This application is a national phase entry under 35 U.S.C. 371 of international patent application No. PCT/US2016/055514, filed Oct. 5, 2016, the entirety of which is incorporated herein by reference.
This disclosure relates generally to medical devices, and specifically to bone implants.
An ankle joint may become severely damaged and may be treated by total ankle replacement. One type of total ankle replacement comprises two components; one part is implanted in a resected tibia and the other part is implanted in a resected talus. The talar implant can include a stem and/or one or more pegs, screws or combinations of pegs, screws and stem that extend into openings drilled into the resected surface of the bone. In some patients, the quality of the bone into which the pegs are to be inserted is poor.
In some embodiments, an implant system comprises an implant plate adapted to be positioned on a surface of a resected bone. The implant plate has a plurality of openings therethrough. A plurality of independently positionable pegs are provided for attaching the implant plate to the resected bone. Each peg has a longitudinal axis and comprises: a peg body and a retaining device. The peg body is adapted to be inserted into a respective peg hole in the resected bone. The peg body has a transverse dimension in a direction normal to the longitudinal axis, the transverse dimension larger than the plurality of openings. The retaining device is separate from the peg body. The retaining device is configured to attach to the peg body, with at least a first portion of the retaining device positioned above an upper surface of the implant plate, and a connecting portion of the retaining device extending through one of the openings of the implant plate.
In some embodiments, an implant system comprises an implant plate configured to be positioned on a surface of a resected bone. The implant plate has a plurality of openings therethrough. A plurality of independently positionable pegs are provided for attaching the implant plate to the resected bone. Each peg has a longitudinal axis and comprises: a peg body and a retaining device. The peg body is adapted to be inserted into a respective peg hole in the resected bone. The peg body has a transverse dimension in a direction normal to the longitudinal axis. The transverse dimension is larger than a diameter of at least one of the plurality of openings. The peg body further comprises a proximal connecting portion penetrating one of the openings of the implant plate. The retaining device is separate from the peg body. The retaining device is configured to attach to the peg body, with at least a first portion of the retaining device above an upper surface of the implant plate.
In some embodiments, a method, comprises: (a) drilling at least two peg holes into a resected surface of a bone; (b) assembling at least two pegs to an implant plate, the implant plate having a plurality of openings, each of the two pegs having a longitudinal axis and a peg body with a transverse dimension in a direction normal to the longitudinal axis, the transverse dimension larger than the plurality of openings; and (c) after step (b), attaching the implant to the bone so that the at least two pegs are inserted in the at least two peg holes.
This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
The implant plate 130 is configured to be positioned on a surface of a resected bone, such as a resected talus 140. The implant plate 130 has a plurality of peg openings 132 therethrough, as best seen in
The plurality of independently positionable pegs 120 are provided for attaching or securing the implant plate 130 to the resected bone 140. Each peg 120 has a longitudinal axis 123. Each peg 120 comprises a peg body 122 adapted to be inserted into a respective peg hole 125 in the resected bone 140.
In some embodiments. the peg body 122 of at least one of the plurality of pegs 120 has a cylindrical portion with an outer diameter 126 greater than an outer diameter 134 of a corresponding one of the plurality of openings 132. Although shown and described as cylindrical, the pegs may be shaped triangular, square, hexagonal, or a combination thereof. The side surface of the peg body 122 can have a textured surface. The peg body 122 has an opening 131 with an inner wall 129 defining an interior cavity along a longitudinal axis 123 of the peg body. In some embodiments, the opening 131 of the peg body 122 has a countersink and/or counterbore or relief pocket 131c for receiving a top portion 127 of a retaining device 124. In some embodiments, the countersink or counterbore 131c has no threads, and is adapted to receive a non-locking screw 124, as shown in
The peg 120 further comprises a retaining device 124 separate from the peg body 122. The retaining device 124 is configured to attach to the peg body 122, with at least a first portion 127 of the retaining device 124 positioned above a lower surface 135 of the implant plate 130. In some embodiments, the first portion 127 of the retaining device 124 is positioned entirely within the thickness of the implant plate 130, between the lower surface 135 and the top surface 139 to ensure proper seating of the talar dome onto the implant (e.g., talar) plate. In this configuration, the first portion 127 does not protrude above the top surface 139 of the implant plate 130. Countersinks, counterbores or relief pockets on the top surface of the talar plate can allow the first portion 127 of the retaining device to be positioned within the thickness of the implant plate 130. In some embodiments, the first portion 127 of the retaining device 124 is positioned above a lower surface 135 of the plate 130, and can extend slightly above an upper surface 139 of the plate 130. In other embodiments, the first portion 127 of the retaining device 124 is positioned above a upper surface 139 of the plate 130, and a connecting portion 128 of the retaining device 124 extends from the bottom of the countersink 131c—or the top surface 139 of the opening 131 if there is no countersink or counterbore—of the implant plate 130 to the peg body 122.
