The present invention generally relates to medical systems and apparatus and uses thereof for treating obesity and/or obesity-related diseases, and more specifically, relates to an implantable subcutaneous access port.
Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND AP® (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the fundus, or cardia, or esophageal junction, of a patient's upper stomach forming a stoma that restricts the food's passage into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, the food held in the upper portion of the stomach may provide a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract. An example of a gastric banding system is disclosed in Roslin, et al., U.S. Patent Pub. No. 2006/0235448, the entire disclosure of which is incorporated herein by this specific reference.
Existing gastric bands periodically require adjustments to maintain an effective constriction about the stomach, to account for changes in the stomach tissue, reduction of fat or other factors causing movement and/or size change of the stomach. Some attempts have been made to allow for such adjustment of gastric bands. For example, hydraulic gastric bands utilize a fluid such as saline to fill an inflatable portion of the gastric band using a subcutaneous injection access port. Adjustments to the amount of inflation may be made by injecting or extracting the fluid through the patient's skin into or out of the injection access port, which then directs the fluid into or out of the inflatable portion of the gastric band.
Current access ports are typically configured to include a flat-surfaced septum, a rigid housing, and a substantially flat base. The housing forms a rim around the septum to expose a circular surface area of the septum. One of the main features of the access port is the port attachment and/or integration with the patient's body. The port fixation must be able to handle the load associated with locating the injection site (e.g., via palpation). Moreover, when the needle punctures the septum for the adjustment of the fluid levels within the gastric band, the port fixation must hold under the needle insertion and removal forces. While the access port may be fixated to the body of the patient in one of many ways, among the most conventional is suturing the access port to the body tissue via suture holes located on the access port, for example, as illustrated in
Some attempts have been made to improve the fixation of the access port to the body of the patient. For example, Tallarida, et al., U.S. Pat. No. 5,906,596 describes an access port with an attached mesh sandwiched between the base and top as shown in
Williams, U.S. Pat. Pub. No. 20110035008 describes anchoring a mesh to bone as shown in
Buevich, et al., U.S. Pat. Pub. No. 20080132922 describes a fixation method using mesh to a medical device as shown in
Green, et al., U.S. Pat. Pub. No. 20020117534 describes mesh and tissue attachments as shown in
Chen, et al., U.S. Pat. Pub. No. 20050131383 describes the use of mesh with respect to injection sites as shown in
Denoziere, et al., U.S. Pat. No. 7,879,100 describes the attachment of mesh to medical devices by molding the mesh into the medical device as shown in
The access ports currently on the market and those described above suffer from known drawbacks, including cost, complexity, and effectiveness. Accordingly, it is desirable to develop a gastric banding system, and an implantable access port designed to remedy the deficiencies of access ports currently on the market.
Generally described herein is a gastric banding system, including an implantable access port configured to receive and engage a mesh rivet, which is in turn, configured to penetrate a mesh layer and hold the mesh layer in place.
The access port includes a housing defining an internal fluid reservoir. The access port may have an anterior side and a posterior side, the anterior side being the side of the housing facing the patient's outer skin layer, and the posterior side being the opposite side of the housing, facing away from the patient's outer skin layer. The outer surface of the anterior side of the housing may be made entirely from a needle-penetrable and self-sealing material. And at least a portion of the posterior side of the housing may be made from a needle-resistant material. The needle penetrable and self-sealing material of the anterior side preferably comprises a pliant material, to provide a degree of compliance for the housing. In addition, on the posterior side of the housing, designated areas (e.g., a slot having an engaging member) may be configured to receive and engage or hold a mesh rivet in place.
The mesh rivet may comprise a head for insertion into a designated area and contacting the engaging member to hold the mesh rivet in place. For example, the mesh rivet may “snap” into place and engage the engaging member when the mesh rivet is inserted beyond a certain portion of the slot. The mesh rivet may have a body portion dimensioned to fit through a hole in a mesh layer and conclude with a flat base dimensioned to be larger than (and thus unable to fit through) the hole in the mesh layer. In this manner, the mesh rivet may hold the mesh layer between an exterior of the housing of the access port and the flat base.
The mesh layer, being substantially held in place, may be capable of integrating with the local body tissue of the patient. The mesh layer may be sutured or tacked to the patient's body. The mesh layer may have a skirt-like, sheet-like, or disk-like shape, and may extend out from the housing at a diameter larger than the diameter of the housing.
In one embodiment, a gastric banding system for the treatment of obesity comprises an adjustable gastric band including an inflatable portion, a tube having a first end connected to the inflatable portion and a second end, an access port connected to the tube, a mesh rivet and a mesh layer. The access port may include a housing defining an internal fluid reservoir and having a conduit with a fluid tight connection to the second end of the tube, the conduit permitting movement of fluid into and out of the internal fluid reservoir to thereby establish a fluid communication between the internal fluid reservoir and the inflatable portion of the adjustable gastric band. The access port also includes a needle penetrable septum positioned within and forming a top surface of the housing, a rivet receiving portion defined at an outer circumferential portion of the housing, and a rivet engaging member attached to the housing and located within the rivet receiving portion. The mesh rivet may include a head portion for inserting into the rivet receiving portion and engaging the rivet engaging member of the housing, and a base portion attached to the head portion. The mesh layer may have a plurality of openings for allowing the head portion of the mesh rivet to pass through one of the plurality of openings while not allowing the base portion of the mesh rivet to pass through one of the plurality of openings to hold the mesh layer between the base portion of the mesh rivet and the access port, the mesh layer configured to assist attachment of the access port to a patient upon implantation of the gastric banding system in the patient.
