The device is in the field of medical engineering, in particular implant medicine, and in particular relates to the possibilities of implanting components with a minimal effort using minimally invasive procedures.
Implant medicine allows the use of the most varied units and elements in a patient's body for the replacement of specific organs and body parts in a temporary or permanent manner or the insertion of specific units to support bodily functions.
Such units can usually be put in place in a simple manner with a large opening of the patient's body, but with considerable surgical trauma arising. The reduction of surgical trauma requires smaller procedures, with the openings for introducing components into the body in part only being a little larger or even smaller, with an elastic widening, than the components to be introduced. Corresponding units can be introduced in parts and can also be assembled inside the body.
The minimal invasive introduction often does not allow the direct handling of components by hand so that additional instruments such as forceps are used. However, the use of such holding instruments is also not always simple. The components to be implanted are frequently designed as small as possible and also rounded so as to provide as little irritation as possible in the body, in particular with cardiac assist systems having a plurality of parts which conduct blood. On the other hand, it brings along a difficult management by corresponding holding instruments such as forceps. A precisely targeted positioning or the assembly of individual components in the patient's body is also difficult. This can in particular be the case with cardiac assist systems when pumps, canulae and drive components have to be assembled.
Various aids are known from the prior art for implanting parts of cardiac assist systems into a patient's body.
An apparatus is known from PCT/US2008/081082 having an anchor which can be inserted close to the heart and which is connected to a guide fiber. A tubular hollow body is displaceable toward the anchor on the guide fiber and can be held there by means of a magnetic device.
A handling device for a canula is known from WO 2009/029387 A1 which has a guide body extending through the interior of the canula and a holding body which can be expanded radially in the manner of a cushion to hold the canula.
Said holding body can be expanded so far that it jams in the interior of the canula.
Against the background of the prior art, it is the underlying object of the device to provide a blood-conductive implantable component which effectively cooperates with a corresponding manipulating device to allow a reliable insertion and positioning in a patient's body with minimally invasive surgery. A further subject of the solution is a corresponding manipulating device, a coupling device for the mechanical coupling of an implantable component with a manipulating device as well as the system comprising the component and the manipulating device and a corresponding method for connecting the components to a manipulating device and for separating them.
The object is achieved by an implantable component in accordance with the invention, by a manipulating device for handling such a component, by a coupling device for the mechanical coupling of a component with a manipulating device, by a system comprising at least one implantable component and at least one manipulating device, by a corresponding method for connecting an implantable component to a manipulating device and by a method for separating an implantable component from a manipulating device.
The device relates to an implantable component which bounds a blood-conductive passage within a human or animal body in operation, which in particular forms a part of a blood conveying device and which has a coupling element which is configured for mechanical coupling to a manipulating device, wherein the coupling between the manipulating device and the component allows a manipulation in all spatial directions. This means that the component is displaceable in freely selectable spatial directions depending on the necessities in handling. In addition, the component can also be rotatable and/or pivotable about different axes, in particular a plurality of axes. These axes can extend inside and/or outside of the implantable component and, for example, also through a coupling element. A fixed-angle connection of the coupling elements to one another in one or more planes, in particular at all sides, can in particular be provided for this purpose.
Such a component can generally be any component usable in a patient's body, in particular a part of a cardiac assist system, a blood pump, a blood pump for coupling to a heart, a valve, a canula, a catheter, corresponding connection systems between these components as well as a medicine dispensing pump.
Many of these components are equipped with particularly smooth and rounded surfaces to avoid lesions on the insertion into or dwelling in a body. This makes the handling by the hand of the surgeon or by grasping forceps difficult. For this reason, in accordance with the invention, a coupling element is provided which is configured for the mechanical coupling of a manipulating device to the component. In this connection, a surgical instrument is, for example, understood as a manipulating device which has, for example, a handle at the proximal end facing the surgeon as well as a shaft and a distal end which is connectable to the coupling element of the component.
For this purpose, a further coupling element which is connectable to the first coupling element fastened to the implantable component or integrated therein can be provided at the distal end of the manipulating device.
A mechanical coupling is thus provided which allows a reliable manipulation of the implantable component from outside the body by means of the manipulating device both on the first implantation and later.