In some embodiments, the retaining device 124 of at least one of the plurality of pegs 120 is an inner component having a proximal head 127 larger in diameter or periphery than the corresponding one of the plurality of openings 132 (or diameter or inner periphery) and a distal body 128 sized to fit through or be received within the corresponding one of the plurality of openings 132. The distal body 128 of the inner component 124 is configured to engage the inner wall 129 of the opening 131 of the peg body 122. In some embodiments, the distal body 128 has male threads disposed on an outer surface thereof and the inner wall 129 of opening 131 has female threads. For example, the inner wall can be threaded, and the inner component 124 can be a screw. In some embodiments, the inner component is a non-locking screw, as shown in
In some embodiments, the distal body 128 has barbs disposed on an outer surface thereof, and the inner wall 129 of the opening 131 can be smooth, ridged, grooved, or barbed. In some embodiments, the distal body 128 has ridges, and the inner wall 129 can be smooth, ridged, grooved, or barbed. In some embodiments, the distal body 128 has splines, and the inner wall 129 can be smooth or splined. In other embodiments, either or both of the distal body 128 and the inner wall 129 can have a knurled surface. In other embodiments, either or both of the distal body 128 and the inner wall 129 can have a tapered surface.
In some embodiments, the inner wall 129 has a female thread with an inner diameter ID and an outer diameter OD (shown in
In some embodiments, the final positioning of the talar construct can also be accomplished by the “floating Talus” method. In the “floating Talus” method the surgeon places each of a plurality of trials in the bony spaces between the resected talus and the tibia individually, and moves the ankle joint through its full range of motion. By doing this each trial settle in when it reaches its optimal position, instead of being directed by the surgeon to a predetermined location.
Once the talar plate trial component 150 is properly positioned, the surgeon inserts at least two k-wires or pins 156 through the talar plate trial component 150 into the bone 140, as shown in
Pilot holes are then drilled in the resected bone 140 using a drill guide 160 that allows the surgeon to vary the direction and angle of the pilot holes, as shown in
Once the pilot holes are all drilled, the surgeon can remove the drill guide 160 and the talar plate trial component 150. The k-wires 156 remain positioned in the bone 140, to enable proper positioning and alignment of the implant plate 130. Then the implant plate 130 is positioned on the resected bone 140, with the k-wires 156 extending through the openings 136 of the implant plate 130.
Then, one of the retaining devices 124 is inserted into its corresponding peg body 122, with at least a first portion of the retaining device 127 positioned above a bottom surface 135 of the implant plate 130, and either a second portion 128 of the retaining device 124 extends to the peg body, or a portion of the peg body penetrates the bottom surface of a respective opening 132 in the implant plate 130. In some embodiments, the first portion 127 of the retaining device 124 is positioned entirely within the thickness of the implant plate 130. In some embodiments, the first portion 127 of the retaining device 124 is positioned above a lower surface 135 of the plate 130, and to extend slightly above an upper surface 139 of the plate 130, between the lower surface 135 and the top surface 139 to ensure proper seating of the talar dome onto the talar plate. Countersinks, counterbores or relief pockets on the top surface of the talar plate can allow the first portion 127 of the retaining device to be positioned within the thickness of the implant plate 130. In other embodiments, the first portion 127 of the retaining device 124 is positioned above an upper surface 139 of the plate 130, and a connecting portion 128 of the retaining device 124 is configured to be extend through one of the openings 132 from the bottom of the countersink 131c—or the top surface of the opening 131 if there is no countersink or counterbore—of the implant plate 130 to the peg body 122.