In one embodiment, an implantable access port assembly for use with a gastric band for the treatment of obesity is provided. The implantable access port assembly comprises a self-sealing septum, a housing, a mesh rivet and a mesh layer. The self-sealing septum may be configured to be penetrable by a needle. The housing may include a septum retaining portion for holding the septum in place, and a base for defining an internal fluid reservoir and further defining a rivet receiving portion and a rivet engaging member, the housing further including a tubing connector configured to connect to a tubing for the movement of fluid into and out of the internal fluid reservoir. The mesh layer may be positioned beneath the housing and may define a plurality of spaces. The mesh rivet may include a head, a body and a base, the head configured to penetrate a space of the plurality of spaces of the mesh layer and insertable into the rivet receiving portion to engage the rivet engaging member to hold the mesh rivet in place, the body for connecting the head to the base, and the base configured to have a surface area larger than the surface area of the space penetrated by the head for holding the mesh layer between the base and the housing.
In one embodiment, an implantable access port assembly for use with a gastric band for the treatment of obesity may include a septum, a housing, a mesh layer and a mesh rivet. The septum may be self-sealing and may be configured to be penetrable by a needle. The housing may include a septum retaining portion for holding the septum in place, and a base for defining an internal fluid reservoir and further defining a rivet locking portion along an outer circumferential portion of the housing having a rivet locking member residing within the rivet locking portion, the housing further including a tubing connector configured to connect to a tubing for the movement of fluid into and out of the internal fluid reservoir. The mesh layer may have criss-crossing wires defining a plurality of spaces and be positioned beneath the housing. And the mesh rivet may include a head, a body and a base. The head may be configured to penetrate a space of the plurality of spaces of the mesh layer and insertable into the rivet locking portion to engage the rivet locking member to hold the head in place inside the rivet locking portion, the body for connecting the head to the base, and the base located outside of the rivet locking portion and configured to have a surface area larger than the surface area of the space penetrated by the head for holding the mesh layer between the base and the housing.
The exemplary embodiments of the present invention will be described in conjunction with the accompanying drawing FIGS. in which like numerals denote like elements.
The present invention described herein relates to a gastric banding system, including an implantable access port. The implantable access port may be used to supply fluid to and remove fluid from an inflatable bladder.
The gastric band 215 forms a loop around a portion of a stomach 220 of an individual or patient 200. The portion of the stomach 220 receiving the gastric band 215 may comprise the cardia, the fundus, or the esophageal junction of the stomach 220. The loop constricts a portion of the stomach 220 to form a stoma, which restricts the flow of food entering the lower portion of the stomach 220 when the individual 200 eats. The restricted flow of food promotes a more rapid production of satiety signals during times of food consumption than are normally produced without the restricted flow of food. The increased satiety signals may cause the individual 200 to feel full more quickly, thereby causing the individual 200 to reduce food intake. In turn, the reduced food intake may cause the individual 200 to lose weight over time.
A variable degree of constriction applied by the gastric band 215 to the stomach 220 is preferred because the biological characteristics of the stomach 220 of an individual 200 may vary over time. For example, the stomach 220 may increase or decrease in size, requiring an appropriately larger or smaller degree of constriction. In addition, the degree of constriction may need to be varied if the individual 200 is not losing weight in response to the gastric band treatment, or if the weight loss is not at a desired level. If the individual 200 is not responding appropriately to the gastric band therapy, the gastric band 215 may need to be adjusted, to increase the degree of constriction, and thereby further decrease the flow or passage of food to the lower portion of the stomach 220. In addition, variability in the size of the gastric band 215 is preferable to accommodate the unique biological characteristics of different patients, for example, patients having a smaller or larger sized stomach 220.
To accommodate a varying degree of constriction, or varying the size of the gastric band 215, the gastric band 215 may be an adjustable gastric band, or may be a gastric band having an adjustable inner diameter. The gastric band 215 may be adjusted by adjusting (i.e., reducing or increasing) the amount of fluid in the bladder 210. The bladder 210 may extend around the portion of the stomach 220 to be constricted, and may have a variable size, functioning as an inflatable cuff placed around the stomach 220. An increased bladder 210 size may increase the degree of constriction applied to the stomach 220, and a decreased bladder 210 size may decrease the degree of constriction. Accordingly, an increased amount of fluid in the bladder 210 may increase the degree of constriction, and a decreased amount of fluid in the bladder 210 may decrease the degree of constriction.
The amount of fluid in the bladder 210 may be controlled via an access port 230. The access port 230 is preferably positioned subcutaneously within the body of the individual 200 and is preferably secured to a firm layer of tissue, for example, the muscle wall of the individual 200. A physician accesses the access port 230 through the skin of the patient to vary the amount of fluid in the gastric banding system 205. The physician inserts the syringe 240 through the skin of the patient, to penetrate a septum 235 of the access port 230 to add or remove fluid. The access port 230 is therefore preferably positioned near the surface of the skin of the individual 200 to allow a physician to more easily access the access port 230 with the syringe 240.