More than one coupling element can also be arranged at the implantable component to be able to use a plurality of manipulating devices or a divided manipulating device which can, in simplified terms, also be used in this case for the alignment of the implantable component. The plurality of coupling elements at the implantable component are spaced apart from one another at the surface of the implantable component for this purpose and can also be used to be able to select the most suitable access path depending on the implantation site.
The coupling element at the component is furthermore configured for the self-retaining coupling of a manipulating device. This means that the implantable component does not have to be held tight permanently by actuation of the manipulating device as is the case, for example, with various surgical forceps. The coupling between the component and the manipulating device is advantageously designed as self-retaining so that the manipulating device can also be left out of consideration at times by the surgeon without the coupling being released.
The coupling devices are advantageously configured so that corresponding coupling forces are only developed between the coupling elements, for example by elastic deformation of one of the coupling elements, without forces being transmitted via the shaft of the manipulating device for this purpose.
The surgeon can hereby concentrate sequentially on different manipulating devices and it is ensured that the relative position of a manipulating device to the implantable component is fixed in a stable and unmovable manner.
The coupling element can be integrated in the component or fixedly connected thereto. In this respect, the coupling between the coupling element fastened to or integrated in the component and the manipulating device should advantageously also be releasable again in a particularly easy manner so that the manipulating device can be easily removed from the patient's body after the positioning and assembly of the implantable component.
The coupling element itself can in this respect, for example, be formed as an internal thread in the implantable component, preferably inside a bore and a further coupling element in the form of a threaded spigot can be screwed into it.
The coupling element can equally be designed as a bore or as a group of bores in the component into which bolts of a further coupling element can be introduced. Corresponding bolts can, for example, comprise metal, but also elastic materials such as rubber or also spring wire which can be introduced into the corresponding bores in a force-locking manner. A coupling element can typically also be designed as a groove, for example, having an undercut, for example, as a dovetail groove, into which a body of a further component which is designed in a correspondingly complementary manner can be inserted.
Bores or blind holes or other openings with or without undercuts can also form a coupling element, with the respective complementary coupling element then, for example, being able to have a deformable and/or movable body having projections and/or latching elements which effect a coupling and which can either be latched by means of an actuation device or which can be deformed on the provision of a pulling force and the exceeding of a specific trigger force to separate the coupling elements. For this purpose, for example, one of the coupling elements can at least partly comprise an elastomer or a spring.
For example, the manipulating device can include a corresponding coupling element and additionally a hollow shaft which is coupled to a handle. The corresponding actuation member for latching noses or for releasing a screw connection in the region of the coupling between the coupling elements can be provided within the shaft and the actuation member can be actuable in the region of the handle of the manipulating device.
It is also conceivable to form a coupling element as a cone which is integrated in the component, for example, a wall of the component, and into which a further cone can be pushed which forms a second coupling element which is connected to a manipulating device. The cone surfaces can, for example, be coupled to one another by a press fit, but also by means of adhesive or by a vacuum-tight closure. Skew cone clamps can also be used for such a connection.
It is moreover conceivable that one or more wrench flats at the implantable component serve as the coupling element and allow the shape-matched engagement of a corresponding coupling element of the manipulating device.
Provision can also advantageously be made that the corresponding coupling element at the component side is fastened to the implantable component, for example bonded, welded or soldered thereto or also formed in one part therewith. This can be made, for example, in that a coupling plate having a threaded bore or an eyelet or a solid body, which can in turn have a bore, a groove, wrench flats or cone surfaces, is fastened to the implantable component.
The coupling element can, for example, also be formed as a smooth, surface-smoothed area onto which a suction cup serving as a second coupling element can be placed. The suction cup can, for example, be directly aerated and vented through the shaft of the manipulating device to which it is connected in order directly to establish and release the coupling between the coupling elements.
The connection of two smooth coupling surfaces of two coupling elements by means of an adhesive is also conceivable, with the adhesive being able to be directly dissolved or embrittled to release the connection. The adhesive can, for example, be made as a thermoplastic which can be liquefied in a short time to separate the coupling elements from one another or as a curable resin which can be embrittled by radiation cross-linking, for example by UV light, so that the adhesive bond can be easily broken.
