chau et al. Mar 2014 A1
20140081394 Keranen et al. Mar 2014 A1
20140088368 Park Mar 2014 A1
20140088646 Wales et al. Mar 2014 A1
20140094826 Sutherland et al. Apr 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140114390 Tobis et al. Apr 2014 A1
20140135799 Henderson May 2014 A1
20140142619 Serina et al. May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148849 Serina et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140163670 Alon et al. Jun 2014 A1
20140163690 White Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140207231 Hacohen et al. Jul 2014 A1
20140243859 Robinson Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140251042 Asselin et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20140303720 Sugimoto et al. Oct 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140350660 Cocks et al. Nov 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150018940 Quill et al. Jan 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150094800 Chawla Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150127097 Neumann et al. May 2015 A1
20150133997 Deitch et al. May 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150230919 Chau et al. Aug 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150351910 Gilmore et al. Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160120642 Shaolian et al. May 2016 A1
20160120645 Alon May 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160242762 Gilmore et al. Aug 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160302917 Schewel Oct 2016 A1
20160317302 Madjarov et al. Nov 2016 A1
20160361058 Bolduc et al. Dec 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
20170042670 Shaolian et al. Feb 2017 A1
20170224489 Starksen et al. Aug 2017 A1
20170245993 Gross et al. Aug 2017 A1
20180008409 Kutzik et al. Jan 2018 A1
20180049875 Iflah et al. Feb 2018 A1
20180168803 Pesce et al. Jun 2018 A1
20180228608 Sheps et al. Aug 2018 A1
20180256334 Sheps et al. Sep 2018 A1
20180289480 D'ambra et al. Oct 2018 A1
20180318080 Quill et al. Nov 2018 A1
20180318083 Bolling et al. Nov 2018 A1
20190029498 Mankowski et al. Jan 2019 A1
20190038411 Alon Feb 2019 A1
20190111239 Bolduc et al. Apr 2019 A1
20190117400 Medema et al. Apr 2019 A1
20190125325 Sheps et al. May 2019 A1
20190151093 Keidar et al. May 2019 A1
20190175346 Schaffner et al. Jun 2019 A1
20190183648 Trapp et al. Jun 2019 A1
20190290260 Caffes et al. Sep 2019 A1
20190290431 Genovese et al. Sep 2019 A1
20190321049 Herman et al. Oct 2019 A1
20190343633 Garvin et al. Nov 2019 A1
20200015971 Brauon et al. Jan 2020 A1
20200289267 Peleg et al. Sep 2020 A1
20200337840 Reich Oct 2020 A1
20210015475 Lau Jan 2021 A1
20210059820 Clark et al. Mar 2021 A1
20210085461 Neumark et al. Mar 2021 A1
20210093453 Peleg et al. Apr 2021 A1
Foreign Referenced Citations (17)
Number Date Country
1034753 Sep 2000 EP
3531975 Sep 2019 EP
9205093 Apr 1992 WO
9846149 Oct 1998 WO
02085250 Feb 2003 WO
03047467 Jun 2003 WO
2010000454 Jan 2010 WO
2012176195 Mar 2013 WO
2014064964 May 2014 WO
2019145941 Aug 2019 WO
2019145947 Aug 2019 WO
2019182645 Sep 2019 WO
2019224814 Nov 2019 WO
2020240282 Dec 2020 WO
2021014440 Jan 2021 WO
2021038559 Mar 2021 WO
2021038560 Mar 2021 WO
Non-Patent Literature Citations (29)
Entry
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009).
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319.
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522.
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999).
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001).
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting Oct. 7-11, Book of Procees. (2000).
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493.
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000).
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011).
Amplatzer® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008.
Amplatzer® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the Amplatzer Septal Occluder System, AGA Medical Corporation, Apr. 2008.
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014).
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008.
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success—midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52.
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005).
Dictionary.com definition of “lock”, Jul. 29, 2013.
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003).
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154.
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007.
Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008.
Maisano, The double-orifice technique as a standardized approach to treat mitral . . . , European Journal of Cardio-thoracic Surgery 17 (2000) 201-205.
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995).
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006).
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484.
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994).
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3.
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391.
Swenson, Orvar. “Internal device for collrol of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545.
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978.
Related Publications (1)
Number Date Country
20190336289 A1 Nov 2019 US
Provisional Applications (1)
Number Date Country
61555570 Nov 2011 US
Continuations (4)
Number Date Country
Parent 15717440 Sep 2017 US
Child 16518781 US
Parent 14990172 Jan 2016 US
Child 15717440 US
Parent 14486226 Sep 2014 US
Child 14990172 US
Parent 13666262 Nov 2012 US
Child 14486226 US