The access port 335 may be the access port 230 of
The base 481 of the housing 480 may have a circumferential side wall 456 and a bottom wall 457 defining a reservoir 455 for holding fluid. The base 481, near the outside perimeter, may be configured to include a rivet receiving portion 470 (e.g., a cavity or an opening) for receiving a rivet 465. The rivet receiving portion 470 may include a rivet engaging member 471 (e.g., a protrusion or a ledge) for engaging a housing engaging member 467 on the rivet 465 to hold the rivet 465 in place when inserted into the rivet receiving portion 470. In one embodiment, the rivet engaging member 471 may be considered a rivet locking member as it may function to lock or secure the rivet 465 from exiting the rivet receiving portion 470. Similarly, the rivet receiving portion 470 may be considered a rivet locking portion as it is configured to operate with the rivet engaging member 471 to lock or secure the rivet 465 from exiting.
While omitted for clarity, the base 481 may also include a tubing connector for establishing a fluid path between the access port 435 and the inflatable portion 210 of the gastric band 215.
The rivet 465 may include a head 468, a body 469 and a base 466. The body 469 joins or is between the head 468 and the base 466. The head 468 is used to penetrate or pass through a mesh layer 430 or an opening in the mesh layer 430. In this manner, the rivet 465 holds the mesh 430 substantially in place between the base 466 of the rivet 465 and the exterior (i.e., a bottom surface) of the housing 480 of the access port 435. As shown in this embodiment, the housing 480 may comprise and/or integrate many separate components. However, the housing 480 may also be molded as substantially one-piece while still providing the rivet holding mechanism (e.g., a combination of the rivet receiving portion 470 and the rivet engaging member 471).
The various components of the access port 435 (e.g., the housing 480, the rivet 465) and the mesh 430 may be constructed out of biocompatible materials such as plastics, metals (e.g., PEEK®, titanium or stainless steel) and any combinations thereof.
While shown to be operational with a pair of rivets in
The body 769 of the mesh rivet 765 is illustrated to be positioned at an edge of the base 766 and substantially orthogonal to the top surface of the base 766. However, other positioning is possible provided that the head 768 is allowed to pass through the mesh layer 600 to be engaged and/or held by the access port housing (e.g., housing 480 or 580).
In this embodiment, the head 768 is attached to the body 769 and may include a tapered apex 770 and a housing engagement member 767. The tapered apex 770 allows for easier entry into a rivet receiving portion (e.g., rivet receiving portion 470 of
In one embodiment, the body 769 may be shortened or eliminated from the mesh rivet 765 and the head 768 may be directly integrated or connected to the base 766.
The various access port embodiments described throughout this application are not limited to use in a gastric band system, or for the treatment of obesity. It is contemplated the access port may be used in various other medical applications, including other medical implantable devices, including skin expanders, or drug delivery systems.
Unless otherwise indicated, all numbers expressing quantities of ingredients, components, forces, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Furthermore, certain references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.
Specific embodiments disclosed herein may be further limited in the claims using consisting of or and consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
Number | Name | Date | Kind |
---|---|---|---|
586113 | Bott | Jul 1897 | A |
2163048 | McKee | Jun 1939 | A |
2737954 | Knapp | Mar 1956 | A |
3371352 | Siposs et al. | Mar 1968 | A |
3587115 | Shiley | Jun 1971 | A |
3596660 | Melone | Aug 1971 | A |
3667081 | Burger | Jun 1972 | A |