It is also conceivable to connect the implantable component to a coupling element of the manipulating device in one piece in the manufacture by casting so that the implantable component, the coupling element connected thereto and at least one part of the manipulating device itself or the total manipulating device are made in one piece, for example in an injection molding process.
A desired break point is then provided between the coupling elements of the implantable component and of the manipulating device to be able to remove the manipulating device after the positioning of the implantable component by breaking the coupling between the coupling elements.
A magnet or a ferromagnetic workpiece can, for example, be provided as a coupling element at the component side which is arranged at the outer side or in the interior of the component and which cooperates with a magnet or with a ferromagnetic part of the manipulating device for the coupling. A part of a motor or of a rotor can also act as a magnet in the component, for example. A fitting surface can be provided at the outer side of the component for the coupling of the manipulating device. One of the magnets of the coupling device can be designed as a switchable electromagnet. A corresponding fitting surface can be designed, for example when it forms a part of the coupling element at the component side, as a mechanical catching device for the second coupling element associated with the manipulating device and can have a recess which has introduction chamfers or similar introduction aids for the second coupling element. An introduction chamfer can, for example, be integrated in an introduction cone, a hollow sphere or another recess tapering toward the component interior. The second coupling element can optionally have a complementary geometrical shape.
In particular when the first coupling element is formed as a fitting surface, particularly with an introduction chamber, and in particular when the fitting surface itself is not located in direct proximity to a ferromagnetic body of the component, but also in all other cases described here, the component can be designed such that the contour of the fitting surface can be reproduced by imaging processes, for example X-rays or ultrasound. This is e.g. possible by a metal surface cover of the component in the region of the fitting surface or by a marker body which has a higher density than the wall of the component and which is integrated in the component in direct proximity of the fitting surface or with a recognizable geometrical relation to the fitting surface. A coupling can thus be established more easily and without visual contact between a manipulating device having a ferromagnetic coupling element and the component on a further invention which may become necessary after the first implantation.
An eyelet can also be provided at an outer surface of the component as a coupling element through which eyelet a thread is guided which serves as a coupling element of the manipulating device. Such a design is in particular of interest when a part of a longer flexible component such as a tubular canula should be drawn from an entry site to a target site. The coupling can then be easily separated by separation of the thread.
The associations with the component, on the one hand, and with the manipulating device, on the other hand, can generally be swapped over in the above-described complementary coupling elements.
A coupling device in accordance with the invention correspondingly provides a first coupling element which is associated with the implantable component as well as a second coupling element which is associated with the manipulating device, with the coupling elements being connectable or connected to one another in a force-locking manner and/or in a shape-matching manner and/or with material continuity.
The coupling device is in this respect advantageously configured so that the coupling is kept stable without an external effect.
If the coupling comprises a connection with material continuity between the first component and the second component, said connection can be separated by breaking, cutting or changing the mechanical material properties of at least one part of the coupling device. The change in the mechanical material properties is understood, for example, as an embrittlement by radiation effect or thermal effect or a melting of a part of the coupling or a vaporizing, for example by the effect of a laser.
The device also relates, in addition to an implantable component, a manipulating device and a coupling device, to a corresponding system having one or more components and one or more manipulating devices which are correspondingly configured to be couplable in a simple self-retaining manner by means of the coupling elements. The corresponding couplings must also be able to be released again in a simple and gentle manner inside the patient.
The device further also relates to a method of connecting an implantable component to a manipulating device, with the component being mechanically connected to the manipulating device before the introduction into the patient's body by means of a self-retaining releasable coupling device.
This can, for example, already take place in the manufacture of the implantable component by integration of the coupling device, in that, for example, the component and at least one part of the manipulating device are manufactured in one piece together with the coupling device in an injection molding process or are connected to one another in a joining process.