As shown in
In an embodiment of the method as shown in
In other embodiments of the method, using a “back table” approach, the surgeon or staff pre-assembles the pegs 120 to the bone 170, forming the implant plate assembly 100 as shown in
In some embodiments, the outer diameter of the threads of the distal body 128 is larger than the outer diameter of the threads in the inner wall 129 of opening 131, so that inserting the distal body 128 entirely into the opening 131 of the peg body 122 exerts a force in the radial direction, causing the peg body 122 to strain or expand slightly in the radial direction and securely grip the bone 170. The strain of the peg body 122 can be enhanced if the peg body has radial slots (shown in
The peg body 222 is rotationally symmetric, and has a circular cross-section in any plane transverse to the longitudinal axis 223 of the peg 220. The peg body 222 is generally bullet-shaped. In other embodiments, the peg body 22 can be various shapes including but not limited to triangular, hexagonal, square, elliptical, and the like. The side surface of the peg body 222 can have a textured surface. The distal end of the peg body 222 can be hemispherical, ellipsoidal, or the like.
A retaining device 224—separate from the peg body 222—is configured to attach to the peg body 222, with at least a first portion 227 of the retaining device 224 positioned above a bottom surface 135 of the implant plate 130 as discussed above, and a connecting portion 233 of the retaining device 224 extending from the proximal portion 227 of the retaining device to the peg body 222. In some embodiments, the first portion 227 of the retaining device 224 is configured to be positioned entirely within the thickness of the implant plate 130, between the lower surface 135 and the top surface 139 to ensure proper seating of the talar dome onto the talar plate. Countersinks, counterbores or relief pockets on the top surface of the talar plate can allow the first portion 227 of the retaining device to be positioned within the thickness of the implant plate 130. In some embodiments, the first portion 227 of the retaining device 224 is configured to be positioned above a lower surface 135 of the plate 130, and to extend slightly above an upper surface 139 of the plate 130. In other embodiments, the first portion 227 of the retaining device 224 is configured to be positioned above an upper surface 139 of the plate 130, and a connecting portion 233 of the retaining device 224 is configured to be extend through one of the openings 132 from the bottom of the countersink 131c—or the top surface of the opening 131 if there is no countersink—of the implant plate 130 to the peg body 222.
In some embodiments, the retaining device 224 of at least one of the plurality of pegs 220 is a unitary inner component having a proximal head 227 larger than the corresponding one of the plurality of openings 132, such that the proximal head 227 is not received within the opening 231, and a distal body 228 sized to fit through the corresponding one of the plurality of openings 132. The distal body 228 of the inner component 224 is configured to engage the inner wall 229 of the opening 231 of the peg body 222. In some embodiments, the distal body 228 a tapered outer surface, and the inner wall 229 of opening 231 has a tapered inner surface. For example, the taper can be a Morse taper. In other embodiments, other tapers are used. In some embodiments, a narrow connecting portion 233 connects the head 227 and the distal body 228. In other embodiments, the connecting portion 233 is as wide as the greatest transverse dimension of the tapered portion 224, for greater strength.
Alternatively, the implant plate assembly 220 can be pre-assembled using the back table method discussed above, and all the pegs of the assembly inserted into the bone 170 at the same time. Briefly, the implant plate assembly 220 is connected to the pegs 220 and the entire assembly is positioned within and thereon the talus simultaneously.
In some embodiments, the retaining device 224 is unitary. In other embodiments, the retaining device 224 has two components: the bottom component includes the tapered portion 228 and the connecting portion 233, which can have a male outer thread (not shown). The top portion includes a threaded hub or cap screw 227 with a female inner thread (not shown). If the top portion 227 is a separate piece from the bottom portion 228, then the diameter of the bottom portion 228 can be greater than the diameter of the holes 132 of the implant plate 130.
The peg body 422 further comprises a proximal connecting portion 433 configured to extend through one of the openings 132 of the implant plate 130 from a bottom surface 135 of the implant plate 130. For example, in some embodiments, the peg body 422 has a thread on at least the connecting portion 433 of the peg body, and the retaining device is a threaded cap 447 configured to engage the thread of the connecting portion 433 when the thread extends through the corresponding one of the plurality of openings 132. Each of the plurality of openings 132 of the implant plate 130 is configured to receive the connecting portion 433 of the peg body 422 at a plurality of different angles. For example, the pegs can be attached at a variety of angles from about 45, 40, 35, 30, 25, 20, 15, 10, 5, and 0 degrees (°) with respect to a direction normal to the bottom surface 135 of the implant plate 130. Each peg 420 in the plurality of pegs is adapted to be inserted at a respectively different angle relative to the implant plate 130, independently from the angle of each remaining peg in the plurality of pegs.