3688764 | Reed | Sep 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3958562 | Hakim et al. | May 1976 | A |
3971376 | Wichterle | Jul 1976 | A |
4019499 | Fitzgerald | Apr 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4151835 | Showell et al. | May 1979 | A |
4161943 | Nogier | Jul 1979 | A |
4164943 | Hill et al. | Aug 1979 | A |
4190040 | Schulte | Feb 1980 | A |
4233992 | Bisping | Nov 1980 | A |
4265252 | Chubbuck et al. | May 1981 | A |
4280722 | Guptil et al. | Jul 1981 | A |
4413985 | Wellner et al. | Nov 1983 | A |
4474572 | McNaughton et al. | Oct 1984 | A |
4502335 | Wamstad et al. | Mar 1985 | A |
4543088 | Bootman et al. | Sep 1985 | A |
4557722 | Harris | Dec 1985 | A |
4569675 | Prosl et al. | Feb 1986 | A |
4588394 | Schulte et al. | May 1986 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4655765 | Swift | Apr 1987 | A |
4673394 | Fenton, Jr. et al. | Jun 1987 | A |
4692146 | Hilger | Sep 1987 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4704103 | Stober et al. | Nov 1987 | A |
4710174 | Moden et al. | Dec 1987 | A |
4738657 | Hancock et al. | Apr 1988 | A |
4767410 | Moden et al. | Aug 1988 | A |
4772270 | Wiita et al. | Sep 1988 | A |
4778452 | Moden et al. | Oct 1988 | A |
4781680 | Redmond et al. | Nov 1988 | A |
4796641 | Mills et al. | Jan 1989 | A |
4802885 | Weeks et al. | Feb 1989 | A |
4832054 | Bark | May 1989 | A |
4840615 | Hancock et al. | Jun 1989 | A |
4850227 | Luettgen et al. | Jul 1989 | A |
4858623 | Bradshaw et al. | Aug 1989 | A |
4861341 | Woodburn | Aug 1989 | A |
4881939 | Newman | Nov 1989 | A |
4886501 | Johnston et al. | Dec 1989 | A |
4902278 | Maget et al. | Feb 1990 | A |
4904241 | Bark | Feb 1990 | A |
4913702 | Yum et al. | Apr 1990 | A |
4915690 | Cone et al. | Apr 1990 | A |
4929230 | Pfleger | May 1990 | A |
4929236 | Sampson | May 1990 | A |
4966588 | Rayman et al. | Oct 1990 | A |
4967755 | Pohndorf | Nov 1990 | A |
4978338 | Melsky et al. | Dec 1990 | A |
5006115 | McDonald | Apr 1991 | A |
5013298 | Moden et al. | May 1991 | A |
5026344 | Dijkstra et al. | Jun 1991 | A |
5041098 | Loiterman et al. | Aug 1991 | A |
5045060 | Melsky et al. | Sep 1991 | A |
5074868 | Kuzmak | Dec 1991 | A |
5090954 | Geary | Feb 1992 | A |
5092897 | Forte | Mar 1992 | A |
5094244 | Callahan et al. | Mar 1992 | A |
5108377 | Cone et al. | Apr 1992 | A |
5125408 | Basser | Jun 1992 | A |
5133753 | Bark et al. | Jul 1992 | A |
5137529 | Watson et al. | Aug 1992 | A |
5147483 | Melsky et al. | Sep 1992 | A |
5152747 | Olivier | Oct 1992 | A |
5167638 | Felix et al. | Dec 1992 | A |
5185003 | Brethauer | Feb 1993 | A |
5203864 | Phillips | Apr 1993 | A |
5207644 | Strecker | May 1993 | A |
5213574 | Tucker | May 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5226894 | Haber et al. | Jul 1993 | A |
5250026 | Ehrlich et al. | Oct 1993 | A |
5273537 | Haskvitz et al. | Dec 1993 | A |
5281205 | McPherson | Jan 1994 | A |
5284479 | de Jong | Feb 1994 | A |
5318545 | Tucker | Jun 1994 | A |
5336194 | Polaschegg et al. | Aug 1994 | A |
5337747 | Neftel | Aug 1994 | A |
5360407 | Leonard et al. | Nov 1994 | A |
5368040 | Carney | Nov 1994 | A |
5387192 | Glantz et al. | Feb 1995 | A |
5391164 | Giampapa | Feb 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5476460 | Montalvo | Dec 1995 | A |
5514174 | Heil, Jr. et al. | May 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5556388 | Johlin, Jr. | Sep 1996 | A |
5558641 | Glantz et al. | Sep 1996 | A |
5562617 | Finch, Jr. et al. | Oct 1996 | A |
5571104 | Li | Nov 1996 | A |
5575777 | Cover et al. | Nov 1996 | A |
5601604 | Vincent | Feb 1997 | A |
5637102 | Tolkoff et al. | Jun 1997 | A |
5653755 | Ledergerber | Aug 1997 | A |
5658298 | Vincent et al. | Aug 1997 | A |
5674397 | Pawlak et al. | Oct 1997 | A |
5683447 | Bush et al. | Nov 1997 | A |
5688237 | Rozga et al. | Nov 1997 | A |
5695490 | Flaherty et al. | Dec 1997 | A |
5716342 | Dumbraveanu et al. | Feb 1998 | A |
5718682 | Tucker | Feb 1998 | A |
5722957 | Steinbach | Mar 1998 | A |