The implantable component can also be releasably screwed, clamped, bonded or latched to the manipulating device, with a respective one of the coupling elements cooperating in a complementary manner with the other coupling element and with, for example, a threaded bore being arranged in the component and a corresponding threaded bolt at the manipulating device and with each of the coupling elements also each being able to be provided in swappable manner at the respective other part. If, therefore, for example, an eyelet is provided at the implantable component and a corresponding hook at the manipulating device, the hook can also be provided at the implantable component and the eyelet at the manipulating device. This also applies to all other embodiments of the coupling elements.
If the implantable component and the manipulating device are already connected to one another before the start of a surgical procedure, this facilitates and accelerates the surgical procedure.
The separation of the implantable component from the manipulating device can typically only take place after the end of the implantation, for example by mechanical breaking of the coupling device or by another separation of the coupling device.
The coupling device can be mechanically weakened, for example, before the separation, e.g. by cooling, heating, irradiating, bending or by kinking the coupling device.
If the method for separating the implantable component from the manipulating device takes place in manner which does not provide any displacement or movement of the manipulating device with respect to the component, this has the advantage that the positioning of the component does not have to be changed again after the end of the surgical procedure. A corresponding release of the coupling device can take place, for example, by cutting or chemical dissolving, degrading, liquefying or vaporizing of a part of the coupling device.
The device will be shown and described in the following with reference to an embodiment in a drawing. There are shown
A coupling element 4 of a manipulating device 5 is fastened to the end face 3 of the component 1 and is connected to a coupling element which is not shown in any more detail and which is integrated in the component 1.
The coupling element 4 is connected to a shaft 6 of the manipulating device 5 which is connected at its proximal end to a handle 7. A knob 8 is moreover provided at the handle 7 and can, for example, be connected to a core 9 which extends in a hollow space of the shaft 6 up to the coupling element 4.
The knob 8 can be moved with respect to the handle 7, for example displaced and/or rotated, to move the core 9 with respect to the shaft 6 in order thus to actuate the coupling element 4 and, for example to release the manipulating device 5 from the component 1.
A further manipulating device 5′ is connected to the component 1 at another point via a further coupling element 4′. The further manipulating device 5′ likewise has a handle 7′ and a knob 8′. The component 1 cannot only be displaced, but also rotated by both manipulating devices 5, 5′ together which are fastened at the component 1 to points spaced apart from one another.
The second manipulating device 5′ can also have a core 9′, which is movable by means of the knob 8′, within a hollow shaft 6′.
Generally, a coupling element can be formed by a cut-out, in particular a bore or a groove, having an undercut or without an undercut.
It is prevented by additional spigots 50 at the shaft, which engage into corresponding bores of the implant, that the implant also rotates on the release of the screw connection. This moreover ensures that the implant can also be rotatingly manipulated.
A flange 72 can also be provided in the shaft 6 and can be screwed to the component 1 by means of the threaded bolt 11 and a head 73 of the threaded bolt by screwing into the threaded bore 10.
For better clarity, this configuration is shown in a plan view in
The attachment of the plate-shaped piece 12 in the wall 14 of the component 1 forms the coupling element which is integrated there and to which the kinkable part of the plate 12 is connected as a coupling element of the manipulating device.
In accordance with
The wire 19 can be turned off or torn off by a rotation of the shaft 17 at its longitudinal axis or by a tilting of the bell part with a large expenditure of force to remove the manipulating device 17, 18 from the component 1. The coupling elements 18, 19 provide a good handling of the component 1 via the manipulating device as long as the connection exists.
In
In
A suction cup 25 is placed on the smooth surface of the coupling element 24 and can, for example, comprise an elastomer, but also a hard highly polished plate, for example of steel. The two plates 24, 25 adhere as coupling elements to one another in a sucking manner with a sufficient surface quality. This is in particular the case when one of the components is formed as an elastomer suction cup.
A ventilating passage 26 can be provided within the second coupling element 25; it extends through the shaft 27 and can be aerated or evacuated from the proximal end of the manipulating device 25, 26, 27 to couple or release the coupling device 24, 25.
In
If it is a radially symmetrical bore having undercuts, in accordance with
Another constellation of a coupling element 31 is shown in
The coupling elements are thereby connected to one another and the shaft 34 of a manipulating device is connected in a fixed and self-retaining manner to the component 1 via this coupling apparatus.