A retaining device 447 is separate from the peg body 422. The retaining device 447 is configured to attach to the peg body 422, with at least a first portion of the retaining device 427 above a bottom surface 135 of the implant plate 130. In some embodiments, the retaining device 447 is entirely contained between the top surface 139 and the bottom surface 135 of the plate 130. In other embodiments, the retaining device 447 is partially contained between the top surface 139 and the bottom surface 135 of the plate 130, and a portion of the retaining device 447 extends above the top surface 139. In some embodiments, as shown in
In other embodiments, ridges, grooves, or barbs can be substituted for the male threads on the member 433, and the corresponding retaining device 447 has ridges, grooves, or barbs substituted for the female threads.
The connecting portion 551 of the peg body 522 of at least one of the plurality of pegs 520 has a tapered outer surface 552, the tapered outer surface 552 having a maximum outer diameter 557 smaller than a diameter 134 of a corresponding one of the plurality of openings 132 in the implant plate 130. The retaining device 553 of the peg 520 comprises a tapered inner surface 555 configured to engage the tapered outer surface 552 when the tapered outer surface 552 extends at least partially through the corresponding one of the plurality of openings 132 of the implant plate 130. The tapered member 551 is inserted through the implant 130 and into the tapered inner surface 555 of the retaining device 553 to form a taper joint such as a Morse taper joint. In some embodiments, the retaining device 553 has a curved outer edge 559 at a bottom end thereof, to allow the angle of the longitudinal axis of the peg body 522 to vary relative to the upper surface 139 of the implant plate 130.
Although the subject matter has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments, which may be made by those skilled in the art.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/055514 | 10/5/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/067143 | 4/12/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4716893 | Fischer et al. | Jan 1988 | A |
5441537 | Kenna | Aug 1995 | A |
6440135 | Orbay et al. | Aug 2002 | B2 |
7517182 | Cabrele | Apr 2009 | B2 |
7780711 | Orbay et al. | Aug 2010 | B2 |
8574272 | Wallenstein et al. | Nov 2013 | B2 |
9168075 | Dell'Oca | Oct 2015 | B2 |
9295563 | Haines | Mar 2016 | B2 |
9345578 | Collazo et al. | May 2016 | B2 |
20010007941 | Steiner et al. | Jul 2001 | A1 |
20050288792 | Landes et al. | Dec 2005 | A1 |
20060041261 | Osypka | Feb 2006 | A1 |
20070265629 | Martin et al. | Nov 2007 | A1 |
20080021477 | Strnad et al. | Jan 2008 | A1 |
20080147203 | Cronin et al. | Jun 2008 | A1 |
20080195233 | Ferrari et al. | Aug 2008 | A1 |
20090054992 | Landes et al. | Feb 2009 | A1 |
20090171396 | Baynham et al. | Jul 2009 | A1 |
20090198285 | Raven, III | Aug 2009 | A1 |
20100331981 | Mobarakh | Dec 2010 | A1 |
20130218284 | Eickmann | Aug 2013 | A1 |
20150201971 | Gaines et al. | Jul 2015 | A1 |
20150305753 | McGinley et al. | Oct 2015 | A1 |
20150320567 | Terrill et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
1433444 | Nov 2005 | EP |
2006099270 | Sep 2006 | WO |
Entry |
---|
Examination report No. 1 issued in connection with corresponding Australian patent application No. 2016398373, dated Mar. 1, 2018, 8 pages. |
Office Action issued in connection with corresponding Canadian patent application No. 2,979,856, dated Jul. 19, 2018, 3 pages. |
ACUMED® ACU-LOC® 2—Volar Distal Radius Plating System Surgical Technique, Jan. 2013, 28 pages. |
Distal Radius: Flower Orthopedics, 2016, 3 pages. |
International Search Report and Written Opinion issued for corresponding International patent application No. PCT/US2016/055514, dated Jul. 5, 2017, 11 pages. |
European Search Report issued in connection with corresponding European patent application No. 16893803.3, dated Jul. 9, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20190216610 A1 | Jul 2019 | US |