5748200 | Funahashi | May 1998 | A |
5810735 | Halperin et al. | Sep 1998 | A |
5814019 | Steinbach et al. | Sep 1998 | A |
5833654 | Powers et al. | Nov 1998 | A |
5843033 | Ropiak | Dec 1998 | A |
RE36176 | Kuzmak | Mar 1999 | E |
5883654 | Katsuyama | Mar 1999 | A |
5902598 | Chen et al. | May 1999 | A |
5906596 | Tallarida | May 1999 | A |
5910149 | Kuzmak | Jun 1999 | A |
5911704 | Humes | Jun 1999 | A |
5931829 | Burbank et al. | Aug 1999 | A |
5932460 | Mills et al. | Aug 1999 | A |
5935083 | Williams | Aug 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5951512 | Dalton | Sep 1999 | A |
6024704 | Meador et al. | Feb 2000 | A |
6030369 | Engelson et al. | Feb 2000 | A |
6039712 | Fogarty et al. | Mar 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6090066 | Schnell | Jul 2000 | A |
6098405 | Miyata et al. | Aug 2000 | A |
6102678 | Peclat | Aug 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6123700 | Mills et al. | Sep 2000 | A |
6152885 | Taepke | Nov 2000 | A |
6171252 | Roberts | Jan 2001 | B1 |
6183449 | Sibbitt | Feb 2001 | B1 |
6213973 | Eliasen et al. | Apr 2001 | B1 |
6221024 | Miesel | Apr 2001 | B1 |
6234973 | Meador et al. | May 2001 | B1 |
6258079 | Burbank et al. | Jul 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6270475 | Bestetti et al. | Aug 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6321124 | Cigaina | Nov 2001 | B1 |
6349740 | Cho et al. | Feb 2002 | B1 |
6432040 | Meah | Aug 2002 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6453907 | Forsell | Sep 2002 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6459917 | Gowda et al. | Oct 2002 | B1 |
6461293 | Forsell | Oct 2002 | B1 |
6464628 | Forsell | Oct 2002 | B1 |
6470213 | Alley | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6478783 | Moorehead | Nov 2002 | B1 |
6511490 | Robert | Jan 2003 | B2 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6572587 | Lerman et al. | Jun 2003 | B2 |
6589184 | Noren et al. | Jul 2003 | B2 |
6648849 | Tenhuisen et al. | Nov 2003 | B2 |
6666845 | Hooper et al. | Dec 2003 | B2 |
6689100 | Connelly et al. | Feb 2004 | B2 |
6723053 | Ackerman et al. | Apr 2004 | B2 |
6733519 | Lashinski et al. | May 2004 | B2 |
6792309 | Noren | Sep 2004 | B1 |
6810880 | Jennings, Jr. et al. | Nov 2004 | B1 |
6813964 | Clark et al. | Nov 2004 | B1 |
6860857 | Noren et al. | Mar 2005 | B2 |
6915162 | Noren et al. | Jul 2005 | B2 |
6921267 | van Oostrom et al. | Jul 2005 | B2 |
6929631 | Brugger et al. | Aug 2005 | B1 |
6939299 | Petersen et al. | Sep 2005 | B1 |
6953444 | Rosenberg | Oct 2005 | B2 |
6964204 | Clark et al. | Nov 2005 | B2 |
6966875 | Longobardi | Nov 2005 | B1 |
6997914 | Smith et al. | Feb 2006 | B2 |
7017583 | Forsell | Mar 2006 | B2 |
7020531 | Colliou et al. | Mar 2006 | B1 |
7056286 | Ravenscroft et al. | Jun 2006 | B2 |
7063669 | Brawner et al. | Jun 2006 | B2 |
7073387 | Zdeblick et al. | Jul 2006 | B2 |
7082843 | Clark et al. | Aug 2006 | B2 |
7131945 | Fink et al. | Nov 2006 | B2 |
7144400 | Byrum et al. | Dec 2006 | B2 |
7149587 | Wardle et al. | Dec 2006 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7195774 | Carvalho et al. | Mar 2007 | B2 |
7223239 | Schulze et al. | May 2007 | B2 |
7226419 | Lane et al. | Jun 2007 | B2 |
7261003 | McDonald et al. | Aug 2007 | B2 |
7267645 | Anderson et al. | Sep 2007 | B2 |
7282023 | Frering | Oct 2007 | B2 |
7311716 | Byrum | Dec 2007 | B2 |
7311717 | Egle | Dec 2007 | B2 |
7351198 | Byrum et al. | Apr 2008 | B2 |
7351226 | Herskowitz | Apr 2008 | B1 |
7351240 | Hassler, Jr. et al. | Apr 2008 | B2 |
7353747 | Swayze et al. | Apr 2008 | B2 |
7364542 | Jambor et al. | Apr 2008 | B2 |
7367937 | Jambor et al. | May 2008 | B2 |
7374557 | Conlon et al. | May 2008 | B2 |
7374565 | Hassler, Jr. et al. | May 2008 | B2 |
7390294 | Hassler, Jr. | Jun 2008 | B2 |
7413547 | Lichtscheidl et al. | Aug 2008 | B1 |
7416528 | Crawford et al. | Aug 2008 | B2 |
7437951 | McDonald et al. | Oct 2008 | B2 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7445614 | Bunodiere et al. | Nov 2008 | B2 |