The connection can be permanently established, for example, before introduction of the component 1 into a patient's body.
To release the coupling connection, the epoxy resin between the coupling elements 32, 33 can be rehardened so much, for example by means of a UV radiation source 35, that it becomes brittle so that the coupling elements 32, 33 can easily be separated from one another.
Provision can, however, also be made that the coupling elements 32, 33 are connected to one another by a thermoplastic adhesive which can be liquefied by irradiation, for example by a heat source, so that the coupling can be dissolved in this manner and the manipulating device can be removed by separation of the second coupling element 33 from the first coupling element 32. Ultrasonic pulses or laser beams can also be used to dissolve the coupling.
A constellation is shown in
The fitting surfaces 54, 55, 56 can each be surrounded by ferromagnetic and/or magnetized material of the component 1, as shown for the example of the fitting surface 56 by hatching of the magnetic region 60.
Provision can also be made that the magnetic effect of magnetically effective parts 61 in the interior of the component 1, for example of parts of a pump drive or of a magnetic valve, are used for the coupling.
To facilitate a coupling of the manipulating device to the component by means of imaging processes, a marker body 70 integrated in the wall of the component or a surface coat 71 of a fitting surface 54 comprising a material of high density, in particular metal, preferably a precious metal, chromium or surgical steel, can be provided.
To release such a magnetic coupling, either a corresponding electromagnet can be switched off or the manipulation apparatus can be moved in a jerky manner. A demagnetization of the magnets by means of an alternating field can also take place. A different alignment of the magnetic poles with respect to one another can however, also be achieved by rotating the one magnet with respect to the other so that a simplified release is made possible by the magnetic repelling forces which arise.
In
If the core 46 is rotated with respect to the shaft 47 via a knob at the handle of the manipulating device, the threaded bolt 45 can hereby be screwed into the plate 32′ or out of it or of the threaded bore 44 in order to establish or separate the coupling depending on the situation.
In the state of an established coupling, the coupling apparatus is self-retaining, i.e. the first component 1 can easily be displaced and positioned or rotated as desired at the handle, not shown, of the manipulating device.
The threaded bolt 47 can selectively also be replaced with a nut having an internal thread connected to the core 46 and the threaded bore 44 with a corresponding threaded bolt.
As a further embodiment, the implantable component can also have a wrench flat, for example a hexagonal flat, as a coupling element to which a complementary wrench can engage as a second coupling element. If this combination is designed in a press fit, the connection is self-retaining.
Provision is advantageously made in the described coupling devices to form them at the implant at the surface not conducting blood. Any contamination or damage to the passage conducting blood can thereby be prevented. In addition, any cut-outs, bores or the like provided are not provided at the blood conducting passage so that dead flow regions are avoided.
As shown in
For example, a cushion inflatable via the shaft of a manipulating device can be introduced into a hollow space of a component and inflated there. For this purpose, the corresponding hollow space can have an undercut. The inflatable hollow body can also be made as a torus 63, 64 and be pushed over the component 1 or a part 62 of the component and inflated there.
As soon as the implant has been positioned and aligned, the pressure in the hollow body can be reduced and the coupling apparatus thus separated.
The hollow body can be coated with an elastomer for better adhesion to the component and to save the component surfaces.
A fluid passage 66 is in each case provided in the shaft 65 of the manipulating device for inflating and pressure reducing of the hollow body. Beads 67, 68 can be provided at the component 1 for holding the hollow body which thus form corresponding fitting surfaces as a coupling element at the component side.
The component can be simply positioned and aligned by a surgeon by the different variants shown of a self-retaining coupling apparatus between an implantable component and a manipulating device without the hand of the surgeon having to be directly guided into the operating field. A comparatively small access to the operating field is thereby made possible. The connection between the instrument or the manipulating device, on the one hand, and the component, on the other hand, can already be established before the actual surgical procedure and can be dissolved after the implantation.
