The present disclosure relates to an implant trial with radiographically visible indicium.
Trial spacers can be used to measure the appropriate size of implant needed in orthopedic surgery. It is critical to the success of any surgical procedure and subsequent patient recovery that an appropriately sized device is selected for implantation. However, currently there is no identifier to see the value of depth markers intraoperatively. Depth markers are typically laser marked or inscribed on the top and bottom of the trial spacer but cannot be seen when the trial spacer is in use in vivo. Often, selection of the correct implant size is based on relative position of a reference feature or other fiducial marker, since radiographic techniques are prone to scale or image distortion errors. These defining features may be machined into the boundary of the device to create a visual reference point, but it may be difficult to determine what the particular reference point indicates while used in vivo and typically require an external reference guide to aid in implant selection. Other parameters, other than size of the implant, may also be important.
Corresponding reference characters indicate corresponding parts throughout the drawings.
An implant trial (e.g., spacer trial for spine surgery), constructed according to the teachings of the present disclosure, aids in intraoperative identification of implant size and positioning. The implant trial includes radiographically (e.g., X-ray) visible indicium (e.g., a number, a letter, a logo, or other marking) used for implant sizing and positioning. In one aspect, the implant trial includes a material density gradient to allow one or more X-ray visible indicium to be visible in an X-ray image. The X-ray visible indicium may be provided inside the body of the implant trial, such as within an internal chamber defined by the body. The portion of the implant trial body having the X-ray visible indicium may be sealed from any biological contamination, maintaining optimal surgical function without changing any cleanability or other use criteria. In one example, additive manufacturing may be used to make the X-ray visible indicium and other portions of the implant trial, including the entire implant trial. In another example, materials of two different radiographic density could be molded. However, the skilled person will understand other methods of manufacture are possible. The implant trial can be used in any application where it is desirable to view the implant trial under radiography, such as fluoroscopy, computed tomography (CT scan), and/or projectional radiography. In one embodiment, the implant trial is a trial spacer used in spinal surgery, such as but not limited to lumbar interbody fusions and other spinal fusions procedures.
Referring to
The main body 12 generally comprises a first or distal portion 18 and a second or proximal portion 20. The first portion 18 comprises a visible height marking 22 (e.g., a number). The height marking 22 is indicium and generally indicates the height of the device from the inferior wall 14 to the superior wall 16. The height marking 22 can comprise any signifier of the height of the device, for example, letters, numbers, or any other indicia. The height marking 22 is disposed in a window extending through anterior and posterior sides of the trial spacer 10.
As shown in
Anterior and posterior walls are provided on the corresponding sides of the second portion 20 of the body 10. Together, the superior wall 16, the inferior wall 14, the anterior wall, and posterior wall define an internal chamber in which the depth indicia 24 are received. The anterior and posterior walls are more radiotranslucent than the depth indicia 24, which may be substantially radiopaque, so that the depth indicia are visible during radiography, such as shown in
The depth indicia are designed to be visible when using X-ray in an anterior-posterior (AP) view (X-ray passing from posterior to anterior). Space is left above, below, and to the sides of the depth indicia 24 to allow them to be visible when viewing the depth indicia 24 from a few degrees from normal to the depth indicia 24.
Alternatively, the depth indicia 24 can be suspended in a material that is more radiolucent than material of the depth indicia. For example, the depth indicia 24 can be printed in steel or any other material that is visible on the desired radiographic imaging radiation (e.g., X-ray) and the remainder of the device can be printed in titanium, aluminum, or any other material through which the particular radiographic imaging radiation can pass more easily so that the depth indicia 24 is more visible than the other material on the image. For example, the depth indicia 24 may be made from material having a greater density than the surrounding material. The skilled person will understand that different methods of manufacture are possible to achieve the same result.
The proximal end of the second portion 20 defines opening 32. Opening 32 is sized and shaped to receive an inserter tool 40 to allow for insertion of trial spacer 10 into the vertebral space of the patient (see
As can be seen in the X-ray image provided in
The trial spacer of the present disclosure is typically manufactured using 3D printing techniques to create features that may not otherwise be technically manufacturable or are otherwise cost prohibitive. The trial spacer could designed hollow, to further attach to another surgical instrument such as a shaft, or could be produced as one-piece. In the assembled version, during assembly of the trial, a shaft may be welded or threaded in place to completely seal off the internal chamber to prevent the need for the internal chamber to be cleaned between uses.
Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above products and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
6113639 | Ray | Sep 2000 | A |
6641582 | Hanson | Nov 2003 | B1 |
9801732 | Chin | Oct 2017 | B2 |
20030135275 | Garcia | Jul 2003 | A1 |
20030139813 | Messerli | Jul 2003 | A1 |
20030233145 | Landry | Dec 2003 | A1 |
20040019356 | Fraser | Jan 2004 | A1 |
20040052333 | Sayre | Mar 2004 | A1 |
20040059337 | Hanson | Mar 2004 | A1 |
20060129238 | Paltzer | Jun 2006 | A1 |
20070093825 | Ferree | Apr 2007 | A1 |
20070237307 | Suddaby | Oct 2007 | A1 |
20080287959 | Quest | Nov 2008 | A1 |
20130331850 | Bojarski | Dec 2013 | A1 |
20140114415 | Tyber | Apr 2014 | A1 |
20140243982 | Miller | Aug 2014 | A1 |
20150328005 | Padovani | Nov 2015 | A1 |
20150342757 | Lomeli | Dec 2015 | A1 |
20190298546 | Dewey | Oct 2019 | A1 |
20210290410 | Schumacher | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
1384455 | Jan 2004 | EP |
WO-2005072659 | Aug 2005 | WO |
WO-2014151172 | Sep 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20210346176 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63020126 | May 2020 | US |