7468038 | Ye et al. | Dec 2008 | B2 |
7500944 | Byrum et al. | Mar 2009 | B2 |
7510530 | Hashimoto et al. | Mar 2009 | B2 |
7530943 | Lechner | May 2009 | B2 |
7553298 | Hunt et al. | Jun 2009 | B2 |
7561916 | Hunt et al. | Jul 2009 | B2 |
7580746 | Gilkerson et al. | Aug 2009 | B2 |
7591185 | Mothilal et al. | Sep 2009 | B1 |
7593777 | Gerber | Sep 2009 | B2 |
7634319 | Schneider et al. | Dec 2009 | B2 |
7651483 | Byrum et al. | Jan 2010 | B2 |
7658196 | Ferreri et al. | Feb 2010 | B2 |
7699770 | Hassler, Jr. et al. | Apr 2010 | B2 |
7708722 | Glenn | May 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
7762999 | Byrum | Jul 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7775966 | Dlugos et al. | Aug 2010 | B2 |
7811275 | Birk et al. | Oct 2010 | B2 |
7850660 | Uth et al. | Dec 2010 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7879100 | Denoziere | Feb 2011 | B2 |
7909754 | Hassler, Jr. et al. | Mar 2011 | B2 |
7909804 | Stats | Mar 2011 | B2 |
8007474 | Uth et al. | Aug 2011 | B2 |
20010052141 | Andersen | Dec 2001 | A1 |
20020013545 | Soltanpour et al. | Jan 2002 | A1 |
20020058969 | Noren et al. | May 2002 | A1 |
20020087147 | Hooper et al. | Jul 2002 | A1 |
20020095181 | Beyer | Jul 2002 | A1 |
20020117534 | Green | Aug 2002 | A1 |
20020139208 | Yatskov | Oct 2002 | A1 |
20020198548 | Robert | Dec 2002 | A1 |
20030045800 | Noren et al. | Mar 2003 | A1 |
20030045910 | Sorensen et al. | Mar 2003 | A1 |
20030073880 | Polsky et al. | Apr 2003 | A1 |
20030078506 | Noren et al. | Apr 2003 | A1 |
20030139690 | Aebli et al. | Jul 2003 | A1 |
20040064110 | Forsell | Apr 2004 | A1 |
20040065615 | Hooper et al. | Apr 2004 | A1 |
20040068233 | DiMatteo | Apr 2004 | A1 |
20040082908 | Whitehurst et al. | Apr 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040204692 | Eliasen | Oct 2004 | A1 |
20040254536 | Conlon et al. | Dec 2004 | A1 |
20040254537 | Conlon et al. | Dec 2004 | A1 |
20040260229 | Meir | Dec 2004 | A1 |
20040260319 | Egle | Dec 2004 | A1 |
20040267288 | Byrum et al. | Dec 2004 | A1 |
20040267291 | Byrum et al. | Dec 2004 | A1 |
20040267292 | Byrum et al. | Dec 2004 | A1 |
20040267293 | Byrum et al. | Dec 2004 | A1 |
20040267377 | Egle | Dec 2004 | A1 |
20050010177 | Tsai | Jan 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050070875 | Kulessa | Mar 2005 | A1 |
20050070937 | Jambor et al. | Mar 2005 | A1 |
20050085778 | Parks | Apr 2005 | A1 |
20050092093 | Kang et al. | May 2005 | A1 |
20050131325 | Chen et al. | Jun 2005 | A1 |
20050131352 | Conlon et al. | Jun 2005 | A1 |
20050131383 | Chen et al. | Jun 2005 | A1 |
20050148956 | Conlon et al. | Jul 2005 | A1 |
20050149143 | Libbus et al. | Jul 2005 | A1 |
20050209573 | Brugger et al. | Sep 2005 | A1 |
20050240155 | Conlon | Oct 2005 | A1 |
20050240156 | Conlon | Oct 2005 | A1 |
20050267500 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050277899 | Conlon et al. | Dec 2005 | A1 |
20050283041 | Egle | Dec 2005 | A1 |
20050283118 | Uth et al. | Dec 2005 | A1 |
20050283119 | Uth et al. | Dec 2005 | A1 |
20060074439 | Garner et al. | Apr 2006 | A1 |
20060122578 | Lord et al. | Jun 2006 | A1 |
20060161186 | Hassler, Jr. et al. | Jul 2006 | A1 |
20060173423 | Conlon | Aug 2006 | A1 |
20060173424 | Conlon | Aug 2006 | A1 |
20060178647 | Stats | Aug 2006 | A1 |
20060178648 | Barron et al. | Aug 2006 | A1 |
20060184141 | Smith et al. | Aug 2006 | A1 |
20060189887 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060189888 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060190039 | Birk et al. | Aug 2006 | A1 |
20060199997 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060211912 | Dlugos et al. | Sep 2006 | A1 |
20060211913 | Dlugos et al. | Sep 2006 | A1 |
20060211914 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060217668 | Schulze et al. | Sep 2006 | A1 |
20060217673 | Schulze et al. | Sep 2006 | A1 |
20060235445 | Birk et al. | Oct 2006 | A1 |
20060235448 | Roslin et al. | Oct 2006 | A1 |