The manipulating device, the coupling device and the implantable component can be characterized generally by the following principles of action as special aspects of the invention:
Number | Date | Country | Kind |
---|---|---|---|
10075373 | Aug 2010 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3510229 | Smith et al. | May 1970 | A |
3568659 | Karnegis | Mar 1971 | A |
3802551 | Somers | Apr 1974 | A |
3812812 | Hurwitz | May 1974 | A |
4014317 | Bruno | Mar 1977 | A |
4207028 | Ridder | Jun 1980 | A |
4559951 | Dahl et al. | Dec 1985 | A |
4563181 | Mallinckrodt Inc | Jan 1986 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4686982 | Nash | Aug 1987 | A |
4747821 | Kensey et al. | May 1988 | A |
4749376 | Kensey et al. | Jun 1988 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4801243 | Norton | Jan 1989 | A |
4817613 | Jaraczewski et al. | Apr 1989 | A |
4919647 | Nash | Apr 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4995857 | Arnold | Feb 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5040944 | Cook | Aug 1991 | A |
5042984 | Kensey et al. | Aug 1991 | A |
5052404 | Hodgson | Oct 1991 | A |
5061256 | Wampler | Oct 1991 | A |
5092844 | Schwartz et al. | Mar 1992 | A |
5097849 | Kensey et al. | Mar 1992 | A |
5108411 | McKenzie | Apr 1992 | A |
5112292 | Hwang et al. | May 1992 | A |
5113872 | Jahrmarkt et al. | May 1992 | A |
5117838 | Palmer et al. | Jun 1992 | A |
5118264 | Smith | Jun 1992 | A |
5145333 | Smith | Sep 1992 | A |
5163910 | Schwartz et al. | Nov 1992 | A |
5169378 | Figuera | Dec 1992 | A |
5183384 | Trumbly | Feb 1993 | A |
5191888 | Palmer et al. | Mar 1993 | A |
5201679 | Velte, Jr. et al. | Apr 1993 | A |
5275580 | Yamazaki | Jan 1994 | A |
5373619 | Fleischhacker et al. | Dec 1994 | A |
5376114 | Jarvik | Dec 1994 | A |
5501574 | Raible | Mar 1996 | A |
5531789 | Yamazaki et al. | Jul 1996 | A |
5554183 | Nazari | Sep 1996 | A |
5701911 | Sasamine et al. | Dec 1997 | A |
5755784 | Jarvik | May 1998 | A |
5776190 | Jarvik | Jul 1998 | A |
5813405 | Montano, Jr. et al. | Sep 1998 | A |
5820571 | Erades et al. | Oct 1998 | A |
5851174 | Jarvik et al. | Dec 1998 | A |
5853420 | Chevillion et al. | Dec 1998 | A |
5882329 | Patterson et al. | Mar 1999 | A |
5888241 | Jarvik | Mar 1999 | A |
5938672 | Nash | Aug 1999 | A |
6030397 | Monetti et al. | Feb 2000 | A |
6129704 | Forman et al. | Oct 2000 | A |
6152693 | Olsen et al. | Nov 2000 | A |
6168624 | Sudai | Jan 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6254630 | Inoue | Jul 2001 | B1 |
6302910 | Yamazaki et al. | Oct 2001 | B1 |
6308632 | Shaffer | Oct 2001 | B1 |
6336939 | Yamazaki et al. | Jan 2002 | B1 |
6346120 | Yamazaki et al. | Feb 2002 | B1 |
6387125 | Yamazaki et al. | May 2002 | B1 |
6503224 | Forman et al. | Jan 2003 | B1 |
6506025 | Gharib | Jan 2003 | B1 |
6508787 | Erbel et al. | Jan 2003 | B2 |
6517315 | Belady | Feb 2003 | B2 |
6527521 | Noda | Mar 2003 | B2 |
6533716 | Scmitz-Rode et al. | Mar 2003 | B1 |
6537030 | Garrison | Mar 2003 | B1 |
6537315 | Yamazaki et al. | Mar 2003 | B2 |