20060247539 | Schugt et al. | Nov 2006 | A1 |
20060266128 | Clark et al. | Nov 2006 | A1 |
20060293625 | Hunt et al. | Dec 2006 | A1 |
20060293626 | Byrum et al. | Dec 2006 | A1 |
20060293627 | Byrum et al. | Dec 2006 | A1 |
20060293628 | Hunt et al. | Dec 2006 | A1 |
20070010790 | Byrum et al. | Jan 2007 | A1 |
20070015954 | Dlugos | Jan 2007 | A1 |
20070015955 | Tsonton | Jan 2007 | A1 |
20070016231 | Jambor et al. | Jan 2007 | A1 |
20070027356 | Ortiz | Feb 2007 | A1 |
20070038255 | Kieval et al. | Feb 2007 | A1 |
20070060959 | Salo et al. | Mar 2007 | A1 |
20070073250 | Schneiter | Mar 2007 | A1 |
20070078391 | Wortley et al. | Apr 2007 | A1 |
20070088336 | Dalton | Apr 2007 | A1 |
20070088391 | McAlexander et al. | Apr 2007 | A1 |
20070129765 | Gilkerson et al. | Jun 2007 | A1 |
20070135758 | Childers et al. | Jun 2007 | A1 |
20070149947 | Byrum | Jun 2007 | A1 |
20070156013 | Birk | Jul 2007 | A1 |
20070158769 | You | Jul 2007 | A1 |
20070161958 | Glenn | Jul 2007 | A1 |
20070167672 | Dlugos et al. | Jul 2007 | A1 |
20070173685 | Jambor et al. | Jul 2007 | A1 |
20070185462 | Byrum | Aug 2007 | A1 |
20070191717 | Rosen et al. | Aug 2007 | A1 |
20070205384 | Kurosawa | Sep 2007 | A1 |
20070208313 | Conlon et al. | Sep 2007 | A1 |
20070213837 | Ferreri et al. | Sep 2007 | A1 |
20070219510 | Zinn et al. | Sep 2007 | A1 |
20070235083 | Dlugos | Oct 2007 | A1 |
20070250086 | Wiley et al. | Oct 2007 | A1 |
20070255165 | Uesugi et al. | Nov 2007 | A1 |
20070255234 | Haase et al. | Nov 2007 | A1 |
20070265666 | Roberts et al. | Nov 2007 | A1 |
20070282196 | Birk et al. | Dec 2007 | A1 |
20070293829 | Conlon et al. | Dec 2007 | A1 |
20080009680 | Hassler, Jr. | Jan 2008 | A1 |
20080015406 | Dlugos et al. | Jan 2008 | A1 |
20080039772 | Chantriaux et al. | Feb 2008 | A1 |
20080058632 | Tai et al. | Mar 2008 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080114308 | di Palma et al. | May 2008 | A1 |
20080119798 | Chantriaux et al. | May 2008 | A1 |
20080132922 | Buevich | Jun 2008 | A1 |
20080243093 | Kalpin et al. | Oct 2008 | A1 |
20080249806 | Dlugos et al. | Oct 2008 | A1 |
20080250340 | Dlugos et al. | Oct 2008 | A1 |
20080250341 | Dlugos et al. | Oct 2008 | A1 |
20080255403 | Voegele et al. | Oct 2008 | A1 |
20080255414 | Voegele et al. | Oct 2008 | A1 |
20080255425 | Voegele et al. | Oct 2008 | A1 |
20080255459 | Voegele et al. | Oct 2008 | A1 |
20080255537 | Voegele et al. | Oct 2008 | A1 |
20080281412 | Smith et al. | Nov 2008 | A1 |
20080287969 | Tsonton et al. | Nov 2008 | A1 |
20080287974 | Widenhouse et al. | Nov 2008 | A1 |
20080312553 | Timmons | Dec 2008 | A1 |
20080319435 | Rioux et al. | Dec 2008 | A1 |
20090018608 | Schwartz et al. | Jan 2009 | A1 |
20090048524 | Wildau et al. | Feb 2009 | A1 |
20090054914 | Lechner | Feb 2009 | A1 |
20090062825 | Pool et al. | Mar 2009 | A1 |
20090071258 | Kouda et al. | Mar 2009 | A1 |
20090076466 | Quebbemann et al. | Mar 2009 | A1 |
20090082757 | Rogers et al. | Mar 2009 | A1 |
20090082793 | Birk | Mar 2009 | A1 |
20090093768 | Conlon et al. | Apr 2009 | A1 |
20090099538 | Paganon | Apr 2009 | A1 |
20090105735 | Stam et al. | Apr 2009 | A1 |
20090112308 | Kassem | Apr 2009 | A1 |
20090118572 | Lechner | May 2009 | A1 |
20090149874 | Ortiz et al. | Jun 2009 | A1 |
20090157106 | Marcotte et al. | Jun 2009 | A1 |
20090157107 | Kierath et al. | Jun 2009 | A1 |
20090157113 | Marcotte et al. | Jun 2009 | A1 |
20090171375 | Coe et al. | Jul 2009 | A1 |
20090171378 | Coe et al. | Jul 2009 | A1 |
20090171379 | Coe et al. | Jul 2009 | A1 |
20090192404 | Ortiz et al. | Jul 2009 | A1 |
20090192415 | Ortiz et al. | Jul 2009 | A1 |
20090192533 | Dlugos, Jr. et al. | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090192541 | Ortiz et al. | Jul 2009 | A1 |
20090198261 | Schweikert | Aug 2009 | A1 |
20090202387 | Dlugos, Jr. et al. | Aug 2009 | A1 |
20090204131 | Ortiz et al. | Aug 2009 | A1 |
20090204132 | Ortiz et al. | Aug 2009 | A1 |
20090209995 | Byrum et al. | Aug 2009 | A1 |
20090216255 | Coe et al. | Aug 2009 | A1 |
20090221974 | Paganon | Sep 2009 | A1 |
20090222031 | Axelsson | Sep 2009 | A1 |
20090222065 | Dlugos, Jr. et al. | Sep 2009 | A1 |
20090227862 | Smith et al. | Sep 2009 | A1 |
20090228028 | Coe et al. | Sep 2009 | A1 |
20090228072 | Coe et al. | Sep 2009 | A1 |
20090248125 | Brostrom | Oct 2009 | A1 |
20090248126 | Nippoldt et al. | Oct 2009 | A1 |
20090254052 | Birk et al. | Oct 2009 | A1 |
20090259190 | Birk et al. | Oct 2009 | A1 |
20090259191 | Birk et al. | Oct 2009 | A1 |
20090259231 | Birk et al. | Oct 2009 | A1 |
20090264901 | Franklin et al. | Oct 2009 | A1 |
20090270904 | Birk et al. | Oct 2009 | A1 |
20090299216 | Chen et al. | Dec 2009 | A1 |
20090299672 | Zhang et al. | Dec 2009 | A1 |
20090306462 | Lechner | Dec 2009 | A1 |
20090308169 | Mothilal et al. | Dec 2009 | A1 |
20100087843 | Bertolote et al. | Apr 2010 | A1 |
20100100079 | Berkcan et al. | Apr 2010 | A1 |
20100114149 | Albrecht et al. | May 2010 | A1 |
20100130941 | Conlon et al. | May 2010 | A1 |
20100152532 | Marcotte | Jun 2010 | A1 |
20100191271 | Lau et al. | Jul 2010 | A1 |
20100211085 | Uth et al. | Aug 2010 | A1 |
20100217198 | Franklin et al. | Aug 2010 | A1 |
20100217199 | Uth et al. | Aug 2010 | A1 |
20100217200 | Uth et al. | Aug 2010 | A1 |
20100228080 | Tavori et al. | Sep 2010 | A1 |
20100234808 | Uth et al. | Sep 2010 | A1 |
20110035008 | Williams | Feb 2011 | A1 |
20110054407 | Olroyd et al. | Mar 2011 | A1 |
20110082426 | Conlon et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1250382 | Apr 2000 | CN |
1367670 | Sep 2002 | CN |
3927001 | Feb 1991 | DE |
4211045 | Oct 1993 | DE |
19751791 | May 1997 | DE |
19745654 | Apr 1999 | DE |
0343910 | Nov 1989 | EP |
0611561 | Sep 1993 | EP |
0858814 | Aug 1998 | EP |
0867197 | Sep 1998 | EP |
1057457 | Dec 2000 | EP |
1346753 | Sep 2003 | EP |
1396242 | Mar 2004 | EP |
1396243 | Mar 2004 | EP |
1488824 | Dec 2004 | EP |
1543861 | Jun 2005 | EP |
1547643 | Jun 2005 | EP |
1591140 | Nov 2005 | EP |
1736194 | Dec 2006 | EP |
1736195 | Dec 2006 | EP |
1736196 | Dec 2006 | EP |
1736197 | Dec 2006 | EP |
1736198 | Dec 2006 | EP |
1736199 | Dec 2006 | EP |
1870126 | Dec 2007 | EP |
1985263 | Oct 2008 | EP |
2070494 | Jun 2009 | EP |
2095798 | Sep 2009 | EP |
2740977 | May 1997 | FR |
2797181 | Feb 2001 | FR |
2823663 | Oct 2002 | FR |
2851168 | Aug 2004 | FR |
2855744 | Dec 2004 | FR |
2916980 | Dec 2008 | FR |
2119877 | May 1990 | JP |
8107934 | Apr 1996 | JP |
1823791 | Jun 1991 | SU |
WO 9220519 | Nov 1992 | WO |
WO 9422520 | Oct 1994 | WO |
WO 9640357 | Dec 1996 | WO |
WO 9701370 | Jan 1997 | WO |
WO 9920338 | Apr 1999 | WO |
WO 9926543 | Jun 1999 | WO |
WO 9934859 | Jul 1999 | WO |
WO 0015158 | Mar 2000 | WO |
WO 0033901 | Jun 2000 | WO |
WO 0110359 | Feb 2001 | WO |
WO 0149245 | Jul 2001 | WO |
WO 0180926 | Nov 2001 | WO |
WO 0195813 | Dec 2001 | WO |
WO 0210667 | Feb 2002 | WO |
WO 02074381 | Sep 2002 | WO |
WO 03105732 | Dec 2003 | WO |
WO 2004016971 | Mar 2004 | WO |
WO 2005037055 | Apr 2005 | WO |
WO 2005072627 | Aug 2005 | WO |
WO 2006021695 | Mar 2006 | WO |
WO 2009007526 | Jan 2009 | WO |
WO 2009129474 | Oct 2009 | WO |
Entry |
---|
Helioscopie Product Insert for Heliogast, pp. 1-11 (undated). |
Autumn K. et al.; “Evidence of Van Der Waals Adhesion in Gecko Setae”; PNAS; vol. 99; No. 19; pp. 12252-12256; Sep. 17, 2012. |
Geim AK. et al.; “Microfabricated Adhesive Mimicking Gecko Foot-Hair”; Nature Materials Abstract only; vol. 2; No. 7; 2003. |
Yamagami, Takuji; “Technical Developments: Use of Targeting Guide Wire in Left Subclavian Puncture During Percutaneous Implantation of Port-Catheter Systems Using the Catheter Tip Fixation Method” European Radiology; vol. 13; pp. 863-866; 2003. |
Yurdumakan B., et al.; “Synthetic Gecko Foot-Hairs from Multiwalled Carbon Nanotubes”; The Royal Society of Chemistry; p. 3799-3801; 2005. |
http://en/wikipedia.org/Injection—Molding. |
Number | Date | Country | |
---|---|---|---|
20130053629 A1 | Feb 2013 | US |