6592612 | Samson et al. | Jul 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6719791 | Nusser | Apr 2004 | B1 |
6860713 | Hoover | Mar 2005 | B2 |
6945977 | Demarais et al. | Sep 2005 | B2 |
6981942 | Khaw et al. | Jan 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7027875 | Siess et al. | Apr 2006 | B2 |
7074018 | Chang | Jul 2006 | B2 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7344553 | Opolski | Mar 2008 | B2 |
7393181 | McBride et al. | Jul 2008 | B2 |
7419498 | Opolski et al. | Sep 2008 | B2 |
7467929 | Nusser et al. | Dec 2008 | B2 |
7618435 | Opolski | Nov 2009 | B2 |
7731675 | Aboul-Hosn et al. | Jun 2010 | B2 |
7927068 | McBride et al. | Apr 2011 | B2 |
7934909 | Neusser et al. | May 2011 | B2 |
8434029 | Farnan et al. | Jan 2013 | B2 |
20020123661 | Verkerke et al. | Sep 2002 | A1 |
20030135086 | Khaw et al. | Jul 2003 | A1 |
20030231959 | Snider | Dec 2003 | A1 |
20040044266 | Siess et al. | Mar 2004 | A1 |
20040046466 | Siess et al. | Mar 2004 | A1 |
20040093074 | Hildebrand et al. | May 2004 | A1 |
20040215222 | Krivoruchko | Oct 2004 | A1 |
20040215228 | Simpson et al. | Oct 2004 | A1 |
20050154417 | Sepetka et al. | Jul 2005 | A1 |
20060008349 | Khaw | Jan 2006 | A1 |
20060062672 | McBride et al. | Mar 2006 | A1 |
20060195004 | Jarvik | Aug 2006 | A1 |
20070276352 | Crocker | Nov 2007 | A1 |
20080076960 | Marseille et al. | Mar 2008 | A1 |
20080132747 | Shifflette | Jun 2008 | A1 |
20080154302 | Opolski et al. | Jun 2008 | A1 |
20080262584 | Bottomley et al. | Oct 2008 | A1 |
20080306327 | Shifflette | Dec 2008 | A1 |
20090060743 | McBride et al. | Mar 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090093796 | Pfeffer et al. | Apr 2009 | A1 |
20090240326 | Wilson et al. | Sep 2009 | A1 |
20100041939 | Siess | Feb 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20110190567 | Farnan et al. | Aug 2011 | A1 |
20110190707 | Farnan | Aug 2011 | A1 |
20110238172 | Akdis | Sep 2011 | A1 |
20110275884 | Scheckel | Nov 2011 | A1 |
20120039711 | Roehn | Feb 2012 | A1 |
20120041254 | Scheckel | Feb 2012 | A1 |
20120046648 | Scheckel | Feb 2012 | A1 |
20120093628 | Liebing | Apr 2012 | A1 |
20120101455 | Liebing | Apr 2012 | A1 |
20120142994 | Toellner | Jun 2012 | A1 |
20120184803 | Simon et al. | Jul 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120234411 | Scheckel | Sep 2012 | A1 |
20120237353 | Schumacher et al. | Sep 2012 | A1 |
20120237357 | Schumacher et al. | Sep 2012 | A1 |
20120264523 | Liebing | Oct 2012 | A1 |
20120265002 | Roehn et al. | Oct 2012 | A1 |
20120294727 | Roehn | Nov 2012 | A1 |
20120301318 | Er | Nov 2012 | A1 |
20120308406 | Schumacher | Dec 2012 | A1 |
20130019968 | Liebing | Jan 2013 | A1 |
20130041202 | Toellner | Feb 2013 | A1 |
20130060077 | Liebing | Mar 2013 | A1 |
20130066139 | Wiessler et al. | Mar 2013 | A1 |
20130085318 | Toellner | Apr 2013 | A1 |
20130177409 | Schumacher et al. | Jul 2013 | A1 |
20130177432 | Toellner | Jul 2013 | A1 |
20130204362 | Toellner | Aug 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20140039465 | Schulz et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
1008330 | Apr 1977 | CA |
2311977 | Dec 2000 | CA |
2701809 | Apr 2009 | CA |
2701810 | Apr 2009 | CA |
101668490 | Mar 2010 | CN |
2207296 | Aug 1972 | DE |
2113986 | Sep 1972 | DE |
2233293 | Jan 1973 | DE |
2613696 | Oct 1977 | DE |
4124299 | Jan 1992 | DE |
69103295 | Dec 1994 | DE |
19535781 | Mar 1997 | DE |
19711935 | Apr 1998 | DE |
69407869 | Apr 1998 | DE |
29804046 | Jun 1998 | DE |
69017784 | Apr 2000 | DE |
69427390 | Sep 2001 | DE |
10059714 | May 2002 | DE |
10108810 | Aug 2002 | DE |
10155011 | May 2003 | DE |
69431204 | Aug 2003 | DE |
10336902 | Aug 2004 | DE |
102010011998 | Sep 2010 | DE |
0480102 | Apr 1992 | EP |
0560000 | Sep 1993 | EP |
0629412 | Jan 1998 | EP |
0884064 | Dec 1998 | EP |
0916359 | May 1999 | EP |
1066851 | Jan 2001 | EP |
0914171 | Oct 2001 | EP |
0768091 | Jul 2003 | EP |
0951302 | Sep 2004 | EP |
1114648 | Sep 2005 | EP |
1019117 | Nov 2006 | EP |
1337288 | Mar 2008 | EP |
2218469 | Aug 2010 | EP |
2229965 | Sep 2010 | EP |
2301598 | Mar 2011 | EP |
2308524 | Apr 2011 | EP |
2343091 | Jul 2011 | EP |
2345440 | Jul 2011 | EP |
2366412 | Sep 2011 | EP |
1651290 | Jan 2012 | EP |
2497521 | Sep 2012 | EP |
2606919 | Jun 2013 | EP |
2606920 | Jun 2013 | EP |
2607712 | Jun 2013 | EP |
2239675 | Jul 1991 | GB |
2229899 | Jun 2004 | RU |
9202263 | Feb 1992 | WO |
9302732 | Feb 1993 | WO |
9303786 | Mar 1993 | WO |
9314805 | Aug 1993 | WO |
94001148 | Jan 1994 | WO |
9405347 | Mar 1994 | WO |
9409835 | May 1994 | WO |
9420165 | Sep 1994 | WO |
9523000 | Aug 1995 | WO |
9618358 | Jun 1996 | WO |
9625969 | Aug 1996 | WO |
9744071 | Nov 1997 | WO |
9853864 | Dec 1998 | WO |
9919017 | Apr 1999 | WO |
0027446 | May 2000 | WO |
0043054 | Jul 2000 | WO |
0062842 | Oct 2000 | WO |
2001007760 | Feb 2001 | WO |
2001007787 | Feb 2001 | WO |
2001083016 | Nov 2001 | WO |
2003057013 | Jul 2003 | WO |
2003103745 | Dec 2003 | WO |
2005002646 | Jan 2005 | WO |
2005016416 | Feb 2005 | WO |
2005021078 | Mar 2005 | WO |
2005030316 | Apr 2005 | WO |
2005032620 | Apr 2005 | WO |
2005081681 | Sep 2005 | WO |
2006020942 | Feb 2006 | WO |
2006034158 | Mar 2006 | WO |
2006133209 | Dec 2006 | WO |
2007003351 | Jan 2007 | WO |
2007103390 | Sep 2007 | WO |
2007103464 | Sep 2007 | WO |
2007112033 | Oct 2007 | WO |
2008017289 | Feb 2008 | WO |
2008034068 | Mar 2008 | WO |
2008054699 | May 2008 | WO |
2008106103 | Sep 2008 | WO |
2008116765 | Oct 2008 | WO |
2008124696 | Oct 2008 | WO |
2008137352 | Nov 2008 | WO |
2008137353 | Nov 2008 | WO |
2009015784 | Feb 2009 | WO |
2010133567 | Nov 2010 | WO |
2013034547 | Mar 2013 | WO |
2013092971 | Jun 2013 | WO |
2013093001 | Jun 2013 | WO |
2013093058 | Jun 2013 | WO |
Entry |
---|
National Intellectual Property Administration of the People's Republic of China, Second Notification of Office Action, dated Sep. 23, 2019, 30 pages, Beijing, China. |
Number | Date | Country | |
---|---|---|---|
20180104397 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
61377678 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13261605 | US | |
Child | 15834166 | US |